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Abstract. 

On the Backlund equivalent 
for the Lindelof hypothesis 

Ram iinas Garunkstis 

Backlund showed that the Lindelof hypothesis (LH) for the Rie
mann zeta-function is equivalent to some regularity of the distribution 
of zeros to the right from the critical line. We generalize the Backlund 
equivalent, by showing that LH is equivalent to the same type regu
larity of the distribution of any fixed complex value (not only zero). 
This generalized Backlund equivalent also can be applied for the Lerch 
zeta-function and, in our opinion, supports the idea that the Lindelof 
hypothesis also is reasonable for zeta functions without the Euler prod
uct (usually having zeros off the critical line). Further we show that 
this generalized Backlund equivalent for LH can be formulated for zeta 
functions of the Selberg class and for the Selberg zeta-function, for 
which the Riemann hypothesis is true. 

§1. Introduction 

As usual, let s = a+ it be a complex variable. Denote by IP', IR and 
C the sets of prime, real and complex numbers accordingly. Denote by 
{A} the fractional part of a real number .A. We write f(x) = O(g(x)) and 

f(x) « g(x), resp., when limsupx-+= ~~~:? 1 is bounded, f(x) » g(x), 

when liminfx-+= ~~~:;1 =i 0, and f(x) = o(g(x)) if this limit equals 0. 
Further, f(x) ::=:: g(x) denotes that the estimate g(x) « lf(x)l « g(x) 
holds and f(x) ,...., g(x) means limx-+= ~~:? = 1. 
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The Riemann zeta-function for a > 1 is given by the following 
Dirichlet series or Euler product 

00 1 ( 1 ) -1 
((s) = L ns = IT 1 - p8 

n=1 pEJII> 

The Lindelof hypothesis states, that for any c > 0, 

((1/2 +it)~" t". 

Backlund [1] proved, that the Lindelof hypothesis is equivalent to the 
following statement: for any a'> 1/2 the number of zeros of ((s) in the 
region a> a', T:::; t:::; T+1 is o(logT) (see also Titchmarsh [19], §13.5). 
Here and further the number of zeros (roots) are always counted with 
multiplicities. Backlund's theorem immediately shows, that the Lindelof 
hypothesis follows from the celebrated Riemann hypothesis, which states 
that the Riemann zeta-function has no zeros to the right of the critical 
line a= 1/2. 

The Riemann zeta-function belongs to the family of Lerch zeta
functions, which for 0 <.A, a:::; 1, a> 1 are given by 

oo e27ri>.n 

L(.A,a,s)="( )" L...... n+a 8 

n=O 

These functions can be continued analytically to the whole complex 
plane, may be, except the point s = 1 (see [12]). Note, that 

L(1,1,s) ((s), L ( 1, ~' s) = (28
- 1)((s), 

(1- 21- 8 )((s) and L (~, ~' s) = 28 L(s, x), 

where L(s, x) is the Dirichlet £-function with the character x mod 4, 
x(3) = -1. Lerch zeta-functions have growing properties similar to the 
Riemann zeta-function. For .A and a in (8, 1- 8) U 1 with 0 < 8 < 1/2, 
we have ( [5]) 

L(.A, a, 1/2 +it) ~8,c t32/205+c. 

This bound coincides with the best known bound for ((1/2 +it) 
L(1, 1, 1/2 +it) obtained by Huxley [8]. 

In [6] we with Steuding proved that the Backlund equivalent also 
is valid for L(.A, a, s) with fixed parameters .A and a. However the zero 
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distribution to the right from the critical line of L(:A, a, s), say if a is 
a transcendental number, is very different from that of ((s). Denote 
by N(lj', T; a, :A) the number of zeros of L(:A, a, s) in a region lj > lj', 
0 ::::; t ::::; T. Then it is known (Titchmarsh [19]) that for the Riemann 
zeta-function 

N(lj, T) := N(lj, T; 1, 1) = o(T), 

if lj > 1/2 and for the Lerch zeta-function 

N(lj, T; a, :A) ;::. T, 

if 1/2 < lj < 1 + 0.6a and a is a transcendental number ([12], §8.4). 
Here we prove a variant of the Backlund equivalent, which connects 

the Lindelof hypothesis with a general value distribution, where the 
zero value, possibly, is only the exceptional case. For a E CC denote by 
Na(lj', T, a, :A) the number of roots of L(:A, a, s) -a in a region lj > lj', 
0::::; t $ T. 

