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Abstract. 

In this paper, we show that the family of moduli spaces of a'
stable (t, ..\)-parabolic ¢-connections of rank 2 over P 1 with 4-regular 
singular points and the fixed determinant bundle of degree -1 is 
isomorphic to the family of Okamoto-Painleve pairs introduced by 
Okamoto [01] and [STT]. We also discuss about the generalization of 
our theory to the case where the rank of the connections and genus 
of the base curve are arbitrary. Defining isomonodromic flows on 
the family of moduli space of stable parabolic connections via the 
Riemann-Hilbert correspondences, we will show that a property of 
the Riemann-Hilbert correspondences implies the Painleve property 
of isomonodromic flows. 

§1. Introduction 

In part I [IISl], we established a complete geometric background 
for Painleve equations of type VI or more generally for Garnier systems 
from view points of moduli spaces of rank 2 stable parabolic connections, 
moduli spaces of S£2-representations of 1r1 (P 1 \D(t)) and the Riemann
Hilbert correspondences between them. 

In this formulation, Painleve equations of type VI or Garnier sys
tems are vector fields or systems of vector fields on each correspond
ing family of moduli spaces of stable parabolic connections arising from 

Received December 5, 2005. 
1Partly supported by Grant-in Aid for Scientific Research (Wakate-B-

15740018). 
2Partly supported by Grant-in Aid for Scientific Research (B-12440043). 
3 Partly supported by Grant-in Aid for Scientific Research (B-16340009), 

(Houga-16654004), and JSPS-NWO exchange program. 



388 M. Inaba, K. Iwasaki and M.-H. Saito 

isomonodromic deformations of linear connections. Most notably, we 
can give a complete geometric proof of the Painleve property of Painleve 
equations of type VI and Garnier systems by proving that the Riemann
Hilbert correspondences are bimeromorphic proper surjective holomor
phic maps. Moreover, one can prove that the Riemann-Hilbert corre
spondences give analytic resolutions of singularities of moduli spaces of 
the S£2-representations. Then on the inverse image of each singular 
point, which is a family of compact subvarieties in the family of moduli 
spaces of connections, the vector fields admit classical solutions such as 
Riccati solutions in Painleve VI case. See [Iwl], [Iw2], [SU], [IISO], [STe] 
and [IIS3], for further applications of our approach to explicit dynamics 
of the Painleve VI equations such as the classification of Riccati solutions 
and rational solutions, nonlinear monodfomy, and Baklund transforma
tions as well as the relation with the former results [Miwa], [Mal] on the 
Painleve property. 

In this paper, with the notation in §3, we study in detail the moduli 
space Mf' (t, .X, -1) of o:'-stable (t, ..X)-parabolic ¢-connections of rank 
2 over P 1 with the fixed determinant bundle of degree -1 as well as the 
moduli space Mf(t, .X, -1) of corresponding o:-stable (t, ..X)-parabolic 
connections of rank 2 over P 1. From a general result ([Theorem 1.1, 
[IISl]] or [Theorem 5.1, §3]) which is also valid for n 2:: 5, we can show 
that 

• Mf' (t, .X, -1) is a projective surface, 
• Mf(t, .X, -1) is a smooth irreducible algebraic surface with a 

holomorphic symplectic structure and 
• thereexistsanaturalembeddingMf(t,..X,-1) '----> Mf'(t,..X,-1). 

In Theorem 4.1, which is the main theorem in this paper, we will 
show that the moduli space Mf' (t, .X, -1) is isomorphic to a smooth 
projective rational surface St,A· Moreover we can show that there exists 
a unique effective anti-canonical divisor Yt A E I - K -8 I of St A such 

' t,.X ' 

that St,A \ Yt,A,red ~ Mf ( t, .X, -1). Moreover (St,A, Yt,A) is a non-
fibered rational Okamoto-Painleve pairs of type Di1) which is defined 
in [STT] (cf. [Sakai]). Note that St,A \ Yt,A,red is isomorphic to the 
space of initial conditions for Painleve equations of type VI constructed 
by Okamoto [01]. 

We should mention here that an algebraic moduli space of parabolic 
connections without stability conditions was essentially considered by 
D. Arinlin and S. Lysenco in [ALl], [AL2] and [A] and they constructed 
a nice moduli space for generic .X. However for special .X, we should 
consider certain stability condition to construct a nice moduli space. 
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There are also different approaches [N], [Ni] for constructions of moduli 
spaces of logarithmic connections with or without parabolic structures. 

The rough plan of this paper is as follows. In §2, we will explain 
about motivation of this paper and the theory of Okamoto-Painleve 
pairs in [8Ta] and [8TT]. In §3, we review results in part I [1181]. In 
§4, we will state Theorem 4.1 and the rest of the section will be devoted 
to show this theorem. In §5, we give a formulation of moduli theory of 
stable parabolic connection with regular singularities of any rank over 
any smooth curve. We also define the moduli space of representations 
of the fundamental group of n-punctured curve of genus g. Then we 
state the existence theorem of moduli space due to Inaba [Ina] without 
proof. In §6, we define the Riemann-Hilbert correspondence and state, 
also without proof, Theorem 6.1 which says that the Riemann-Hilbert 
correspondence is a proper surjective bimeromorphic analytic morphism. 
In §7, we will define isomonodromic flows on the family of the moduli 
spaces of a-stable parabolic connections. Assuming that Theorem 6.1 is 
true, we will show that isomonodromic flows satisfy the Painleve prop
erty. (Note that, if rank r = 2 and over P 1, a proof of Theorem 6.1 is 
found in [1181]). 

Throughout in this paper, we will work over the field C of complex 
numbers. 

