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Series and polynomial representations 
for weighted Rogers-Ramanujan partitions 

and products modulo 6 

Krishnaswami Alladi 1 and Alexander Berkovich 

Abstract. 

Infinite series representations are now obtained for certain weighted 
Rogers-Ramanujan partitions which we recently showed are related to 
partitions into parts ¢= 0, ±i (mod 6), for i = 1, 2, 3. We also show 
that our series can be transformed to the series previously obtained by 
Bressoud which connect the partitions into parts '/= 0 ± i (mod 6) with 
partitions satisfying certain bounds on their successive ranks. Finally, 
we obtain finite versions of our series representations, namely, polyno­
mial identities which tend to the infinite series identities when certain 
par,;,meters tend to infinity. 

Introduction 

Let Ak,i(n) denote the number of partitions of n into parts =/= 0, ±i 
(mod k). Motivated by studies in mathematical physics, Andrews et-al 
[5] showed that Ak,i(n) is equal to the the number of partitions Bk,i(n) 
of n whose successive ranks all lie in the interval [-i + 2, k- i- 2]. In 
a recent paper [2] we showed that fori= 1, 2, 3, B6,i(n) and B7,i(n) are 
equal to the number of Rogers-Ramanujan partitions of n counted with 
certain weights. Here by a Rogers-Ramanujan (R-R) partition we mean 
a partition into parts differing by at least 2. The weights which yield 
the connection with B6,i(n) (and A6,i(n)) are certain powers of 2 to be 
specified in the sequel (see Theorems 1, 2, and 3 below). The weights 
that need to be attached to connect the R-R partitions with B7,i(n) 
(and A7 ,i(n)) are products of Fibonacci numbers (see Theorems, 4, 5, 
6 of [2]). Traditionally the R-R partitions have been associated with 
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the modulus 5. Ours was the first instance [2] when the classical R­
R partitions were connected to moduli other than 5 and that is what 
motivated us to study these weighted partition identities. The method 
we used in [2] was to show that B6,i(n) and B7,i(n) are equal to the 
weighted count of the R-R partitions by constructing certain surjective 
maps, and viewing these weights as the sizes of the inverse images of the 
points in the codomain under these surjections. 

While studying certain general classes of Rogers-Ramanujan type 
partition identities, Bressoud [7] obtained series representations for the 
generating functions of B6 ,i(n) (see (2.7), (2.8), and (2.9) below). While 
it is obvious that the generating function of Ak,i(n) is a product, it is 
not at all easy to show that the series obtained by Bressoud are the gen­
erating functions of the partitions satisfying certain prescribed bounds 
on the successive ranks. 

Our purpose here is three-fold: (i) First we demonstrate that the 
generating functions of our weighted Rogers-Ramanujan partitions can 
be shown directly to be the series given in (2.4), (2.5), and (2.6). (ii) 
Next we show that our series (2.4), (2.5), and (2.6), are equal to the 
Bressoud series (2.7), (2.8), and (2.9), by applying Lemmas 4 and 5 
(transformation lemmas) appropriately. Thus a quicker way to go from 
B6,i(n) to the series in (2.6), (2.7) and (2.8) is to first convert B6,i(n) 
to weighted R-R partitions as in [2], then show that the generating 
functions of these wighted R-R partitions are the series (2.4), (2.5), and 
(2.6) as in §2, and then transform these to the Bressoud series (2.7), (2.8) 
and (2.9) as demonstrated in §3. (iii) Finally we present finite versions 
of our infinite series identities (2.4), (2,5) and (2.6), namely polynomial 
identities (5.2), (5.3) and (5.4) which tend to our infinite identities when 
a certain parameter L tends to infinity. 

Our approach provides new connections and fresh insight into the 
structure of various partition functions and their generating functions. 
For instance, the proofs of Lemmas 4 and 5 rest on the study of certain 
triple series which are actually related to the series obtained by Alladi­
Gordon [3] in the study of generalizations of Schur's partition theorem. 
Specializations of these triple series yield some of the results established 
here (see §4). 