Theorem 1. Let a E CC. Let 0 < 6 < 1/2 and let h.. and Ia be 
compact sets contained in (6, 1- b) U 1. Then for any c > 0, 

L(:A, a,~ +it) «c:,o tc: 

uniformly in A E h.., a E I a if and only if for every lj > ~, 

Na(lj, T + 1; :>..,a)- Na(lj, T; :A, a) = o(log T) 

holds uniformly in A E h., a E I a. 

The theorem will be proved in the next section. If a -/= 0 and 1/2 < 
lj < 1, then Bohr and Jessen [2] proved that for the Riemann zeta
function 

Na(lj, T) "'c(lj)T 

with c(lj) > 0. For the error term see Matsumoto [13]. 
The similar situation, where a = 0 is the exceptional value, appears 

in universality theorems. As an example we give the universality theorem 
for the Lerch zeta-function. For simplicity we state it only for special 
values of a. 

Universality theorem. Let a be a transcendental number and 0 < 
).. ::::; 1 or a = ).. = 1. Let K be a compact subset of the strip 1/2 < lj < 1 
with connected complement. Suppose that g(s) is a continuous function 
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on K which is analytic in the interior of K and, if a = .A = 1, moreover 
suppose that g(s) =1- 0 on K. Then for any E > 0, 

liminf _!_meas {r E [0, T]: max IL (.A, a, s + ~ + ir) - g(s)l < r::} > 0. 
T---+oo T lsi::O:r 4 

For a = .A = 1 this is a famous Voronin's universality theorem, the proof 
for this case can be found in LaurinCikas [10] and for the case that a is 
a transcendental number and 0 <.A:::; 1 the proof can be found in [12]. 

By universality and Roushe's theorems, in the same way as in ([12], 
§8.4, proof of Theorem 4.7), it is easy to derive that for a =1- 0, 1/2 < 
a < 1 and a, .A satisfying conditions of Universality theorem, 

(1) Na(a, T, a, .A)» T. 

Considering the second moment of IL(.A, a, s)- a!, similarly as in ([12], 
§8.4, proof of Theorem 4.10), one can obtain that the upper bound in 
formula (1) is« T. Thus we see that the distribution of values a =1- 0 for 
the Riemann zeta-function is similar to that for Lerch zeta-functions. 

According to the Linnik-Ibragimov conjecture all zeta-functions sat
isfying some natural conditions should have the universality property. 
For almost all known zeta-functions it is already proved. In all proved 
cases in the universality theorem for zeta-functions with Euler type prod
uct (e.g., Riemann, Dedekind zeta functions, Dirichlet £-functions, some 
automorphic £-functions) the value a = 0 is exceptional and for zeta
functions without Euler type product (e.g., Hurwitz, Lerch, Estermann 
zeta-functions) there is no such exceptional value. All the facts men
tioned here concerning universality can be found in interesting surveys 
written by Laurincikas [11], Matsumoto [14]. 

By the above we hope that, similarly to universality theorems, the 
analog of the Lindelof hypothesis should be valid for a wide class of 
zeta-functions. 