§2. Motivation-Painleve equations of type VI and Okamoto
Painleve pairs 

Let us recall the theory of space of initial conditions of Painleve 
equation of type VI. Fix A = (>.1, · · · , A4) E A4 = C4 and consider 
the following ordinary differential equation of Painleve VI type Pvr(A) 
parameterized by A: 
(1) 
Pvr(A) : 
d2x 

dt 2 
1(1 1 1 )(dx) 2 - -+--+-- -
2 X X- 1 X- t dt 

(~ _1 _1 ) (dx) x(x- 1)(x- t) x 
t + t- 1 + X- t dt + t 2(t- 1)2 

[ 1 2 2 t 2 t - 1 ( 1 2) t( t - 1) ] 
2(>.4 - -.) - 2>.1 2 + 2>.2 ( )2 + - - 2>.3 ( )2 . 2 x x-1 2 x-t 
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It is known that this algebraic differential equation Pvi(>..) is equivalent 
to the following nonautonomous Hamiltonian system: 

(2) { 
dx 

(Hvi(>..)): dt 
dy 
dt 

aHvi 
ay , 

aHvi 
-~, 

where the Hamiltonian is given as follows. 

Hvi(x, y, t) 1 [ 2 ( ) x(x- 1)(x- t)y - {2>.1(x- 1)(x- t) 
t t- 1 

+2>.2x(x- t) + (2>.3- 1)x(x- 1)} y + >.(x- t)] 

( >. := { (>.1 + >.2 + .A3- 1/2)2 - (>.4- ~) 2 }). 
Let us set T = C \ { 0, 1} and consider the following algebraic vector 
fields on S(O) = C 2 X T X A4 3 (x, y, t, >..) 

a aHvi a aHvi a 
v=-+-------

at ay ax ax ay 
(3) 

Taking a relative compactification s(O) ~0 X T X A4 of S(O) where 

~0 = P 1 X P 1 and setting V(O) = s(O) \ S(O), we obtain the commutative 
diagram: 

S(O) 

(4) 

s(o) 

l 7f(O) 

T X A4. 

We can extend the vector field v in (3) on S(O) to a rational vector field 

(5) 

In general, the rational vector field v has accessible singularities at the 
boundary divisor V(O). In [01], Okamoto gave explicit resolutions of ac
cessible singularities by successive blowings-up at points on the boundary 
divisor. Then finally, we obtain a smooth family of smooth projective 
rational surfaces 

s '--+ s *--' v 
(6) "-, 7f l 7f ,/ 

T X A4. 
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such that D := S\S is a reduced normal crossing divisor and S contains 
S(o) as a Zariski open set. Moreover one can show that 

(7) 

where 8 8 (- log D) denotes the sheaf of germs of regular vector fields 
with logarithmic zero along D (cf. [STT]). The extended rational vector 
field v on S has poles of order 1 along D and is regular on S = S \D. 

For each fixed (t, A) E T x A4 , the fiber w- 1 ((t, A)) = St,>.. has a 
unique effective anti-canonical divisor Yt,>.. E I - K;s, )o, I with the irre-
ducible decomposition ' 

Yt,>.. = 2Do + D1 + D2 + D3 + D4 

such that Yt,>..,red = 'L;~=O Di = Dt,>..· Moreover it satisfies the following 
numerical conditions 

(8) I Yt,>.. · Di = deg( -K;s,,>o.IDJ = 0 fori= 0, ... , 4. 

In [STT], we give the following 

Definition 2.1. (Cf. [STT], [STa], [Sakai]). A pair (S, Y) of a 
smooth projective rational surface with an anti-canonical divisor Y E 

I - Ksl with the irreducible decomposition Y = L;i miYi is called a 
rational Okamoto-Painleve pair if it satisfies the condition 

(9) I Y · Yi = deg( -K;s,,>o.IYJ = 0 for all i. I 

A rational Okamoto-Painleve pair ( S, Y) is called of fibered-type if there 
exists an elliptic fibration f : S ~ P 1 such that f* ( oo) = nY for some 
n~l. 

It is easy to see that for a rational Okamoto-Painleve pair the con
figuration of Y is in the list of degenerate fibers of elliptic surfaces due 
to Kodaira, which was classified by affine Dynkin diagrams. Therefore, 
we have a classification of rational Okamoto-Painleve pairs (S, Y) by 
the Dynkin diagram of Y. For the case of Painleve VI, we can say that 
the pair (St,>.., Yt,>..) appeared in a fiber of the family (6) is a rational 

Okamoto-Painleve pair of type Di1l. The family of the complement 
of the divisor D in (6) S ~ T x A4, where the rational vector field 
v is regular, should be the family of the space of initial conditions of 
Painleve equations of type VI or the phase space of the vector field v. 
Note that s ~ T X A4 contains the original family s(o) ~ T X A4 
as a proper Zariski open subset, that is, S(o) <;; S. Here we recall the 
following technical lemma proved in [Proposition 1.3, [STT]]. 
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Lemma 2.1. Let (S, Y) be a rational Okamoto-Painleve pair. Then 
the following conditions are equivalent to each other. 

(1) ( S, Y) is non-Jibe red type. 
(2) A regular algebraic functions on the complementS\ Yred must 

be a constant function. 

In particular, for a non-fibered rational Okamoto-Painleve pair (S, Y), 
the complement S \ Yred is never an affine variety. 

Since one can show that an Okamoto-Painleve pair (St,>,, Yt,.>..) which 
appeared in a fiber of?f in (6) is non-fibered type, we obtain the following 

Corollary 2.1. As for the family (6) for Painleve equations of type 
VI constructed by Okamoto [01], each fiber St,.>.. = St,.>.. \ Dt,.>.. is not an 
affine variety. 