In §5 we will discuss finite (polynomial) versions of our generating 
function identities (2.4), (2.5) and (2.6). The proof and combinatorial 
interpretation of these finite identities is given in §6. Our finite identities 
lead to a better understanding of of the nature of the relations between 
our weighted R-R partitions, B6,i(n), A6,i(n) and their generating func­
tions under a limiting process. This is explained in §7. 
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We will use the standard notation 

n-1 

(a)n = (a; q)n = IT (1 - aqi) 
j=O 

for a positive integer n and complex numbers a, q. Also 

00 

(a)oo = (a; q)ao = lim (a)n = rr(1 - aqi), n-+oo when 
j=O 

Finally, 
(q)n 

(q)m(Q)n-m 

is the q-binomial coefficient for integers 0 :::; m :::; n. 
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lql < 1. 
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§1. Weighted Rogers-Ramanujan partition theorems 

Every Rogers-Ramanujan partition can be decomposed uniquely 
into chains, where a chain is a maximal string of parts with difference 2 
between consecutive parts. Since all parts of a chain have the same par­
ity, we may refer to a chain as an odd (resp. even) chain if the smallest 
part is odd (resp. even). We denote by R, the set of all R-R partitions, 
and by R 2 , the subset of R where the the least part is 2:: 2. Also, for any 
partition 1r, we let a( 7f) denote the sum of the parts of 7f. The following 
results were established in [2]: 

Theorem 1. Let A6,1(n) denote the number of partitions ofn into 
parts ¢ 0, ±1 (mod 6). Suppose 7f E R 2 has k even chains with least 
part> 2. Let w1(1r) = 2k be the weight of 1r. Then 

L w1(1r) = A6,1(n). 
?TE'R2,<T(1r)=n 
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Theorem 2. Let A6 ,2 ( n) denote the number of partitions of n into 
parts¢. 0, ±2 (mod 6). Suppose 1r E R has k odd chains with least part 
> 1. Let w2 (1r) = 2k be the weight of 1r. Then 

L w2(1r) = A6,2(n). 
1rER,u( 1r )=n 

Theorem 3. Let A 6,3 ( n) denote the number of partitions of n into 
parts¢. 0, ±3 (mod 6). Suppose 1r E R has k even chains. Let w3(1r) = 
2k be the weight of 1r. Then 

L w3(1r) = A6,3(n). 
1rER,u( 1r )=n 

Remarks: 
(i) Note that A6,2(n) is the number of partitions of n into odd parts 

which is equal to the number of partitions Q(n) of n into distinct parts. 
Actually, Theorem 2 was first established in [1] with Q(n) in the place 
of A6,2(n). It was in [2] that we replaced Q(n) by A6,2(n) and this led 
us to discover Theorems 1 and 3. 

(ii) Since the residue classes ±3 (mod 6) are one and the same, the 
function A6 ,3 (n) has to be defined properly via the generating function 

(1.1) 

The product on the right in (1.1) can be written as 

(1.2) 
1 

and viewed as the generating function of unrestricted partitions counted 
with weight ( -1 )v3 (1r l, where v3 ( 1r) is the number of parts of 1r which are 
multiples of 3. Andrews and Lewis [6] have observed that the product 
in ( 1.1) can be written as 

oo 3m-1 3m-2 

II (1 + q + q ) 

m=l 
1 _ q3m-l 1 _ q3m-2 ' 

and interpreted as the generating function of an ordinary partition func­
tion (not a weighted partition function), namely, the number of parti­
tions of n into non-multiples of 3 in which no two parts differ by exactly 
1. 

Next, we obtain the generating functions of the weighted R-R par­
titions in the above theorems. 
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§2. Series representations 

First we consider partitions 1r E R 2 for which weights 2k are at­
tached, where k is the number of even chains with least part 2: 4. Let 
such a partition have r odd parts and s even parts. Let the partition 1r 

be m1 + m2 + m3 + ... + mr+s, where the gap between the parts is 2: 2 
and mr+s 2: 2. 

Subtract 0 from mr+s, 2 from mr+s-1, .... , 2(r + s -1) from m1. We 
call this processs as Euler subtraction. The resulting partition 1r* after 
Euler subtraction is an ordinary partition having r odd parts and s even 
parts. Note that the number of chains of the original partition 1r is equal 
to the number of different parts of 1r* because parts of 1r* which repeat 
are derived from those belonging to the same chain in 1r. Also, the even 
chains in 1r with least part 2: 4 correspond to the even parts of 1r* which 
are 2: 4. 

