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On the speed of convergence to limit distributions 
for Dedekind zeta-functions of non-Galois 

number fields 

Kohji Matsumoto 

Abstract. 

We evaluate the speed of convergence in the Bohr-Jessen type of 
limit theorem on the value-distribution of Dedekind zeta-functions of 
number fields. When K is a Galois number field, the Euler product 
of the corresponding Dedekind zeta-function (K(s) is convex, hence 
the evaluation can be done similarly to the case of the Riemann zeta­
function. However, when K is non-Galois, some new ideas (based on 
the Artin-Chebotarev density theorem etc) are necessary, because the 
corresponding (K(s) is not always convex. 

§1. Introduction and statement of the result 

We begin with recalling the classical result of Bohr and Jessen [1] [2] 
on the value-distribution of the Riemann zeta-function. Let s = a + it 
be a complex variable, ((s) the Riemann zeta-function. In the half­
plane a> 1, there is no difficulty in defining log((s). But in the strip 
1/2 < a :::; 1, there is the possibility of the existence of zeros of ((s), 
because we do not assume the Riemann hypothesis. Therefore, we let 

g = {s =a+ it I a> 1/2}- U , { s = a + itj 11/2 < a :::; aj }, 

where the numbers Sj denote the zeros and the pole of ((s) in the region 
a> 1/2. ForsE g we can define log((s) by analytic continuation along 
the horizontal line segment from 2 + it. 

Let R be any fixed closed rectangle on the complex plane C with 
the edges parallel to the axes. Throughout this paper we write Pn(·) for 

Received November 5, 2005. 
Revised March 30, 2006. 
2000 Mathematics Subject Classification. Primary 11R42; Secondary 

11K38. 



200 K. Matsumoto 

n-dimensional Lebesgue measure. For any fixed a> 1/2, let 

V(T; R) = JL1 ({t E [1,T] I a+ it E Q,log((a +it) E R}). 

Bohr and Jessen [1 J [2] proved the existence of the limit 

(1.1) W(R) = lim -T1 V(T; R), 
T->oo 

which may be regarded as the probability of how many values oflog((s) 
on the line ~s = a belong to the rectangle R. 

The speed of convergence on the right-hand side of (1.1) was esti­
mated by the author. In [7] [8] the author proved 

(1.2) ~ V(T; R) - W(R) 

= 0 (JL2(R)(loglogT)-A(a)+c: + (loglogT)-B(a)+c:), 

where (and throughout this paper) c denotes an arbitrarily small positive 
number, not necessarily the same at each occurrence, 

A a _{(a -1)/7 (a> 1), 
( ) - (2a- 1)/15 (1 2: a> 1/2), 

and 

(1.3) B a _{(a -1)/2 (a> 1), 
( ) - (2a- 1)/5 (1 2: a> 1/2). 

The implied constant on the right-hand side of (1.2) depends only on a 
and c. In [11], the value of A(a) was improved to 

(1.4) A(a) = 2a -1 

for any a > 1/2. Finally, in a joint paper of Harman and the author 
[3], it has been shown that the log log T factor in the error term can be 
replaced by the log T factor, that is 

(1.5) ~ V(T; R)- W(R) = 0 ( (JL2(R) + 1)(logT)-C(aJ+c:), 

where 

(1.6) C a _ {(a- 1)/(3 + 2a) (a> 1), 
( ) - 2(2a- 1)/(21 + 8a) (1 2: a> 1/2). 
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So far this error estimate is the sharpest. 
Let Pn be the nth prime number. Then, from the Euler product 

expression of ((s), we have 

00 

(1. 7) log ((o- +it) = - L log (1- p,;;:"" e-it logp,.) 
n=l 

foro- > 1. In the proof of (1.1) by Bohr and Jessen, it is important to 
study the behaviour of each term 

-log (1- p,;;:""e-itlogp,). 

This can be written as Zn( { -(t/27r) logpn} ), where 

(1.8) 

and { x} = x - [x] is the fractional part of x. When 8n moves from 0 to 
1, Zn(8n) describes a closed convex curve on C, and this fact has been 
essentially used in the proof of Bohr and Jessen. 