In Theorem 4.1, we will show that the family (6) S ----+ T x A4 

constructed by Okamoto in [01] is isomorphic to the family of moduli 
spaces 

Mf' ( -1) ----+ T4 X A4 

of o:'-stable parabolic ¢-connections of rank 2 over P 1 with 4 regular 
singular points. (In order to identify, we need to normalize 4 points 
(h, t2, b, t4) to (0, 1, t, oo)). 

In [IIS1], for a = ( a 1 , · · · , a 4 ) E A4 '::::' C 4 , we can also consider the 
moduli space R(P4,t)a of SL2(C)-representations p of 1r1 (P1 \D(t)) with 
the conditions Tr[p('-yi)] = ai. Then we can define the Riemann-Hilbert 
correspondence 

(10) 

where ai = 2 cos 27r Ai. 
Note that the Riemann-Hilbert correspondence is a highly transcen

dental analytic morphism, which is never an algebraic morphism. From 
results in [IIS1], we can show the following Theorem, which shows highly 
transcendental nature of the Riemann-Hilbert correspondence RHt,.>..· 

Proposition 2.1. (Cf. [Theorem 1.4, Theorem 1.3, [IIS1]] ) 

(1) 

(2) 

For all (t, A) E T x A4, the Riemann-Hilbert correspondence 
RHt,.>.. is a bimeromorphic proper surjective analytic morphism. 
If A E A4 is generic, RHt,.>.. is an analytic isomorphism. 
For all a E A4, R(P4,t)a is an affine variety, while St,.>.. '::::' 
Mf(t, A, -1) is not an affine variety. Hence if .A E A4 is 
generic, RHt,.>.. gives an analytic isomorphism between a non
affine variety St,.>.. '::::' Mf(t, A, -1) and an affine variety R(P4,t)a· 
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(3) For a generic A E A4, St,>. ~ Mf(t, A, -1) is a Stein manifold, 
but not an affine variety. 

In §4, in order to obtain Okamoto-Painleve pairs (St,>., Yt,>.), we use 
a process of blowings-up which is a little bit different from Okamoto's in 
[01]. The process can be explained as follows. Take ~2 = P(Op1(2) EB 
Op1) ---+ P 1, which is the Hirzebruch surface of degree 2. Let Do 
denote the unique infinite section with D5 = -2 and take the fibers Fi 
over ti fori= 1, ... , 4. From the data Ai, we can determine two points 
bi and bi on Fi. (See §4 for precise definition of bt). By blowing
up of ~2 at 8-points {bt}t=1, we obtain the rational surface St,>. and 
the unique effective anti-canonical divisor Yt,>. can be given by Yt,>. = 
2Do + D1 + D2 + D3 + D4 where Di denotes the proper transform of Fi, 
(see Fig. 1). 

oo-section 

Do 

·· .. , ··. ...... , •• . 
•• 

.. 
••• .1 

'· . •, ··, ··, .. . 
' 

,• ,,'' ,•' 
, 

) 
, .. 

,,,-~ ) 
,. 

,11 ••• • , ,• ,• ,• , , 

pl 

Fig. 1. Okamoto-Painleve pair of type Dl1) 

§3. Moduli spaces of rank 2 stable parabolic connections on 
P 1 and their compactifications. A review of Part I. 

In this section, we reproduce basic notation and definition in part I 
[IIS1] for reader's convenience. 
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3.1. Parabolic connections on P 1• 

Let n "2: 3 and set 

(11) 

(12) 

Fixing a data (t, .>.) = (t1, ... , tn, >.1, ... , An) E Tn X An, we define a 
reduced divisor on P 1 as 

(13) D(t) = t1 + · · · +tn. 

Moreover we fix a line bundle L on P 1 with a logarithmic connection 
'h: L---+ L0n~1(D(t)). 

Definition 3.1. A (rank 2) (t, >.)-parabolic connection on P 1 with 
the determinant (L, V' L) is a quadruplet (E, V', t..p, {lih<i<n) which con
sists of 

(1) a rank 2 vector bundle Eon Pl, 
( 2) a logarithmic connection V' : E ---+ E ® n~ 1 ( D ( t)) 
(3) a bundle isomorphism t..p: /\2 E ~ L 
( 4) one dimensional subspace li of the fiber Eti of Eat ti, li C Et., 

i = 1, ... , n, such that 
(a) for any local sections 81, 82 of E, 

t..p ® id(V'81 1\82 + 81 1\ V'82) = V' L(t..p(81 1\ 8z)), 

(b) li C Ker(rest;(V') - >.i), that is, >.i is an eigenvalue of 
the residue resti (V') of V' at ti and li is a one-dimensional 
eigensubspace of resti (V'). 

Definition 3.2. Two (t, >.)-parabolic connections 

(E1, V'1, t..p, {li}l<i<n), (E2, V'2, t..p', {l~h:Si:Sn) 

on P 1 with the determinant ( L, V' L) are isomorphic to each other if there 
is an isomorphism CJ: E1 ~ E2 and c E ex such that the diagrams 

E V'l 1 ------> E1 ® n~l (D(t)) /\2 E1 ~L 
"' 

(14) a 1 ~ ~ 1 rr®id /\2rr 1 ~ c 1 ~ 
E V'2 E2 ® n~1(D(t)) /\2 E2 

rp' 
L 2 ------> ------> 

~ 

commute and (CJ)t;(li) = l~ fori= 1, ... , n. 
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3.2. The set of local exponents ~ E An 

Note that a data ~ = (A1, ... , An) E An ~ en specifies the set of 
eigenvalues of the residue matrix of a connection V' at t = (it, ... , tn), 
which will be called a set of local exponents of V'. 