Next we add 0 to the smallest even part of 1r*, 2 to the second 
smallest even part of 7r*, .... , 2 ( s - 1) to the largest even part of 7r*, 2s 
to the smallest odd part of 1r*, 2s + 2 to the second smallest odd part 
of 1r*, ... , 2(r + s -1) to the largest odd part of 1r". We call this process 
as Bressoud redistribution. We have thus created a partition 7r** in R 2 

with the following properties: (i) The even parts of 7r** form a partition 
1r e such that the even chains of 1r which have least part 2: 4 correspond 
to the even chains in 7re with least part 2: 4, and (ii) the odd parts of 
7r** form a partition 7r0 into r distinct odd parts such that the least part 
is 2: 2s + 2. 

To compute generating functions, we first observe that the smallest 
partition into r distinct odd parts 2: 2s + 2 is (2s + 3) + (2s + 5) + ... + 
(2s + 2r + 1) of the integer r 2 + 2rs + 2r. Thus the generating function 
of the partition 1r 0 is clearly 

(2.1) 
qr2 +2rs+2r 

( q2; q2)r · 

Similarly, the generating function of 7re of partitions into s distinct even 
parts is 

(2.2) 

However, we need to count the partitions 1r e with weights 2k, where k is 
the number of even chains in 1r e with least part 2: 4. We will describe a 
combinatorial process which will let us determine this generating func­
tion from the simpler expression in (2.2). 
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The chains of 1r e with least part 2: 4 are determined by gaps between 
consecutive parts which are > 2 in the partition obtained from 1fe by 
adding a 0 to it. Consider the 2-modular Ferrers graph of 1fe, where 
at every node we place a 2, and the rows of 2 add up to the parts of 
1fe· Whenever there is a gap between parts of 1fe which is > 2, we can 
extract a column of twos from this Ferrers graph and still be left with 
a graph of a partition into s distinct even parts. We have two choices: 
either extract this column or not extract it. Since there are k such gaps 
which correspond to the chains, we have 2k choices and this corresponds 
to the weight 2k in the theorem. 

The extracted columns form a partition into distinct even parts 
which are :::; 2s and so their generating function is 

Thus the generating function of the partitions 1fe counted with the 
weights 2k is 

(2.3) 
qr2+2rs+2r( -q2; q2)s 

(q2;q2) 8 

Finally, we need to multiply the expressions in (2.1) and (2.3) to get 
the generating function of the partitions 1r we started with having r odd 
parts and s even parts. If we sum this expression over all non-negative 
integral values of r, s, we get the following analytic form of Theorem 1: 

(2.4) 
q(r+s) 2+2r+s ( -q2; q2) 8 1 

~ (q2; q2)r(q2; q2) 8 = (q2; q6) 00 (q3; q6) 00 (q4; q6) 00 • 

Similarly, by using the method described above, Theorem 2 can be 
cast in the following analytic form: 

(2.5) 
q(r+s) 2+r( -q2; q2)s 1 

~ (q2; q2)r(q2; q2) 8 = (q; q6) 00 (q3; q6) 00 (q5; q6) 00 • 

The analytic form of Theorem 3 using (1.1) is 

(2.6) 
q(r+s)2+s ( -1; q2)s 1 

~ (q2; q2)r(q2; q2) 8 = (q; q3) 00 (q2; q3) 00 ( -q3; q3) 00 • 

By considering partitions with prescribed bounds on the successive 
ranks, and determining their generating functions, Bressoud [7] obtained 
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the following analytic identities: 

(2.7) 
1 

(2.8) 
1 

and 

(2.9) 
qN'f+N'#_ 1 

n~2 (q)nt (q2; q2)n2 = (q; q3)oo(q2; q3)oo( -q3; q3)oo. 

Here N1 = n1 + n2 and N2 = n2, where nt, n2 run over all non negative 
integers. 

Bressoud did not use the product form (1.2) in (2.9), but we have 
preferred to state Bressoud's third identity using (1.2) for uniformity 
with our identities. 

It is quite difficult to show that the series obtained by Bressoud 
are indeed the generating functions of certain partitions with prescribed 
bounds on their successive ranks. In the next section we will establish 
identities (transformation lemmas) which will transform (2.4), (2.5) and 
(2.6) to (2.7), (2.8) and (2.9) respectively. 