We will derive Theorem 1 from 

Proposition 2. Let poles of the family of meromorphic functions 

be contained in a compact subset of C. Let R : IRn ----> IR and P : IR ----> 

IR be non decreasing in each positive variable functions and R(q) ~ 
2, P(t) ~ 2. Suppose that lf(b,q,s)l ~ c > 0, f;(b,q,s)/f(b,q,s) = 
o(log(R(q)P(t))) on some strip a0 - w :::; a :::; a0 + w (w > 0) and 
lf(b,q,s)l > 0 for a ~ ao + w, uniformly in bE B and q. Let for 
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some fixed numbers D > 0, 0"1 < O"o we have f(b, q, s) « (R(q)P(t))D 
uniformly for O" 2': O"o - 4( O"o - 0"1 ), b E B and q. Then we have that if 
for O" 2': 0"1 

(2) f(b, q, 0" +it) «c (R(q)P(tW 

uniformly in b E B and q then 

(3) N(O", T + 1; b, q)- N(O", T; b, q) = o(log(R(q)P(T))) 

holds for every O" > 0"1 uniformly in bE Band q. Here N(O"',T;b,q) 
denotes the number of zeros off ( b, q, s) in the region O" > 0" 1 , 0 S:: t S:: T. 

From the other side, if (3) is true, then (2) is true for O" = 0"1 

uniformly in b E B and q. 

This proposition will be proved in the next section. As we can see 
from Proposition 2, the above type equivalent for the Lindelof hypothesis 
should work for many of zeta-functions. We will show it for the Selberg 
class and later for the Selberg zeta-function. 

The Selberg class S consists of Dirichlet series 

F(s) = ~ a(n) 
~ ns 
n=1 

satisfying the following hypotheses. 
1. Analyticity: (s -l)m F(s) is an entire function of finite order for 

some nonnegative integer m. 
2. Ramanujan Hypothesis: a(n) «c nE for any fixed E > 0. 
3. Functional equation: for 1 S:: j S:: k, there are positive real 

numbers Q, Aj, and there are complex numbers J-tj, w with '!RJ-tj 2': 0 and 
lwl = 1, such that 

(4) 

where 

Ap(s) = wAp(1- s), 

k 

Ap(s) = F(s)Q 8 IT f(AjS + J-lj)· 
j=1 

4. Euler product: a(1) = 1, and 

(5) logF(s) = f b(~), 
n 

n=1 
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where bn = 0 unless n is a positive power of a prime and b( n) « n° for 
some()< 1/2. 

Note that Perelli [15] defined a class of "general £-functions" similar 
to S and among other things proved the Backlund equivalent for his class 
(see Theorm 7 in [15]). 

We denote by S~ the larger class of functions F( s) which are not 
identically vanishing and satisfies 1.-3. above. 

Theorem 3. Let a be a complex number and F(s) E S~. Then for 
any c > 0, 

(6) 

if and only if for any a- > 1/2 the number of roots of F(s) -a in the 
region a-> a-, T::::: t::::: T + 1 is o(logT). 

The theorem will be proved in the next section. Examples of func
tions from the Selberg class are the Riemann zeta-function, Dirichlet £
functions attached to primitive characters, Dedekind zeta-functions, nor
malized £-functions associated with holomorphic newforms, the Rankin
Selberg £-function of any two holomorphic newforms. Selberg has con
jectured the Riemann Hypothesis for this class, that is, that all of the 
non-trivial zeros of any element of S have real part equal to 1/2. By 
Theorem 3 this hypothesis implies the Lindekifhypothesis (6) for S. The 
universality property of functions from the Selberg class was considered 
by Steuding [17]. 

In view of the work of Conrey and Ghosh [3] the Lindelof hypothesis 
for S can be formulated in the aspect of parameters Q and J.Lj appearing 
in the functional equation. Suppose that F E S is entire. Suppose 
further that >..1 = 1/2 for each j and that the Euler product condition 
(5) is changed to the stronger condition: 

k 

(7) F(s) = ITIT(l-cxp,jP-s)-1, 
p j=l 

where for all p and j, either lap,jl = 1 or cxp,j = 0. IfF satisfies the 
Riemann hypothesis and (7), then Conrey and Ghosh [3] proved that, 
for any c > 0, there exists a constant c = c(c, k) such that 
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Note that the last statement means the same if the term (1 + ltl)~ is 
replaced by (1 + ltl). We formulate the generalized Backlund equivalent 
for this case. 