Definition 3.3. A set of local exponents~= (At, ... , An) E An is 
called special if 

(1) ~is resonant, that is, for some 1 ~ i ~ n, 

(15) 2Ai E Z, 

(2) or~ is reducible, that is, for some (t:1, ... , En) E {±1}n 

n 

(16) L €iAi E z. 
i=l 

If ~ E An is not special, ~ is said to be generic. 

3.3. Parabolic degrees and a-stability 

Let us fix a series of positive rational numbers a = (a1, a2, ... , a 2n), 
which is called a weight, such that 

(17) 0 ~ a1 < a2 < · · · < ai < · · · < a2n < a2n+1 = 1. 

For a (t, ~)-parabolic connection on P 1 with the determinant (L, V' L), 
we can define the parabolic degree of E = (E, Y', cp, l) with respect to 
the weight a by 

n 

(18) pardega E deg E+ L (a2i-1 dimEt;/li + a2i dimli) 
i=l 
n 

deg L + L(a2i-1 + a2i). 
i=l 

Let F c E be a rank 1 subbundle of E such that V'F c F®S1~1 (D(t)). 
We define the parabolic degree of (F, V'IF) by 
(19) 

n 

pardeg0 F = deg F + L ( a2i-l dim Ft; / li n Ft; + a2i dim li n Ft,) . 
i=l 

Definition 3.4. Fix a weight a. A (t, ~)-parabolic connection 
(E, V',cp,l) on P 1 with the determinant (L, V'L) is said to be a-stable 
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(resp. a-semistable ) if for every rank-1 subbundle F with "'V(F) C 
F 0 0~1(D(t)) 

(20) d F pardegaE 
par ega < 2 , 

pardeg E 
( resp. pardega F ::::; 2 a ) . 

(For simplicity, "a-stable" will be abbreviated to "stable"). 

We define the coarse moduli space by 

(21) 

M;:(t,>.,L) ~ { (E, V,~,!); an a-stable (t, A)-parabolic 
connection with 
the determinant (L, "'\7 L) 

3.4. Stable parabolic ¢-connections 

If n ~ 4, the moduli space M:: ( t, .X, L) never becomes projective 
nor complete. In order to obtain a compactification of the moduli 
space M::(t, .X, L ), we will introduce the notion of a stable parabolic 
¢-connection, or equivalently, a stable parabolic A-triple. Again, let 
us fix (t, .X) E Tn x An and a line bundle L on P 1 with a connection 
"'VL: L-+ L00~1(D(t)). 

Definition 3.5. The data (E1, E2, ¢, "'\7, <p, {li}f=1) is said to be a 
(t, A)-parabolic ¢-connection of rank 2 with the determinant (L, "'\7 L) if 
E1, E 2 are rank 2 vector bundles on P 1 with deg E 1 = deg L, ¢ : E 1 -+ 
E2, "'\7: E1-+ E200~1 (D(t)) aremorphismsofsheaves, <p: /\2 E 2 ~ L 
is an isomorphism and li C (E1)t. are one dimensional subspaces for 
i = 1, ... , n such that 

(1) ¢(fa) = f¢(a) and "'V(fa) =¢(a) 0 df + f"'V(a) for f E Op1, 
a E E1. 

(2) (<p0id)("'V(sl) /\¢(s2) +¢(sl) 1\ "'V(s2)) = "'VL('P(¢(sl) /\¢(s2))) 
for s1, s2 E E1 and 

(3) (rest;("'\7)- Ai¢t;)ll; = 0 fori= 1, ... , n. 

Definition 3.6. 
Two (t, .X) parabolic ¢-connections 
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are said to be isomorphic to each other if there are isomorphisms a 1 : 
E1 ...:::::__. E~, a2 : E2 ...:::::__. E~ and c E C \ {0} such that the diagrams 

E' <I>' E' 1 -----+ 2 

E1 ~ E200~1(D(t)) 

~!~ ~!~®hl 

E~ ~ E2 0 0~1 (D(t)) 

1\2 E2 ___'!'____, L 
S!! 

commute and (a1)ti (li) = l~ fori= 1, ... , n. 

Remark 3.1. Assume that two vector bundles E1, E2 and mor
phisms cjJ : E1 ~ E2, V' : E1 ~ E2 0 0~1(D(t)) satisfying cjJ(fa) = 
fcjJ(a), V'(fa) = cjJ(a) 0 df + f\i'(a) for f E Op1, a E E1 are given. If cjJ 
is an isomorphism, then(¢ 0 id)-1 o V': E 1 ~ E 1 0 0~1 (D(t)) becomes 
a connection on E1. 

Fix rational numbers a~, a~, ... , a~n, a~n+ 1 satisfying 

and positive integers f31,fh Setting o.' = (a!, ... ,a~n),,8 = (/31,/32), 
we obtain a weight ( o.', ,8) for parabolic ¢-connections. 

Definition 3. 7. Fix a sufficiently large integer 'Y· Let 

be a parabolic ¢-connection. For any subbundles H c E1, F2 c E2 
satisfying cjJ(Fl) c F2, Y'(H) c F2 0 0~1 (D(t)), we define 

n 

+ f32(degF2- 1rank(F2)) + Lf31(a;i_1d2i-1(H) + a;id2i(H)) 
i=1 

where d2i-1(F) = dim((F1)t./li n (Fl)t;), d2i(Fl) = dim((Fl)t, n li)· 
A parabolic ¢-connection (E1, E2, ¢, V', r.p, {qf=1) is said to be (o.', ,B)

stable (resp. (o.', ,8)-semistable) if for any subbundles F1 C E1, F2 C 



398 M. Inaba, K. Iwasaki and M.-H. Saito 

E2 satisfying ¢(FI) c F2, 'V(F1) c F2 l8l 0~1 (D(t)) and (F1, F2) i= 
(E1, E2); (0, 0), the inequality 

(22) p,((F1, F2))a'f3 < p,((E1, E2))a'f3, 

(resp. p,((F1, F2))a'f3 :::; p,((E1, E2))a'f3·) 

We define the coarse moduli space of (o:', .B)~stable (t, A)-parabolic 
¢-connections with the determinant (L, '\7 L) by 

(23) M~'f3(t, A, L) := {(E1, E2, ¢, '\7, ~' {li})} /isom. 