§3. Transformation lemmas 

We begin with 

Lemma 4. 

ar+sq(r+s)2 +r( -bq; q2)s ar+sq(r+s)2 +s( -b; q2)s 

~ (q2; q2)r(q2; q2) 8 = ~ (q2; q2)r(q2; q2) 8 • 

Proof: If we use the q-binomial theorem to expand ( -bq; q2)s and 
cancel a common factor (q2; q2 ) 8 , the left hand side can be rewritten as 

(3.1) 

This can be rewritten as a triple sum over r, s, l with the restriction 
l :::; s. If we replaces by s + l, then this frees us of the restriction. Thus 
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after this replacement we have 

(3.2) 

Similarly, on the right hand side, if we use the q-binomial expansion 
on ( -b; q2 ) 8 , convert it into a triple sum, and replace s by s + l, we get 

(3.3) 

Observe that the triple sums in (3.2) and (3.3) are equal by just inter­
changing rands. This proves Lemma 4. 

Lemma 5. 

In order to prove Lemma 5, we need 

Lemma 6. For any non-negative integer n, we have 

1 n q1 1-

(q) = 2::: (q2· q2) _ (q2· q2) . · 
n j=O ' J ' n-J 

Proof of Lemma 6: We interpret the left hand side of Lemma 6 as 
the generating function of partitions into no more than n parts. Among 
all such partitions suppose we consider those which have exactly j odd 
parts. Then the generating function of the odd part component of such 
partitions is 

(3.4) 

The number of even parts in such partitions must be no more than n- j 
and the generating function for this even component is 

(3.5) 
1 

( 2 2) 0 q ; q n-j 

If we multiply the expressions in (3.4) and (3.5) and sum over j, this 
must equal 1/(q)n. This proves Lemma 6. 
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Proof of Lemma 5: Using Lemma 6, rewrite the left hand side of 
Lemma 5 as 

=I: 

(3.6) 

where to get the final expression in (3.6) we have replaced n 1 by n 1 + j 
to free ourselves of the restriction j :::; n1. 

Next replace n 2 by k, n 1 by s, and j by r, to rewrite the final 
expression in (3.6) as 

(3.7) 
ar+s ( ab )kq(r+s+k) 2 +k2 +r 

= E (q2; q2)k(q2; q2)r(q2; q2)s' 

In (3.7) we replaces by s- k so that this forces the restriction k:::; s to 
get 

ar+s bk q(r+s) 2 +k2 +r 

= r,~s (q2; q2)k(q2; q2)r(q2; q2)s-k 

which by the q-binomial theorem is 

(3.8) 
ar+sq(r+s) 2 +r( -bq; q2)s 

~ (q2; q2)r(q2; q2) 8 • 

The final expression in (3.8) is the left hand side of Lemma 4, which can 
be replaced by the right hand side of Lemma 4, yielding the right hand 
side of Lemma 5 thereby completing the proof. 

To get the series in (2.9) from the series in (2.6) put a = b = 1 in 
Lemma 5. 
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Next, replace b by bq in Lemma 5 which gives the Bressoud series 
in (2.8) with parameters a and b. The right hand side of Lemma 5 with 
this choice is: 

(3.9) 

Now in Lemma 4 replace b by bq to realize that the expression in (3.9) 
is 

(3.10) 
ar+sq(r+s) 2 +r( -bq2; q2)s 

~ (q2;q2)r(q2;q2) 8 

which is the series (2.5) with parameters a and b. Thus what we have 
observed is that 

(3.11) 
anl ( ab )n2q(nl +n2) 2 +n~ ar+sq(r+s) 2 +r ( -bq2; q2)s 

n~2 (q)nl(q2;q2)n2 = ~ (q2;q2)r(q2;q2)s . 

Finally, replace a by aq in (3.11). This gives the equality between 
(2.4) and (2.7) in refined form. 

§4. Triple series for generalized Schur partitions 

The equivalence of our series with those of Bressoud was established 
using the transformation lemmas 1 and 2, and the proofs of these lemmas 
depended on showing the the double sums on both sides could be written 
as triple sums, and that equality is achieved because the triple sum form 
is the same for both sides. We now will show that these triple sums arise 
from the generating functions of a generalization of Schur's partition 
theorem due to Alladi and Gordon [3]. 

Schur's celebrated partition theorem of 1926 is: 

Theorem 7 (Schur). Let S(n) denote the number of partitions of 
n into distinct parts = 1, 2 (mod 3). 