Theorem 4. Let a=/= 1 be a complex number. Let F(s) E S, >..i = 
1/2 for each j and Euler product condition (7) is valid. Then for any 
c: > 0, 

uniformly in Q and J.Li, if and only if for any ?f > 1/2 the number of 
roots of F(s)- a in the region a> ?f , T ~ t ~ T + 1 is 

uniformly in Q and J.Li. 

Next we will consider the simplest Selberg zeta-function attached to 
a compact Riemann surface F of genus g ~ 2. F can be represented 
as a quotient spacer\ H, where r c PSL(2, JR) is a strictly hyperbolic 
Fuchsian group and H is the upper half-plane. The r conjugacy class 
determined by PEr will be denoted by {P} and its norm by N{P}. 
By Po will be denoted the primitive element of r. Then the Selberg 
zeta-function for a > 1 is given by 

00 

Z(s) = II II (1- N(Po)-s-k) 
{Po} k=O 

(see Hejhal [7] for details). It is an entire function with a functional 
equation 

Z(s) = Z(1- s) exp ( 41l'(g- 1) 1s-! vtan(1l'v)dv), 

and for this function the Riemann hypothesis is true, i.e. its nontrivial 
zeros are located at the critical line a = 1/2 (Hejhal [7], §2.4). In the 
same chapter of [7] we find that Z(s) = 1 + o(1) for a--too, 

6 
IZ(s)l ~ exp( -(g- 1)t + 0(1)) 

7l' 
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for er 2: -1, t 2: 0, and 

( 
s-~ ) ( 1 2 exp 4n(g- 1) 1 vtan(nv)dv = exp i2n(g- 1)(s- 2) + 0(1) 

+O((er-- )2e- 21rt) + O((er-- )te- 21rt) 1 1 ) 
2 2 

for t 2: 1. By this and the functional equation we have that for er2 ::; -1, 
er 2: er2 and t 2: 1 

1 
Z(s) = O(exp(2n(g -1)( 2 - er2)t)). 

The logarithmic derivative Z' / Z ( s) is bounded for er 2: 2 (Hejhal [7], 
§2.3). Choosing sufficiently large era and er1 = 1/2, P(t) = exp(t), by 
Proposition 2, we obtain 

Theorem 5. For any c: > 0 

Z( ~ +it) «c: exp(ct), 

as t----+ oo. 

From the above we see that IZ(s) exp(ic:s)l is bounded by a constant 
on the upper part of lines er = 1/2, er = era, and on the horizontal 
segment joining points er = 1/2, t = 1 and er = era, t = 1. Thus by 
the Phragmen-Lindeloftheorem (Titchmarsh [18], §5.6.4) we obtain that 
Z(er+it) « exp(c:ltl) for 1/2::; er::; era, t 2: 1. In view of Z(s) = Z(s) the 
same bound is valid in the halfplane er 2: 1/2. Again, by Proposition 2 
we derive 

Theorem 6. Let a be a complex number. For any ff > 1/2 the 
number of roots of Z ( s) -a in the region er 2: ff , T ::; t ::; T + 1 is o(T). 

§2. Proofs of Proposition 2 and Theorems 1, 3, 4 

Proof of Proposition 2. First we assume the truth of Lindelof's 
hypothesis (2). Therefore, we make use of 

Lemma 7 (Jensen's formula). Let f(s) be analytic for lsi < R. 
Suppose that f(O) is not zero, and let r1, r 2, ... be the moduli of the zeros 
of f(s) in the circle lsi < R, arranged as a non-decreasing sequence. 
Then, if rn :S r < rn+l, 

rnlf(O)I 1 { 27r 

log rl ..... rn = 27r Ja log lf(rexp(i¢))1d¢. 
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For a proof see Titchmarsh [18], §3.61. 
Applying Jensen's theorem to f(b, q, s) and to the circle with center 

O"o + it and radius O"o - 0"1 - 4, we obtain 

O"o - 0"1 - §. 
'""" log 4 
LJ IP- O"o - itl 

lp-ao-itl<ao-O"I-4 

2~ 12
" log" ( b, q, O"o +it+ ( O"o - 0"1 - ~) exp(i¢)) I d¢ 

-log lf(b, q, O"o + it)l. 