For a given weight ( o:', ,B) and 1 :::; i :::; 2n, define a rational number ai 
by 

(24) 

Then o: = (ai) satisfies the condition 

(25) 

hence o: defines a weight for parabolic connections. It is easy to see 
that if we take 'Y sufficiently large (E, '\7, ~' {li}) is o:-stable if and only 
if the associated parabolic ¢-connection (E, E, idE, '\7, ~' {li}) is stable 
with respect to ( o:', ,B). Therefore we see that the natural map 

(26) (E, '\7, ~' {li}) f--.> (E, E, idE, '\7, ~' {li}) 

induces an injection 

(27) M~(t, A, L) '-+ M~'f3(t, A, L). 

Conversely, assuming that .B = ((31, f32) are given, for a weight o: = (ai) 
satisfying the condition (25), we can define a~ = ai !3tfh!32 for 1 :::; i :::; 2n. 

Since 0:::; a~< a;<···< a;n = a2n!31{h1b < 1, (a:', ,B) give a weight 
for parabolic ¢-connections. 

Moreover, considering the relative setting over Tn x An, we can define 
two families of the moduli spaces 

(28) 

such that the following diagram commutes; 

~ M~'f3(L) 

(29) 
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Here the fibers of 7l"n and 7i'n over (t, ~) E Tn x An are 

(30) w- 1 (t ~) = Ma'f3(t ~ L) 
n ' ' ' . 

3.5. The existence of moduli spaces and their properties 

The following theorem was proved in [liS 1]. 

Theorem 3.1. ( [Theorem 2.1, [IIS1]]). 

(1) Fix a weight {J = ({31, fh). For a generic weight a', 

is a projective morphism. In particular, the moduli space 
Ma'f3(t, ~' L) is a projective algebraic scheme for all (t, ~) E 

Tn X An. 
(2) For a generic weight a, 7l"n : Mi:(L) ------> Tn x An is a smooth 

morphism of relative dimension 2n - 6 with irreducible closed 
fibers. Therefore, the moduli space Mi: ( t, ~' L) is a smooth, 
irreducible algebraic variety of dimension 2n-6 for all (t, ~) E 

Tn X An· 

Remark 3.2. (1) ThestructuresofmodulispacesMi:(L) and 

Mi:' 13 (L) may depend on the weights a, (a', {J) and deg L. 
(2) The moduli spaces Mi:(L) is a fine moduli space. In fact, we 

have the universal families over these moduli spaces. 
(3) The moduli space Mi:(t, ~' L) admits a natural holomorphic 

symplectic structure. (See [Proposition 6.2, [IIS1]). This fact 
is a part of the reason why Painleve VI and Garnier systems 
can be written in nonautonomous Hamiltonian systems. 

(4) In case of n = 4, we can show that M,f'f3(t, ~' L) is smooth 
(cf. Proposition 4.3 ). However we do not know whether 

~( ) Mn t, ~' L is smooth or not for n ;::: 5. 

When we describe the explicit algebraic or geometric structure of the 

moduli spaces Mi:(L) and Mi:'13 (L), it is convenient to fix a determinant 
line bundle (L, V' £). As a typical example of the determinant bundle is 

(31) (L, V'L) = (Opt(-tn),d) 

where the connection is given by 

(32) 
dz 

V'L(z- tn) = d(z- tn) = (z- tn) 0--. 
Z- tn 
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Here z is an inhomogeneous coordinate of P 1 = Spec C[z] U { oo }. For 
this ( L, V' L) = ( Op' (- tn), d), we set 

M~(t, .X, -1) = M~(t, .X, L), ~ ~ ) (resp.Mn (t,.X,-1)=Mn (t,.X,L 

§4. Explicit construction of moduli spaces for the case of n = 4 
(Painleve VI case). 

In this section, we will deal with the case of n = 4 in detail. Let us 
fix a sufficiently large integer '"Y and take a weight (a', {3) for parabolic 
¢-connections where a'= (a~, ... ,a~), {3 = ((31,(32),"( and fix (t,.X) = 
(h, ... 't4, >.1, ... '>.4) E T4 X A4. 

Then the corresponding weight a = ( a 1 , ... , a 8 ) for parabolic con
nections can be given by 

1 ::; i ::; 8. 

For simplicity, we will assume that (31 = (32 = 1, hence a = a' /2. We 
also assume (L, Y'z) = (Op1 ( -tn), d) and set 

-,( ) ~( ) M:[ t, .X, -1 = M 4 t, .X, L , My-' ( -1) = M:{ 13 (L). 

From Theorem 3.1, we can obtain the commutative diagram: 

M:[( -1) ' Mf'(-1) '---+ 

(33) n41 17f4 
T4 X A4 T4 X A4, 

such that 1r4 1 ((t, .X)) ::::: Mf(t, .X, -1) and 7f4 1 (t, .X) ::::: M:[' (t, .X, -1). 
(Note that a = a' /2). From Theorem 3.1, we see that for a generic 
weight a', 7f4 is a projective morphism and 1r4 is a smooth morphism of 
relative dimension 2. 