Let D( n) denote the number of partitions of n into parts differing 
by 2: 3, where the inequality is strict if a part is a multiple of 3. Then 

D(n) = S(n). 

Alladi and Gordon [3] viewed Schur's theorem as emerging out of a 
certain series expansion of the product 

00 

( 4.1) II (1 + aqm)(1 + bqm) 
m=l 
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under the substitutions q replaced by q3, a replaced by aq- 2 , b replaced 
by bq- 1. Clearly these substitutions convert the product in (4.1) to 

00 

II (1 + aq3m-2)(1 + bq3m-1), 
m=l 

which is a two parameter refinement of the generating function of S(n) 
in Theorem 7. 

Now assume that integer 1 occurs in two primary colors A and B, 
and that integers n 2 2 occur in primary colors A and B as well as 
in the secondary color AB. Let An, Bn, ABn, and denote the integer 
n in colors A, B, AB, respectively. To discuss partitions, an ordering is 
required, and the one chosen in [3] was 

The reason for choosing this ordering was that under the above substi­
tutions, the colored integers become An = 3n - 2, Bn = 3n - 1, ABn = 
3n- 3, and so the ordering in ( 4.2) becomes 

1<2<3<4<5<6<7<8< ... 

the natural ordering among the positive integers. 
Next, Alladi-Gordon defined Type 1 partitions to be those of the 

form mx 1 + mx2 + ... , where mi is the symbol in position i in ( 4.1), such 
that the difference between the xi is 2 3 with strict inequality if a part 
is of secondary color. Under the substitutions, Type 1 partitions become 
the partitions of the type enumerated by D(n) in Theorem 7. 

Suppose we consider Type 1 partitions in which we prescribe the 
number of A-parts to be i, the number of B-parts to be j, and the 
number of AB-parts to be k. Suppose each such Type 1 partition is 
counted with weight aib1ck. Then it is shown in [3] that the generating 
function of all Type 1 partitions is given by 

( 4.3) 

where Tn = n(n + 1)/2 is the n-th triangular number. It was observed 
in [3] that when 

c = ab, 

the series in (4.3) is equal to the product in (4.1), thereby yielding a two 
parameter generalization and refinement of Schur's partition theorem. 
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The reason we described this generalized approach to Schur's the­
orem is because we wish to point out that the triple series considered 
in Section 3 are all of the type in ( 4.3) with q dilated to q2 , and the 
parameters a, b, c being suitably chosen. Just as the choice c = ab in 
(4.3) leads to the product in (4.1), the special choices in Section 3lead to 
the three mod 6 products. Thus, from this point of view, the generating 
function of Type 1 partitions of Schur type forms the underlying link 
between our three series and those of Bressoud. 

§5. Polynomial versions 

In this section we will obtain finite versions of our identities (2.4), 
(2.5) and (2.6), that is polynomial identities which will will become the 
identities in Section 3 when certain parameters tend to infinity. For 
instance 

(5.1) r [n] 1 n~~ m =(q)m. 

Thus the q-binomial coefficient which is a polynomial, tends to the power 
series generated by 1/(q)m· 

A finite version of (2.4) is: 

(5.2) 2:..:: qCr+s) 2 +2r+s+i2 +i [L-~-S] 
2 

r+s+i<L-2 q 
i~s 

~ {ql2j2 -4j [ 2L .] _ ql2j 2 -8j+l [ 2L .] } . 
. ~ L - 6J L + 1 - 6J 
J=-oo 

Similarly, a finite version of (2.5) is: 
(5.3) 

2:..:: qCr+s) 2 +r+i2+i[L-~-S] 
2 

r+s+i<L-1 q 
i~s 

[L-1~r-s] [L-~~i] 
~ q2 s ~ q2 
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Finally, a finite version of (2.6) is: 
(5.4) 

L qCr+s) 2 +s+i2 -i [L; S] [L- ~- s] [L-; ~;- i] 
r+s+i<L q2 q2 q2 

r+s<L-I,i::;s 

33 

It is to be noted that the sums on the right in (5.2), (5.3), and 
(5.4) are finite sums because the q-binomial coefficients vanish when ljl 
is sufficiently large. In view of (5.1), when L --+ oo, the finite identity 
(5.3) becomes 

(5.5) 

Now use the q-binomial theorem to evaluate the inner sum on the left 
in (5.5) as 