On the Lindelof hypothesis (2) the right hand side is o(log(R(q)P(t))). 
Further, if there are m zeros in the concentric circle of radius O"o- 0"1 - ! , 
the left hand side is bounded below by 

O"o - 0"1 - §. 
mlog ~ = mlog(1 + 0(8)). 

O"o- 0"1 - 2 

Therefore, the number of zeros in the circle of radius O"o - 0"1 - ! is 
o(log(R(q)P(t))), and the result with O" = 0"1 + o follows by superposing 
a finite number (not depending on t, b, and q) of such circles. 

Now we have to prove the converse. Therefore we quote (Titchmarsh 
[19], §3.9) 

Lemma 8 (Landau). If f(s) is regular, and 

llJ!ll<eM 
f(so) 

in {s : Is- sol~ r} with M > 1, then 

for Is - s0 I ::; ~, where C is some constant and p runs through the zeros 
of f(s) such that IP- sol~~-

We apply this lemma with s0 = O"o +iT, where T is sufficiently large, 
and some r = 2(0"0 -0"1 -28). Then we may choose M = clog(R(q)P(T)) 
and obtain 

r 1 -f (b, q, s) = '""" - + 0 (log(R(q)P(T))) LJ s-p 
ip-sol~r 
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for Is- sol :::; r/2. 
Let C1 be the circle with the center s0 and a radius (}0 - (}1 - J. By 

the bound f(b, q, s) « (R(q)P(t))D and Jensen's formula, in the same 
way as in the first part of the proof, we obtain that N((}, t + r; b, q) -
N((}, t - r; b, q) « log(R(q)P(t)) for fixed r. For s and p such that 
Is- sol::::: (}o- (}1- 28 and (}o- (}1- J::::: IP- sol ::::: 2((}o- (}1- 28) the 
bound Is - PI ;::: J is valid. By this we have, that 

( ) ·- f' ( ) _ """' _1_ = O (log(R(q)P(t))) w s .- f a, q, s L s- J ' 
pEC1 p 

for Is -sol :::; (}o - (}1 - 28. Let C3 be the concentric circle of radius 
(}0 - (}1 - 38, and C be the concentric circle of radius w. Then \ll(s) = 
o(log R(q)P(T)) for sin C, since each term is 0(1) and by the hypothesis 
the number of terms is o(log R(q)P(T) ). Now we will use 

Lemma 9 (Hadamard's three circle theorem). Let f(s) be an an
alytic function, regular for r1 :::; lsi :::; r3. Let r1 < r2 < r3, and let 
M1,M2,M3 be the maxima of lf(s)l on the three circles lsi= r1,r2,r3 
respectively. Then 

r3 r3 r2 
log -log M2 :::; log -log M 1 +log -log M3. 

r1 r2 r1 

For a proof see once more [18], §5.3. 
Hadamard's three circle theorem yields for s E C3 

\ll(s) = (o(log(R(q)P(T))))"' ( 0 cog(R(~P(T))))", 

where r;, + t = 1, 0 < t < 1 and r;,, t depending on J only. Hence we have 
w(s) = o(log(R(q)P(t))) for any given J in C3. Since o(log(R(q)P(T))) 
zeros lie inside C 1, we get 

ro \ll(s)d(} = logf(b,q,(}o+it)-logf(b,q,0"1+3o+it) 
}a1 +36 

- 2: (log( (}o + it - p) - log ( (}1 + 38 + it - p)) 

0(1) -log f(b, q, (}1 + 38 +it)+ o(log T) 

+ 2: log((}1 +3o+it-p). 
pEC1 
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Now setting t = T the left-hand side is o(log(R(q)P(T))). Taking the 
real parts we obtain 

log lf(b, q, 0'1 + 38 + it)l = o(log(R(q)P(T))) + L log I0'1 + 38 +iT- PI· 
pEC1 

Since 10'1 + 38 +it- PI <canst in c1, it follows that 

log lf(b, q, 0'1 + 38 +it) I = o(log(R( q)P(T))), 

which proves (2). • 

Proof of Theorem 1. We apply Proposition 2 with f(b, q, s) = 
L(>.., a, s)- a, b = (>..,a), B =h. x Ic, R(q) = 1, P(t) = It I+ 1, w = 1/2, 
and 0'1 = 1/2. Now we will show that there exists O"o > 1 such that, for 
O"o- 1/2 ~ 0' ~ 0' + 1/2, a E Ia, >.. E h,., 