4.1. Main Theorem (Explicit description for n = 4 case). 

Putting (31 = (32 = 1, we further assume that lnj I « 1 for i = 
1, ... , 8. Let t1, ... , t4 c P 1 x A4 x T4 be the pull-back of the universal 
sections on P 1 x T4 over T4. Put D(t) := i1 + · · · + t4 and consider the 
projective bundle 

) . 
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Note that since D~1 (D(t)) ::::- Op1 (2) the fiber of P23 o 1r over (t, A) E 
T4 x A4 is isomorphic to 

P( Op1 (2) EB Op1) ::::- ~2 

where ~2 is the Hirzebruch surface of degree 2. 

Let Di c p ( n~'xT4XA4/T4xAJD(t)) EB OP'xT4xA4) be the inverse 

image of ii. Since the residue map induces an isomorphism 

1 - ~ 

f!P 1xT4XA4/T4xA4(D(t))li, _____, Oi,, 

we have a canonical isomorphism Di ~ P 1 x T4 x A4 . Let bT c Di 
(resp. bi C Di) be the inverse image of [>.T : 1] C P 1 x T4 x A4 (resp. 
[>.; : 1] C P 1 x T4 x A4). We denote by B+ (resp. B-) the reduced 
induced structure on btU··· U bt (resp. b! U · · · U b4) and we consider 
the reduced induced structure on B = B+ U B-. Let 

g : z----+ p ( n~, xT4xA4/T4 xAJD(t)) EB Opl xT4XA4) 

be the blow-up along B+ and S be the blow-up of Z along the closure of 
g- 1(B- \ (B+ nB-)). (It is easy to see that S _____, T4 x A4 is isomorphic 
to the family constructed by Okamoto [01]). Note that Z is isomorphic 
to the blow-up of Z along g- 1(B). 

The main purpose of this section is to prove the following theorem: 

Theorem 4.1. Take a' = (o:~h:S:i9n, {3 = ((31, fJ2) and "( such 
that fJ1 = fJ2 = 1, "( » 0, lo:~l « 1 for 1 ::; i ::; 2n, o:~i - o:~i- 1 < 
LJ#i(o:~j- o:~j- 1 ) for 1::; i::; n and that any (a',{3)-semistable para
bolic ¢-connection is (a', {3) -stable. 

(1) There exists an isomorphism 

(34) 

(2) 

(35) 

(3) 

(36) 

over T4 x A4. 
Let Y be the closed sub scheme of Mf' ( Op1 ( -t4)) defined by 
the condition 1\2 ¢ = 0. Then 

M:'12 (0p1(-t4)) = M,?'(Op1(-t4)) \Y. 

For each (t, A) E T4 x A4, the fiber Yet,>.) is the anti-canonical 

divisor of Mf' (t, A, Op1 ( -t4)) and the pair 

(Mf' (t, A, Op1 ( -i4)), Yet,>.J) 

is an Okamoto-Painleve pair of type D~1 ). 
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4.2. Construction of the morphism Mf' (t, A, -1) ___, I;2 

We assume that (ai) satisfies the condition of Lemma 4.2 below. 

Take any point (E1 , E 2 , ¢, 'V, cp, {li}) E Mf' (t, A, -1). There are 

unique trivial subbundles Li0) C E 1, L~o) C E2, whose existence is 
confirmed by Proposition 4.1 bellow. Since the composite 

is zero, the composite 
(37) 

u: Li0) '----+ E1 ~ E2 0 0~1 (D(t)) ___, E2/ L~o) 0 0~1 (D(t)) ~ Op1 (1) 

becomes a homomorphism. By Proposition 4.1 bellow, there is a unique 
point q E P 1 satisfying u(q) = 0. Put Li- 1) := El/Li0>, L~- 1 ) := 

E2/L~0 ) and let Pj: Ej ___, Lj- 1) be the projection for j = 1,2. We 

define a homomorphism B: E1 ___, L~- 1 ) 0 0~1 (D(t)) by B(a) := (p2 0 
id)'V(a) - d(p2¢(a)) for a E E1, where d is the canonical connection 

on L~- 1 ) ~ Op1(-t4). Since Uq = 0, Bq induces a homomorphism 

h1: (Li-1))q ___, (L~- 1 ) 0 0~1 (D(t))) q which makes the diagram 

0 ~ (L~0))q ---t (El)q ---t (L~-l))q ~ 0 
'\. Uq=O Bq 1 3hl / 

(L~-ll ®rl~1(D(t)))q 

commute. On the other hand, ¢ induces the following commutative 
diagram 

0 L(O) 
-------> 1 -------> E1 -------> 

L(-1) 
1 -------> 0 

\h1 ¢1 ¢21 
0 L(O) 

-------> 2 -------> E2 -------> 
L(-1) 

2 -------> 0. 

We put h2 := ¢2(q). Then h1 , h2 determine a homomorphism 
(38) 

~: (Li- 1))q----> ( L~- 1 ) 0 0~1(D(t)) EB L~- 1 )) q; af---t ( -h1(a), h2(a)). 

By Proposition 4.2, ~ is injective and the inclusion 
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determines a point p(E1 , E 2, ¢, '\7, tp, {li}) ofP *(0~ 1 (D(t))EBOp1 ), where 
P *(0~1 (D(t)) EB Op1) means Proj S((0~ 1 (D(t)) EB Op1 )v). So we can 
define a morphism 

p: Mf'(t,A,-1) 
(39) 

Proposition 4.1. For any member 

we have 
E1 ~ E2 ~ Op1 EB Op1 ( -1). 

Proof. Take decompositions 

E1 = Op1(dl) EB Op1(-d1 -1) (d1 2: 0) 

E2 = Op1 (d2) EB Op1 ( -d2- 1) (d2 2: 0). 

Assume that d1 + d2 > 1. Then we have ¢(Op1(d1)) C Op1(d2). 
The composite 

becomes a homomorphism and must be zero since H 0 (0p1(1- (d1 + 
d2))) =0. SowehaveV(Op1(d1)) C Op1(d2)18101(D(t)). Thenthesub
bundles (Op1 (dl), Op1 (d2)) breaks the stability of (E1, E 2, ¢, '\7, tp, {li} ). 