However, for more general zeta-functions which have Euler products, 
the corresponding curve is not always convex. (If the curve is convex, 
we call the Euler product convex; see [10].) Therefore, if one wants to 
generalize the result of Bohr and Jessen to some wider class of zeta­
functions, it is necessary to find a proof which is free from convexity. 

The author discovered two such proofs. One of them, based on 
Prokhorov's theorem, was first published in [9], in which an analogue 
of (1.1) for certain automorphic £-functions has been proved. Then in 
[10], the same (actually simplified) method has been applied to a more 
general class of zeta-functions. Another proof was dicussed in [11] in 
the case of Dedekind zeta-functions of algebraic number fields, but this 
method can also be applied to a more general situation, as was pointed 
out in [12]. Limit theorems in a more probabilistic framework for general 
zeta-functions introduced in [10] have been studied by LaurinCikas and 
Kacinskaite; see, for example, [5] [6]. Some history of this topic and 
related results are surveyed in [13]. 

Therefore, now, limit theorems of type (1.1) have been shown for a 
rather wide class of zeta-functions. Hence it is natural to ask how to 
generalize quantitative results such as (1.2), (1.5) to the case of such a 
wide class. However, for those quantitative results, no proof free from 
convexity has been discovered. Hence the only published result in this 
direction deals with Dedekind zeta-functions of Galois number fields, 
because in this case the corresponding curve is convex. 
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Let K be an algebraic number field,£= [K: Q], L = max{£,2}, 
and (K(s) the Dedekind zeta-function of K. Define 

VK(T; R) = J.L1( {t E [1, TJI 0' +it E QK, log(K(O' +it) E R} ), 

where QK is the set defined for (K(s) analogously to Q. The results in 
[10] [11] imply that, for any number field K, the limit 

(1.9) 
. 1 

WK(R)= hm -VK(T;R) 
T->cxo T 

exists for 0' > 1 - L - 1. 
Denote by Np the norm of an ideal p of K. By p~1 ), ... , p~(n)) we 

meantheprimedivisorsofpn,withnormNp~fl =p~(j,n) (1 ::;_j ::;.g(n)). 
Then for 0' > 1 we have 

= g(n) -1 

(1.10) (K(s) =II (1- (Np)-s) -1 = II II ( 1- p;;f(j,n)s) ' 
p n=1j=1 

hence 

(1.11) log (K(O' +it) = ~ Zn,K ( {- 2~ logpn}) , 

where 

g(n) 

(1.12) Zn,K( Bn) = - L log ( 1 - p;; f(j,n)a- e21rij(j,n)(J,) . 
j=1 

If K is a Galois extension ofQ, then f(1,n) = · · · = f(g(n),n) (= f(n), 
say), hence 

(1.13) Zn,K( Bn) = -g( n) log ( 1 - p;; f(n)a- e21rij(n)IJ,) 

which is clearly convex as in the case of zn(Bn)· In [11], we have used 
this convexity to obtain 

(1.14) 
1 
yYK(T; R)- WK(R) 

= 0 (J.L2(R)(loglogT)-A(a-)+c: + (loglogT)-B(a-)+c:) 

with the values (1.4) for A(O') and (1.3) for B(O"). In [3] it is noted that 
for (K(s) of a Galois extension K, an improvement similar to (1.5) (with 
(1.6)) is possible. 
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It is the purpose of the present paper to consider the speed of con­
vergence of (1.9) for non-Galois number fields. In this case, the corre­
sponding curve 

(1.15) 

is not always convex. Nevertheless, we can prove the following result. 

Theorem. Let K be an arbitrary (Galois or non-Galois) algebraic 
number field. For any CJ > 1 - L - 1 , 

(1.16) ~VK(T;R)- WK(R) = 0 ((J.t2(R) + 1)(logT)-C(a)+c) 

with the value (1.6) for C(CJ). 