( -q2; q2) 8 

(q2; q2) 8 • 

Also, the series on the right can be rewitten as 

00 

(5.6) 2: ( -l)jlj2+j 

j=-00 

which can be shown to be equal to 

(5.7) 

by Jacobi's triple product identity. Thus (5.5) yields (2.5) and so (5.3) 
is indeed a finite version of (2.5). In a similar manner it can be shown 
that (5.2) is a finite version of (2.4) and (5.4) is a finite version of (2.6), 
as claimed. 
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§6. Combinatorial interpretation of polynomial identities 

In this section we will show that the combinatorial interpretation 
of the finite identities (5.2), (5.3) and (5.4) is the equality between the 
partition functions B6 ,i(n) and the weighted R-R partitions in Theorems 
1, 2, and 3, but with bounds imposed on the size of the parts. This will 
then lead to some new insights into the nature of the results obtained 
by Andrews et-al [5] as explained at the end of this section. 

We will now show that the left hand side of (5.2) is the generating 
function of the weighted R-R partitions in Theorem 1 but now with the 
extra conditions that all parts are :::; 2L - 2 and that if an even chain 
in a partition has 2L - 2 as a part, then its weight is counted as 1. To 
this end, let 1r : m1 + m 2 + ... + mr+s be a partition in R 2 having r odd 
parts and s even parts and with largest part m1 < 2L - 1. Let each 
even chain in 1r whose smallest part is > 2 and largest part < 2L - 2 
be counted with weight 2. As in §2, we perform Euler subtraction, on 
1r. This yields an unrestricted partition 7r* : mi + m2 + ... + m;+s with 
r odd parts and s even parts in which the smallest parts of the chains 
of 1f are now identified with the parts of 1r that are different in value 
(because repeated parts belong to the same chain). Note that 

(6.1) mi :::; 2L- 2- (2r + 2s- 2) = 2L- 2r- 2s. 

Now perform Bressoud redistribution on the parts of 7r* where the small 
even numbers up to 2s - 2 are added to the even parts of 7r* and the 
large even numbers from 2s to 2s + 2r - 2 are added to the odd parts of 
1r* in succession from the smallest upwards. Thus we have constructed 
two partitions 1r e and 1r o out of 7r*. Note that 1r 0 has r distinct odd 
numbers in the interval [2s + 3, 2L - 3]. The smallest partition into r 
distinct odd parts in that interval is 
(6.2) 
(2s+3)+(2s+5)+ ... +(2s+2r+1) of the number r 2 +2r+2rs. 

If we represent this partition by a Ferrers graph, then to get all such 
partitions 1f0 out of this minimal partition, we need to imbed columns 
of twos of length no more than r and the number of columns of twos to 
be imbedded is 

(6.3) 
2L- 3- (2r + 2s + 1) 

< = L- 2- r- s. - 2 

Thus from (6.2) and (6.3) we see that the generating function of 7r0 is 

(6.4) qr2 +2r+2rs [ L-~- S] q
2

• 
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The partition 1r e consists of s distinct even parts :S 2L - 2 - 2r in 
which each chain with smallest part > 2 is counted with weight 2, and an 
even chain with smallest part 2 is counted with weight 1. If we subtract 
2, 4, 6, ... , 2s from the smalllest part of 7re upwards in succession, we get 
a partition 1r; into non-negative even parts :S 2L- 2- 2r- 2s where we 
count the partition 1r; with weight 2k with k representing the number 
of different positive even parts of 1r; which are < 2L- 2- 2r- 2s. Thus 
the generating function of 7r e is 

(6.5) 

where X is the generating function of 1r;. 

In order to determine X, we need the following: 

Lemma 8. Let 1r be a partition into into s non-negative parts :S M. 
Let k be the number of different positive parts of 1r which are < M. 
Suppose 1r is counted with weight 2k. Then the generating function of 
such weighted partitions 1r is 

Proof of Lemma 8: First observe that 

(6.6) 
1 + zqJ · 2 2 · 3 3 · 
----='-:-. = 1 + 2{zql + z q J + z q J + ... }. 
1- zqJ 

In (6.6), the power of z represents the frequency of occurrence of the 
part j, but 2 occurs only once and does not depend on the frequency of 
occurrence. Thus 