If d1 = 1 and d2 = 0, then ¢( Op1 (1)) = 0 and the composite 

becomes a homomorphism. 
Put L := (Im f) 0 0 1 ( D( t)) v. Then L is a vector bundle and either 

L = 0 or L is a line bundle with deg L 2: -1. Then the su bsheaves 
(Op1(1),L) breaks the stability of (E1,E2,¢, '\l,tp,{li}). 

If d1 = 0 and d2 = 1, then the composite E1 .!!.. E2 -> Op1 ( -2) 

must be zero and the composite f: E 1 ~ E2 00~1 (D(t)) -> Op1 ( -2) 181 
0~1 (D(t)) becomes a homomorphism. Put L := kerf. Then we have 
either L = E 1 or L is a line bundle such that deg L 2: -1. Then the 
subbundles (L, Op1 (1)) breaks the stability of (E1, E2, ¢, '\7, tp, {li} ). 

Hence we have d1 = d2 = 0 and E 1 ~ E2 ~ Op1 EB Op1(-1). 
Q.E.D. 
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Lemma 4.1. For any (E1,E2,¢>,V',cp,{li}) E Mf'(t,.X,-1), the 
homomorphism u defined in {37) is injective. 

Proof. Assume that u = 0. Then the subbundles (L~o), L~0)) breaks 
the stability of (E1, E 2, ¢>, V', cp, {li} ). Thus u f= 0 and u is injective. 

Q.E.D. 

Lemma 4.2. Assume n~i - n~i- 1 < Eui(n~1 - n~1_ 1 ) for any 
1 ::; i ::; n. Then the homomorphism t defined above is injective. 

Proof. If¢> is isomorphic, then h2 : (L~- 1))q --t (L~- 1))q is isomor
phic, and so t is injective. So we assume that ¢> is not isomorphic, that 
is, /\2¢ = 0. 

First consider the case rank¢> = 1. Take decompositions E1 = 
Op1 E90p1(-1), E 2 = Op1 E60p1(-1). Then the homomorphism¢> can 
be represented by a matrix 

where the composite E 1 .!t E 2 ~ Op1 ( -1) is represented by (0, ¢2) and 
</> E1 --t E2 --t Op1 by (¢1,¢3). 
Now assume that P2 o ¢> = 0. Then ¢2 = 0. If moreover ¢1 = 

0, then ¢3 f= 0 since rank¢> = 1. Take local bases e1 of Op1 C E 1 
and e2 of Op1 ( -1} C E1. Then the condition V'(e1) 1\ ¢(e2) + ¢(el) 1\ 

V'(e2) = 0 implies that V'(el) E Op1QSl0p1(D(t)), which contradicts the 
result of Lemma 4.1. Thus we have ¢1 f= 0. Then, by multiplying an 
automorphism of E 1 given by 

the matrix representing ¢> changes into the form 

For a suitable choice of C1, C2 and C3, we have C1 ¢1 = 1 and c3¢1 + C2tP3 = 
0. So we may assume without loss of generality that ¢3 = 0 and ¢ 1 = 1. 

The homomorphism B: E1 --t L~- 1 ) 18l0~ 1 (D(t)) = 0~1 (D(t))( -1) 
defined by B(a) := (P2 l8l id)V'(a)- d(p2¢(a)) for a E E 1 can be rep
resented by a matrix (w3 ,w4 ) where w3 E H0 (0~ 1 (D(t))(-1)) and 
W4 E H0 (0~1(D(t))). Define a homomorphism A : E1 --t 0~1 (D(t)) 
by A(a) := (q218l id)V'(a)- d(q2¢(a)) for a E E1, where q2 : E 2 --t Op1 
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is the projection with respect to the given decomposition of E 2 and d 
is the trivial connection on Op1. Then A can be represented by a ma
trix (w1, w2), where w1 E H0 (f2~1 (D(t))) and w2 E H0 (f2~1 (D(t))(1)). 
Roughly speaking V' is represented by the matrix 

Since ¢(e2) = 0 and ¢(e1) E Op1, the condition V'(el) A ¢(e2) + ¢(el) A 

V'(e2) = 0 implies that V'(e2) E Op1 181f2~1 (D(t)). Thus we have w4 = 0. 
Take a nonzero vector v(i) E li C (El)ti. Then we must have 

(40) 

Since E 1 = Op1 EEl Op1(-1), we can write v(i) = 

Thus the equality ( 40) is equivalent to the equalities 

(i) (i) ( i) ( i) 
resti (wl)v1 + resti (w2)v2 = Aiv1 , resti (w3)v1 = 0. 

Since u is injective by Lemma 4.1, w3 -1- 0. So there is at most one point 
ti which satisfies rest;(w3) = 0, because w3 E H0 (0.~1(D(t))(-1)) ~ 
H 0 (0p1(1)). Thus, for some i, we have restj(w3) -1- 0 for j -1- i. Then 

we have vij) = 0 for j -1- i. So we have lj C (Op1 ( -1))tj for j -1- i. 
Recall that the image of Y'lopl(-l) is contained in Op1 181 f2~1 (D(t)) 
because w4 = 0. Let F*(E1) be the filtration of E 1 corresponding to 
{lj }. Then ( Op1 ( -1), Op1, <I> lop!( -1), F* (El) n Op1 ( -1)) is a parabolic 
¢-subconnection of (E1, E2, <I>, F*(El)). Since 2(a;i-l + LJ#i a;j) > 
L~=l aj by the assumption of the lemma, we have 
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which breaks the stability of (E1 , E 2 , <I>, F*(El)). Therefore p2 o ¢ =/= 0 

and the homomorphism Li- 1)--+ L~- 1 ) induced by¢ is an isomorphism. 