As mentioned above, when K is Galois, this theorem can be shown 
by a direct generalization of the method in [3]. In the non-Galois case, 
however, some new ideas are necessary. A key fact for the proof is that, 
for any fixed K, there are only finitely many patterns of the decompo­
sition of primes into prime ideals in K. This is the reason why we can 
apply Levy's inversion formula successfully. Another important tool is 
the Artin-Chebotarev density theorem, by which we can reduce some 
part of the proof to the convex case. 

§2. The structure of the proof 

Let N be a positive integer. It is fundamental in our argument to 
approximate the Euler product expression (1.10) of (K(s) by its finite 
truncation 

(2.1) 
N g(n) _ 1 

(N,K(s) =II II (1- p;;f(j,n)s) 
n=1j=1 

Then 

(2.2) log(N,K(CJ +it)=~ Zn,K ( {- 2~ logpn}) 

and, analogously to VK(T; R), we define 

(2.3) VN,K(T;R) = 111{t E [1,T]Ilog(N,K(CJ +it) E R}. 

Let 
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be theN-dimensional unit cube in IRN, and define the mapping SN,K 
from QN to <C by 

N 

(2.4) SN,K(()) = L Zn,K(Bn)· 
n=l 

For any subset A c <C, we put 

nN,K(A) = {O E QN 1 sN,K(o) E A}, 

x(t) = ( {- 2~ logp1}, ... , {- 2t7r logpN}) . 

Then log(N,K(a +it)= SN,K(x(t)) E R if and only if x(t) E nN,K(R). 
Noting this fact, and using the Kronecker-Weyl theorem, we can prove 
(see Section 2 of [11]) that the limit 

(2.5) 
1 

WN,K(R) = )~~ TVN,K(T;R) 

exists, and is equal to JJN(nN,K(R)). Hence WN,K is a probability 
measure on C. Moreover we can show (Sections 3 and 4 of [11]) that the 
value WK(R) in (1.9) is given by 

(2.6) WK(R) = lim WN,K(R). 
N--+oo 

Therefore, to prove our theorem, it is necessary to evaluate the speed of 
convergence of both (2.5) and (2.6). 

Concerning (2.5), let 

Then our result is 

Proposition 1. Let N be sufficiently large, and let m and r be large 
positive integers with 2r N :::; m. Then we have 

(2.7) 
N 112 Nr 1 

EN,K(T;R) « -r- +---;:;;,- + y;(6rlogm)N exp(mNlogN). 

This is a generalization of Proposition 2 in [3]. On the other hand, 
as for (2.6), we have 
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Proposition 2. For any sufficiently large N, we have 

When K is Galois, this is (6.4) in [11]. The basic structure of the 
proof of Proposition 2 is the same as in [11], but some additional diffi­
culty arises because the pattern of the decomposition of primes is not so 
simple as in the non-Galois case. 

In Section 3 we will prove Proposition 2. In the course of the proof 
we will state and use a lemma on the evaluation of certain integrals, 
which will be proved in Section 4. Section 5 will be devoted to the proof 
of Proposition 1, and finally in the last section we will combine these 
two propositions to complete the proof of the theorem. 

At the end of this section we show a preparatory lemma, which will 
be used in Section 5. Let 8n = 8SN,K(0)/88n. Then we have 

Lemma 1. There exists a positive constant C = C(a, £) for which 
the inequality 

(2.9) 

holds for any N. 

In fact, by straightforward calculations we obtain 

(2.10) 
g(n) - f(j,n)af( . ) . (2 f( . )() ) 

3?8n = -271" L p:: . n (j J, n sm 7r J, n ::2 . n (j . 
j=l 1 - 2pn f(J, ) cos(27r f(j, n)On) + Pn f(J, ) 

Since 

1 - 2p;;_ f(j,n)a cos(27r f(j, n)On) + p;;_2f(j,n)(j ~ (1 - p;;_ f(j,n)(j) 2 , 

we have 

g(n) - f(j,n)(jf( . ) 
l3?8nl < 271" L Pn . J, n 

- j=l ( 1 _ p;; f(J,n)(j)2 

-(j g(n) -(j 

~ 271" ( Pn (j)2 L f(j, n) ~ 2rr£ ( Pn (j)2 . 
1 - Pn j=l 1 - Pn 
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Hence 

from which the lemma immediately follows. 
In the case of the Riemann zeta-function, (2.9) has been given in 

Section 4 of a joint paper of Miyazaki and the author [14]. The above 
proof is a direct generalization of the argument given there. 