(6.7) 
M-1 · 

1 IT (1 + zq1) 1 ( -zq)M- 1 
(1- z)" . 1- zq1 1- zqm = (z)M-1 

]=1 

is the generating function of 1r counted with the weight 2k as above. The 
power of z in (6.7) represents the total number of non-negative parts of 
1r. this means that 

(6.8) the coefficient of z 8 in 
( -zq)M-1 

(z)l\1+1 

is the generating function that is sought in Lemma 8. 
To compute the desired coefficient, we use the expansions 

(6.9) M-1 [M .-. 1] ( -zq)M-1 = L ziqTi • 
i=O 
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and 

(6.10) 1 _ ~ 1 [M + j] 
(z)M+I - f;:o z j · 

Lemma 4 follows from (6.8), (6.9) and (6.10). 
Next we observe that the generating function X in (6.5) can be 

obtained by replacing q by q2 and taking M = L - 1 - r - s in Lemma 
8. This yields 

(6.11) 

Finally, from (6.4), (6.5) and (6.11) we get the sum on the left hand side 
of (5.2). 

In the above combinatorial analysis, we have tacitly assumed that 
s < L - 1. The exceptional case s = L - 1 corresponds to the partition 
2 + 4 + 6 + ... + (2L- 2) of the integer L(L- 1). This partition being a 
chain starting at 2 will be counted with weight 1. Thus qL(L- 1) needs 
to be added to the sum on the left in (5.2) in order to get the generating 
function of the weighted R-R partitions in Theorem 1 but now with the 
extra conditions that all parts are :::; 2L - 2 and if a chain has 2L - 2 as 
a part, then its weight is 1. 

Andrews et-al [5] have computed the generating function of Bk,i(n, L ), 
the number of partitions of n into at most L parts, each :::; L, and with 
successive ranks in the interval [ -i + 2, k- i - 2]. By taking k = 6, i = 1 
in their result, we see that the expression on the right hand side of (5.2) 
is the generating function of B 6 , 1 ( n, L). Thus the combinatorial version 
of (5.2) is: 

Theorem 9. Suppose 1r E R 2 has k even chains with least part> 2 
and largest part< 2L- 2. Let w1 (1r,L) = 2k and .A(1r) be the largest 
part of 1r. Then 

L w1(1r, L) = B6,t(n, L). 
1rER2 ,a( 1r)=n,.X( 1r) ~2£-2 

Similarly Lemma 8 can be used to show that the combinatorial in­
terpretation of (5.3) is Theorem 10 below. 

Theorem 10. Suppose 1r E R has k odd chains with least part> 2 
and largest part < 2L - 1. Let w2 ( 1r, L) = 2k and >.( 1r) be the largest 
part of 1r. Then 

L w2(1r, L) = B6,2(n, L). 
1rER,a( 1r)=n,.X(1r)~2L-1 
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There is one more result, namely 

Theorem 11. Let 7r E 'R, w3(n) as in Theorem 3 and .X(n) the 
largest part of 71". Then 

L w3(n) = B6,3(n, L). 
1rE'R.,u( 1r )=n,A( 1r) ~2£-1 

From Theorems 9, 10, and 11, Theorems 1, 2, and 3 respectively 
follow by letting L tend to oo. It is to be noted that in Theorem 11 
alone the weight is exactly as in Theorem 3. Just as Lemma 8 was used 
to show that Theorems 9 and 10 are combinatorial interpretations of 
(5.2) and (5.3), the following lemma is to be used to show that Theorem 
11 is the combinatorial interprestation of (5.4): 

Lemma 12. Let 7r be a partition into s non-negative parts :::; M. 
Let k be the number of different parts of 7!". Suppose 7r is counted with 
weight 2k. Then the generating function of such weighted partitions 7r is 

From the methods of [5] it follows that the expression on the right in 
(5.2), (5.3) and (5.4) and the generating function of B6,i(n, L) are equal 
because they both satisfy the same recurrences and the same initial 
conditions. 