IL(>..,a,s)- al2': c(O"o,a) > 0 

and 

I (L(>..,a,s)-a)~l c( ) 
~ O"o,a. 

L(>..,a,s)-a 

This follows by the following inequalities: for a # 1 and for all sufficiently 
large 0', 

00 1 
IL(>..,a,s)- al2': 11- al-L-----:;> 0; 

m 
m=2 

for a = 1, a E ( 8, 1 - 8) and all sufficiently large 0', 

I 
1 I 

00 1 IL(>..,a,s) -112': (1- 8)er -1 - ];2 mer> 0 

and for a = 1, a = 1, 

for 0' 2': 2.5, 

1 00 1 
IL(>.. a s)- 11 > -- "" - > 0· ' ' - 2er L mer ' 

m=3 
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We also see, that if we choose a-0 satisfying above conditions, then 
IL(>.,a,s)- ai > 0 for a- 2: O"o, a E Ia, and>. E !;... 

From [4] we have that, for a- 2: 1/2, a E Ia, and>. E !;.., 

1 

L(>.,a,s) «8 t2. 

By the functional equation ([12]) 

L(>.,a,1-s) (2-nrsr(s) ( exp ( 21ri( ~ -a>.)) L( -a,>., s) 

+exp ( -27ri(~ + a(1- {>.}))) L(a, 1- {>.}, s)) 

and by the growing properties of Euler gamma function f(s) we have, 
that for any a-' there exists a constant A= A(o-'), such that for a- 2: a-', 
a E Ia, and>. E !;.., 

Now Theorem 1 follows from Proposition 2. • 

Proof of Theorem 3 is analogous to the previous proof. 

Proof of Theorem 4. We will check conditions of Proposition 2 
for a function f(b,q,s) = F(s)- a (independent on the parameter b), 

with P(t) = 1 +it!, q = (Q,fl1,···,flk), R(q) = QI1~= 1 flj, o-1 = 1/2; 
constants o-0 and w will be chosen later. By the Euler product condition 
(7) we have for a- > 1, that 

(8) IF(s)i ::; (k(o-) = f ~~' 
n=1 

where dk ( n) is the number of ways of expressing n as a product of k 
factors. Thus we can find sufficiently large o-1 such that for a- > o-1 

00 d 
IF(s) - ai 2: 11- ai - L m~ > c(o-1, k) > 0 

m=2 

and IF'(s)l::; C(o-1, k). By this we can choose o-0 such that IF(s)- ai 2: 
c(o-o, k) > 0, 

(F(s)- a)~ < C(o- k) 
F(s)- a - 0 ' 

on the strip o-o - 1 ::; a- ::; o-o + 1 and IF(s) - ai > 0 for a- 2: o-o + 1, 
uniformly in Q and /lj. 
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Next we will show that for any a' < -a0 there exists a constant 
A= A( a', k), such that for a~ a' 

(9) F(s) ~u',k (Q(1 + it\)(1 + JL))A 

uniformly in Q and /Lj· By the functional equation f(s + 1) = sf(s) we 
have that 

r e-(u'+{u;}-1.5+it) + !i) 
r ( u'+{u'}2-1.5+it + 1-l) < (2- a')(1 + ltl + IMI) 2_", 

< (2- a') ((1 + 1tl)(1 + IMI))2-u'. 

Then (9) follows by the bound (8), functional equation (4) and the gen
eralized Phragmen-Lindelof Theorem ([16]). Now Proposition 2 yields 
Theorem 4. • 

Acknowledgment: We thank the referee for careful reading and 
noting the inacuraces. 
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