§3. Proof of Proposition 2 

The fundamental tool for the proof of Proposition 2 is, similarly 
to the proof of (6.4) in [11], Levy's inversion formula. Therefore it is 
necessary to consider the Fourier transform 

(3.1) AN,K(w) = [ ei<z,w>dWN,K(z), 

where < z, w >= ~(z)~(w) + <J(z)<J(w). Then 

N 

(3.2) AN,K(w) = 1 exp(i < SN,K(O), w > )df..LN(O) = IT Kn,K(w), 
QN n=l 

where 

(3.3) Kn,K(w) = fol exp(i < Zn,K(Bn),w >)dBn. 

Substituting definition (1.12) into the above, we have 

where 

(3.5) 

Since 

(3.6) 

g(n) 

Fn(z) =- L log ( 1- zf(j,n)). 
j=l 

g(n) 

L e(j, n)f(j, n) = £, 
j=l 
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where e(j, n) is the ramification index of p~fl over Pn, we see that 1 :::; 
g(n) :::; £. For any integer g satisfying 1 :::; g :::; £, let F9 be the set of 
all integer vectors f = (!(1), ... , f(g)) for which there exists ann such 
that g = g(n) and f(j) = f(j, n) (1 :::; j :::; g). Then 

(3.7) 

is a finite set because of (3.6). For each f E F, define 

(3.8) 
g 

Fr(z) =- L)og ( 1- z!(j)). 
j=l 

Let N be the set of positive integers. For any n E N, there exists a 
unique f E F for which Fn = Fr holds. Hence N can be decomposed 
into 

(3.9) N= U N(f), 
fE:F 

where 

(3.10) N(f) = {n EN I Fn = Fr}. 

Let F1 be the set of all f E F for which N(f) has infinitely many 
elements, and F2 = F\F1 . Then for any f E F2, there exists the largest 
positive integer belonging to N(f), which we denote by n2(f). In order 
to study F1, we use the following lemma. 

Lemma 2. Let p > 0, and assume that the series 

00 

(3.11) F(z) = L anzn 
n=h 

is convergent absolutely in lzl < p. Let r be the closed curve on the 
complex plane defined by 

r = r(r) = {F(re2tril:1) I 0:::; () < 1} (0 < r < p). 

Then we have 
(i) There exists a Po= po(h, p, F) with 0 <Po < p such that r(r) is 

a closed convex curve for any r satisfying 0 < r :::; PO· 
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(ii) There exists a p1 = p1 (h, p, F) with 0 < Pl < p for which 

(3.12) 

holds for any w E C and for any r satisfying 0 < r :::; Pl, where the 
implied constant depends on h, p and F. 

The proof of this lemma will be given in the next section. Here we 
apply the assertion (ii) of this lemma to F = Fr. Then p = 1, and we 
obtain 

(3.13) 

for any w E C and any positive r :::; p1 = Pl(f) < 1, where h(f) 
min{/(1), ... , f(g)}. 

When f E :F1, there are infinitely many elements in N(f), hence we 
can find sufficiently large n 1(f) E N(f) such that p;;" :::; Pl(f) for any 
n > n 1(f). For those n, (3.13) is valid with r = p;;". Hence, combining 
with (3.4), we find that 

(n E N(f), n > n1(f)) 

where (J(f) is a constant depending on f. 
Now define 

(3.15) n 0 =max {maxn1(f), maxn2 (f)}. 
fE.F, fE.F2 

Then any n > n0 is an element of some N(f), f E :F1, hence inequality 
(3.14) is valid for those n. Therefore 

(3.16) 

for any n > n 0 , where !3 = max{(J(f) I f E :FI}. This bound (3.16) 
is a generalization of the inequality stated in line 4, p.206 of [11]. The 
argument how to deduce the assertion of Proposition 2 from (3.16) is 
the same as on p.204 and p.206 of [11], so we omit it. 