In [2] it was shown combinatorially, that the partitions enumerated 
by BB,i(n) correspond to the weighted R-R partitions in Theorems 1, 2, 
and 3. The proof of this equality in [2] is achieved by considering the 
Ferrers graphs of the partitions enumerated by B 6 ,i(n), for i = 1, 2, 3, 
and then constructing R-R partitions by counting the number of nodes 
along each hook of the Ferrers graph. In this correspondence, it is to 
be noted that imposing the bound L on both the size and number of 
parts of partitions enumerated by B6, i ( n) is the same as saying that the 
number of nodes along the largest hook is :::; 2L - 1. Thus Theorems 9, 
10, and 11, can be proved by the combinatorial method in [2] together 
with the following observation: for Theorem 9 (Theorem 10), if a chain 
has largest part 2L- 2 (2L -1), then it must be counted with :weight 1. 
What is new here is our observation that the series on the left in (5.2), 
(5.3), and (5.4) represent the generating functions of the weighted R-R 
partitions with certain prescribed bounds on the size of the parts. 
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§7. Combinatorial information under limits 

In this section we draw attention to certain important aspects of 
the nature of combinatorial information that is either gained or lost in 
a limiting process. 

It is to be noted that whereas the polynomials on the right in (5.2), 
(5.3) and (5.4) represent the generating functions of B6,i(n, L), when we 
let L ____, oo, we get a theta series as in (5.6) divided by (q) 00 which by 
the use of Jacobi's triple product identity for theta functions is seen to 
be the generating function of A6 ,i(n). Thus the advantage is that we get 
the equality 

(7.1) 

but in this process we do not get the generating function of B6,i(n)! 
This information is somehow lost in the limiting process while gaining 
the proof of the equality (7 .1). This is to be contrasted with polynomials 
on the left hand sides of (5.2), (5.3) and (5.4), which under the limiting 
process tend to the series (2.4), (2.5) and (2.6) respectively. Thus the 
generating functions of the weighted R-R partitions as infinite series are 
obtained under this limiting process. This difference in behavior of the 
left and right sides of (5.2), (5.3) and (5,4) has a very important conse­
quence, namely, it allows us first to establish the equality of the weighted 
R-R partitions with those enumerated by the B6 ,i(n) with bounds on 
the parts, and then by letting L ____, oo, we achieve equality with A6,i(n). 

In summary, the study of these weighted R-R partitions has led to 
a better understanding of B6,i(n) and their generating functions. 

§8. Series for products mod 7 

In this paper we have concentrated on series representations for the 
three mod 6 products which are the generating functions of A6 ,i(n), for 
i = 1, 2, 3. In [2], we connect both A6 ,i(n) and A7 ,i(n) to weighted 
R-R partitions. The weights in the case of the modulus 7 are prod­
ucts of Fibonacci numbers. This raises the question of series represen­
tations for these weighted R-R partitions with weights as products of 
Fibonacci numbers. There are the well known series of Rogers and Sel­
berg and the double series of Andrews for these products mod 7 (see 
Andrews [4]), which represent the next level result beyond the cele­
brated Rogers-Ramanujan identities in Gordon's famous generalization 
[8] of the Rogers-Ramanujan identities to any odd modulus 2k + 1. In a 
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subsequent paper we plan to investigate the series for these weighted R­
R partitions which are connected to the products modulo 7 and discuss 
connections with the series of Rogers-Selberg and of Andrews. 

References 

[1] K. Alladi, Partition identities involving gaps and weights - II, Ramanujan 
J., 2 (1998), 21-37. 

[2] K. Alladi and A. Berkovich, New weighted Rogers-Ramanujan partition the­
orems and their implications, Trans. Amer. Math. Soc., 354 (2002), 2557-
2577. 

[3] K. Alladi and B. Gordon, Generalizations of Schur's partition theorem, 
Manus. Math., 79 (1993), 113-126. 

[4] G. E. Andrews, The theory of partitions, Encyclopedia of Math. and its 
Appl., Vol 2, Addison Wesley, Reading, MA, 1976. 

[5] G. E. Andrews, R. J. Baxter, D. M. Bressoud, W. H. Burge, P. J. Forrester 
and G. Viennot, Partitions with prescribed hook differences, European J. 
Combin., 8 (1987), 341-350. 

[6] G. E. Andrews and R. Lewis, An algebraic identity of F. H. Jackson and its 
implications for partitions, Discrete Math., 232 (2001), 77-83. 

[7] D. M. Bressoud, Analytic and combinatorial generalizations of the Rogers­
Ramanujan identities, Memoirs Amer. Math. Soc., 227 (1980), 1-54. 

[8] B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identi­
ties, Amer. J. Math., 83 (1961), 393-399. 

Department of Mathematics 
University of Florida 
Gainesville, FL 32611 
U.S.A 