Remark 1. It is to be noticed that n 0 can be determined because 
:F is a finite set, that is, there are only finitely many patterns of the 
decomposition of primes into prime ideals for any fixed field K. This 
fact is essential in our proof. 
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Remark 2. The first assertion of Lemma 2 is actually not necessary 
for the purpose of the present paper. But it (with its proof) clarifies the 
geometric meaning of the lemma, especially it implies that the second 
assertion is essentially a property of convex curves. 

§4. Proof of Lemma 2 

The purpose of this section is to prove Lemma 2, stated in the 
preceding section. The case h = 1 of this lemma is due to Jessen and 
Wintner [4] (see Theorems 12 and 13 of their paper). The following 
proof is a (simplified) generalization of their argument. 

Let 0 < lzl = r :=; p/2. Then series (3.11) is convergent uniformly 
in z. Put z(B) = F(re21ri8 ), ~(B) = !Rz(B), ry(B) = ~z(B). Writing 
an = lanle27riw .. we have 

00 

(4.1) ~(B) = L lanlrn cos(27r(Wn + nB)), 
n=h 

00 

(4.2) ry(B) = L lanlrn sin(27r(Wn + nB)). 
n=h 

The gradient of the tangential line for r at z(B) is ry 1 (B)/~1 (B) (where 
the prime denotes the differentiation with respect to B). Using (4.1) and 
(4.2) we have 

(4.3) ( "'I(B)) I lahl2r2h(27rh)3 + O(r2h+l) 
e(B) = lahl 2r 2h(27rh)2 sin2 (27r(wh +he))+ O(r2h+l) 

where the implied constants depend on h, p and F. Let 

I= {BE [0, 1) II sin(21r(wh + M))l 2:: 1/v'2}. 

Then, for any B E I, we have 

(4.4) ( 'T/I(B)) I 
~1(8) 

which is positive when r is sufficiently small. Hence the gradient con­
stantly increases when B E I. 

When 8 tf I, we have I cos(27r(wh + M))l 2:: 1/../2. In this case 
we change the role of the real axis and the imaginary axis. Then the 
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gradient we should consider is -e (B)/ r/ (B). we see that 

( 4.5) (- e(B))' 
ry'(B) 

which is again positive for any sufficiently small r. Therefore the first 
assertion of Lemma 2 follows. 

We proceed to the proof of the second assertion. Let T = arg w, so 
w = lwleiT. Then 

(4.6) 11 
exp (i < F(re2-rri&), w >)dB= 11 

exp (igT(B)Iwl) dB, 

where gT(B) =~(B) cosT+ ry(B) sin T. Using (4.1) and (4.2) we have 

00 

( 4. 7) 9T(B) = L lanlrn cos(2n(wh +he)- r), 
n=h 

and 

with the implied constants depending on h, p and F. Let 

IT= {BE [0, 1) II sin(2n(wh +he)- r)l 2: 1/J2}. 

The set IT consists of 2h disjoint intervals of length 1/4h. (The interval 
including 0 and the interval including the neighbourhood of 1 are to be 
combined.) We denote each of those intervals by IT(k) (1 ~ k ~ 2h). If 
r is sufficiently small, then from ( 4.8) we have 

(4.11) 

with the implied constant depending on h, p, F. Moreover from (4.10) 
we see that, for each k, the sign of g~'(B) does not change when B moves 
in the interval IT(k). Hence g~(B) is monotonic in IT(k), so there is at 
most one point B = Bo(k) E IT(k) at which g~(B) = 0. This B0 (k), if 
exists, divides IT(k) into two subintervals on which g~(B) is monotonic. 
If Bo(k) does not exist, g~(B) is monotonic on IT(k). 
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On the other hand, the set [0, 1) \ IT also consists of 2h disjoint 
intervals, which we denote by JT(k) (1 :::; k :::; 2h). If() E JT(k) then 
I cos(27r(wh + M)- T)l 2: 1/J2. Hence, if r is sufficiently small, then 
from (4.9) we obtain 

( 4.12) 

with the implied constant depending on h, p, F. 
Now we divide the right-hand side of ( 4.6) as 

1 2h 2h 
(4.13) r exp (igT(B)Iwl) d() = L r + L r . 

Jo k=1 }Ir(k) k=1 }Jr(k) 

Because of (4.11) and the monotonicity mentioned above, we can apply 
Lemma 4.2 of Titchmarsh [16] to the integrals on IT(k). The integrals 
on JT(k) are estimated by (4.12) and Lemma 4.4 of [16]. The result is 
that 

r1 1 1 
(4.14) Jo exp (igT(B)Iwl) d() « rhlwl + (rhlwl)l/2 · 

When rhlwl 2: 1, then the right-hand side of (4.14) is« (rhlwl)- 112, 
which implies (3.12). When rhlwl < 1, inequality (3.12) holds trivially 
because the left-hand side is :::; 1. The proof of Lemma 2 is now complete. 

§5. Proof of Proposition 1 

In this section we describe how to prove Proposition 1. The basic 
structure of the proof is similar to that developed in [3], hence we omit 
the details except for some key points of the proof. 

For a point n E 7lP we put 

where r is a large positive integer, and define 

u D2 = QN \ u 
First, similarly to the inequalities given in p.22 of [3], we can show 

(5.1) EN,x(T; R) :'::: IMN(DI)- WN,x(R)I + B1 + 0 c::) 
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and 

(5.2) 

EN,K(T; R):::: -IJ.LN(D2) -1 + WN,K(R)I- B2 + 0 ( :) + 0 (~), 

where m is a large positive integer satisfying 2rN :::; m, and B1 (j = 1, 2) 
is the same as in [3] and satisfies the estimate 

(5.3) 
1 

B1 « y;(6rlogm)N exp(mNlogN). 

The proof of these results is exactly the same as the argument in Section 
2 of [3], which is based on the ideas in [7] and a lemma of Vinogradov. 

Proposition 1 will clearly follow from (5.1), (5.2) and (5.3), if we can 
show the following lemma. 

Lemma 3. For any sufficiently large N, we have 

(5.4) 

(5.5) 

IJ.LN(Dl)- WN,K(R)I « N 112r- 1 , 

IJ.LN(D2)- 1 + WN,K(R)I « N 112r- 1 . 

This lemma is a generalization of Lemma 2 of [3]. In [3], we studied 
the case of the Riemann zeta-function, hence the associated curves are 
convex. In order to use the convexity in the present general situation, 
we rearrange the summation with respect to n as follows. Applying 
the Artin-Chebotarev density theorem (see, e.g., Proposition 7.15 of 
Narkiewicz [15]) we see that there exist infinitely many primes Pn for 
which g(n) = I! and f(j, n) = 1 (1 :::; j :::; /!) hold. Denote the first 
three of such primes by Pn(l), Pn(2), and Pn(3). Define p~ by Pi = Pn(l), 

Pz = Pn(2), P3 = Pn(3), and 

{

Pn-3 

* Pn-2 
Pn = 

Pn-1 

Pn 

(4:::; n:::; n(1) +2), 

(n(1) + 3:::; n:::; n(2) + 1), 

(n(2) + 2 :::; n:::; n(3)), 

(n(3) + 1 :::; n). 

Similarly we define 8~, z~,K, r~,K, and put ()* = (8i, ... , 8'N ), 

n'N,K(A) = {O* E QN 1 sN,K(O*) E A}, 

wN K(A) = J.LN(n'N K(A)). , , 
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Then W_N,K(A) = WN,K(A) for all N 2': n(3), so we may consider 
W_N,K(A) instead of WN,K(A). 

The merit of this rearrangement is that the first three curves r:,K 
(v = 1, 2, 3) are convex. In fact, we have 

(5.6) z~,K( e:) = Zn(v),K ( Bn(v)) = -£ . log(1 - P;;tv) e21rilin(v)) 

(v = 1, 2, 3), which is just a constant multiple of Zn(v)(Bn(v)) (defined 
by (1.8)). Therefore the analogue of Lemma 3 of [3] is valid for these 
z~,K(B~) (v = 1, 2, 3), and hence the analogue of Lemma 4 of [3] holds 
for w;,K. 

We use the notation d(x, B) for the distance from a point x E QN 
to a subset B c QN, and oB for the boundary of B. Our next aim is 
to show 

(5.7) JLN( {o E QN 1 d(O, an'N,K(R))::; 5}) « 5 

for any 8 > 0. In the case of the Riemann zeta-function, this inequality 
has been proved as (21) of [3], by using Lemmas 3 and 4 of [3] and formula 
(4.1) of [14]. We have already noted that the analogues of Lemmas 3 
and 4 of [3] are valid in our present situation. Therefore, in order to 
generalize the argument in [3] to obtain a proof of ( 5. 7), the remaining 
task is to establish the following analogue of (4.1) of [14]: For any k E lR 
and any small E > 0, there exists a positive constant C = C(rT, £) for 
which 

(5.8) {o E QN 1 d(o,an'N K(k))::; E} c u 
holds, where 

fl'N,K(t) = fl'N,K({z I ~z = t}). 

To prove (5.8) by the method explained in Section 4 of [14], it is enough 
to show that 

(5.9) 

for any N, where 8~ = 8SN,K(O*)j8B~ and Cis the same as in Lemma 
1. We have already proved this inequality in Lemma 1. Lemma 1 is 
stated for 8n, but the argument for 8~ is the same. Therefore we 
obtain (5.8), hence (5.7). 

Lastly, since the length of the longest diagonal of Q N ( n) is N 112,- 1 , 

we choose 8 = N 112r- 1 in (5.7) to obtain Lemma 3. This completes the 
proof of Proposition 1. 
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§6. Completion of the proof of the theorem 

Now we are going to complete the proof of our theorem. First we 
show one more lemma. Let us write the rectangle R as 

and define 

Ri = Ri(15) = {z I 0:1 + 15::; ~z::; 0:2- 15, fJ1 + 15::; ~z::; fJ2- 15}, 

Ry = Ry(5) = {z I 0:1-15::; ~z::; 0:2 + 15,(31- 15::; ~z::; fJ2 + 15}, 

where 15 is a small positive number. Then we have 

Lemma 4. For any large N we have 

When K is Galois, this is Lemma 7 of [11], which has been proved 
by using properties of convex curves. To prove the lemma in the non­
Galois case, we notice that it is enough to show this lemma for W_N K· 

Then the first three curves are convex of the form (5.6), hence we ~an 
apply the argument of proving Lemma 7 of [11] to the present case, the 
details being omitted. 

Let a- > 1. Formula ( 4.1) of [11] implies 

(6.1) llog(K(a- +it) -log(N,K(a- + it)l 
00 

« L p;;a«Nl-a(logN)-a, 
n=N+1 

where the implied constants depend only on a- and £. Hence 

for 15 = C1N 1-a(logN)-a with a positive constant C1 = C1(a-,£). Hence 

(6.3) 

lwK(R)- ~VK(T;R)I 

:S: max{IWK(R)- ~VN,K(T;Ri)l, IWK(R)- ~VN,K(T;Ry)l}. 



Limit distributions for Dedekind zeta-functions 215 

On the other hand, since 

jwK(R)- ~vN,K(T;Ri)/ s IWK(R)- wN,K(R)I 

+ IWN,K(R)- wN,K(Ri)l + jwN,K(Ri)- ~vN,K(T;Ri)/, 

by using Proposition 1 (applied toRi), Proposition 2 and Lemma 4, we 
obtain 

(6.4) IWK(R)- ~VN,K(T;Ri)l « J.J.2(R)N1- 2<T(logN)- 2<T 

N 112 Nr 1 + 8112 + --+- + -T(6rlogm)N exp(mNlogN) 
r m 

with the above choice of 8. We can estimate IWK(R) -T-1VN,K(T; Ry)l 
similarly. Substituting these estimates into the right-hand side of (6.3), 
we obtain 

(6.5) 

jwK(R)- ~VK(T;R)I « J.1.2(R)N1- 2(T(logN)-2(T 

N 112 Nr 1 + N-(<T-l)/2(logN)-<T/2 + --+- + -(6rlogm)N exp(mNlogN). 
r m T 

Put N = (logT)", m = (logT)i3 and r = (logT)'"Y. How to find the 
optimal choice of parameters is discussed in the first section of [3]. That 
is, first assume a+ (3 = 1-c to show that the last term on the right-hand 
side is small. Then require 

1 1 
2a- 1 = - 2a(a- 1) + c, 

to obtain a= 2/(3 + 2a) + c and 

(6.6) jwK(R)- ~VK(T;R)I 

1 
a+ 1- (3 = --a(a- 1) + c 

2 

« J.1.2(R)(logT)-"(2<T-l)+c + (logT)-O<(<T-1)/2+", 

which gives the assertion of the theorem for a > 1. 
Finally we consider the case 1- L-1 <a S 1. Let 8 > 0, and by 

k1v,K(T) we mean the measure of the set 

{t E [1, T]l a+ it E Q, llog(K(a +it) -log(N,K(a +it) I 2: 8}. 
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Then 

(6.7) 

VN,K(T; Ri(c5))- kj..,K(T) ~ VK(T; R) ~ VN,K(T; Ry(c5)) + kj..,K(T) 

(this is (4.3) of [11]). Using these inequalities instead of (6.2), this time 
we have 

(6.8) IWK(R)- ~ VK(T; R)i « J..L2(R)Nl-217(log N)-217 + Jl/2 

N 112 Nr 1 1 + --+- + -T(6rlogm)N exp(mNlogN) + -Tkj.. K(T). 
r m ' 

In Section 7 of [11] we have shown 

(6.9) 
1 
Tkj..,K(T) « c5-2log(c5- 1) (N-3+e + r-l N-2+e) 

+ c5-2 { Nl-217+e + r-I+L{l-17)+e exp(C£NliL)} + ~ . 

This estimate has been deduced from Lemma 5 of [11]. Lemma 5 of [11] 
has been proved under the assumption that K is Galois, but actually this 
assumption is not used in the proof. Hence (6.9) holds for any number 
field K. 

We again put N = (log T)a., m = (log T)f3, r = (log T)'Y and assume 
a< 1, a+ {3 = 1- c. Then, since -1 + L(1- a) < 0, the factor 

is small. Hence, substituting (6.9) into the right-hand side of (6.8), we 
have 

(6.10) IWK(R)- ~VK(T; R)i « J..L2(R)N1- 217 (logN)- 217 + c51/ 2 

N 112 Nr + __ + _ + c5-2log(c5-l)N-3+e; + c5-2Nl-217+e. 
r m 

Choose the value of c5 by 

c5112 = c5-2 Nl-217 = c5-2(logT)a.(l-217), 

so c5 = (log T)- 2a.( 2~7-l)/5 . Then we require 

1 
a+"(- {3 = --a(2a- 1) + c 

5 
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to obtain a= 10/(21 + 8<7) + c and 

(6.11) lwK(R)- ~Vx(T;R)I 
« /-i2(R)(logT)-a(2u-l)+.s + (logT)-a(2u-l)/5+.s. 

This implies the theorem for 1 - L -l < <T :::; 1. 

Remark. We have actually proved (6.6) and (6.11), which are 
slightly sharper than the statement of the theorem. 

Note Added in Proof 
A generalization of the result in the present paper to the case of 

Heeke L-functions associated with ideal class characters has already been 
published in Analysis 26 (2006), 313-321. 
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