Hence h2 : (Li- 1))q--+ (L~- 1 ))q is bijective and sot is injective. 
Next consider the case¢= 0. In this case, 'V: E 1 --+ E21Zif2~1 (D(t)) 

is a homomorphism. If we choose a decomposition E 1 = Op1 EBOp1 ( -1), 
E 2 = Op1 EB Op1 ( -1), 'V is represented by a matrix 

Notice that w3 corresponds to the homomorphism u : Li0 ) --+ E 2 / L~o)@ 
f!p1 (D(t)) and so w3 =/= 0. Let q be the point of P 1 satisfying w3 (q) = 0. 
Assume that w4(q) = 0. Multiplying an automorphism of E1 given by 

the matrix representing 'V changes into the form 

For a suitable choice of c2 , c3 , we have c3w3 + c2w4 = 0. So we may 
assume without loss of generality that w4 (= O(i)T)ake a nonzero element 

v(i) of li C (El)ti. We can write v(il = ~~i) with vii) E ( Op1 )t, 

and v~i) E ( Op1 ( -1) )t,. Then we have 

Since (resti 'V)(v(il) = Airj;t;(v(il) = 0, we have rest;(w3)vii) = 0 for 
i = 1, ... , 4. There is at most one i satisfying resti ( w3 ) = 0 because 
w3 E H0 (f2~ 1 (D(t))( -1)). So we may assume that for some i, w3 (tj) =/= 0 

for j =/= i. Then we have vij) = 0 for j =/= i and lj C Op1 ( -1 )t1 for j =/= i. 
Since W4 = 0, 'V(Opl ( -1)) c Opl@ n~l (D(t)). If F*(El) is the filtra
tion of E1 corresponding to {lj }, then (Op1 ( -1), Op1, <I>IoP1 ( _ 1), F* (E1)n 
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Opt ( -1)) is a parabolic ¢-subconnection of (EI, E 2, cl>, F*(EI)) and 

which contradicts the stability of ( EI, E 2, ci>, F* ( EI)). Therefore we have 
w4(q) =/= 0, which means that hi is bijective and soL is injective. Q.E.D. 

4.3. Smoothness of Mf'(t,A, -1) 

Let Y be the closed subscheme of Mf' ( -1) defined by the condition 
/\2¢ = 0 and Y(t, A) be the fiber of Y over (t, A). 

Proposition 4.2. Under the assumption of Lemma 4.2, the restric
tion Y(t, A) ~ P * (n~t (D(t)) EB Opt) of the morphism p defined above 
is injective. 

Proof. Let D0 be the section of P * (n~t (D(t)) EB Opt) over pi 
defined by the injection n~t(D(t)) '---+ n~t(D(t)) EB Opt. Take any 
point (EI, E2, ¢, V', cp, {li}) E Y(t, A). From the proof of 1emma 4.2, we 
can see that p((EI, E 2, ¢, V', cp, {li}) E Do if and only if¢= 0. 

First assume that rank¢ = 1. As in the proof of Lemma 4.2, We 
take decompositions EI =Opt EBOpt(-1), E 2 =Opt EBOpt(-1) and 
represent ¢ by a matrix 

By the proof of Lemma 4.2, ¢2 =/= 0. Multiplying a certain auto
morphism of E 2 , we may assume that ¢ 3 = 0 and ¢2 = 1. Since 
rank¢ = 1, we have ¢I = 0. Consider the homomorphism B : EI ---+ 

Opt(-1) 0 n~t(D(t)) defined by B(a) = P2Y'(a)- d(p2¢(a)). Let 
(w3,w4) (w3 E H0 (0~t(D(t))(-1)),w4 E H0(0~t(D(t)))) be the ma-

trix which represents B. Since ¢I = 0, ¢ 3 = 0, the composite EI ~ 
E 2 0 n~t (t) ~ Opt 0 n~t (t) becomes a homomorphism, which 
can be represented by a matrix (WI' W2) with WI E H 0 ( n~ t ( t))' W2 E 

H0(0~t (t)(1)). Roughly speaking, V' is represented by the matrix 

We use the same notation as in the proof of Lemma 4.2. Then we 
have V'(ei) 1\ ¢(e2) + ¢(ei) 1\ V'(e2) = 0. Since ¢(ei) = 0 and ¢(e2) E 
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Opl ( -1), we have Y'(el) E Opl ( -1) 0 n~l (D(t)) and so Wl = 0. Take 

( 
(i) ) 

a nonzero element vCil of li C (E1)t. and write vCi) = ~~i) where 

v~i) E (Opl)t, and v~i) E 0pl(-1)t,· Then we have 

( 
(i) ) 

(rest, \7)( vCil) = (rest, Y') ~~i) 

(1 ) 
= ( ~:::: ~::~~~:) + rest, (w4)v~i) + rest, ( z~~4 ) v~i) ' 

¢t, (vCil) = ¢t, ( ~1:: ) = ( v~i) ) 

Since (rest, V')(vCil) = .Ai¢t;(vCil), we have 

(i) rest, (w2)v2 = 0, 
( ) (i) ( ) (i) ( dz ) (i) _ , . (i) rest, w3 v1 + rest, w4 v2 + rest, z-t4 v2 - A,V2 . 

If w2(ti) = 0 for any i, then w2 = 0 because w2 E H0 (0~1(D(t))(1)) ~ 
H 0 (0p1(3)) and there is a decomposition 

which contradicts the stability of (E1, E 2 , ¢, \7, cp, {q ). On the other 

hand, if w2(ti) =f. 0, then v~i) = 0, v~i) =f. 0 and w3(ti) = 0. How
ever, there is at most one i which satisfies w3(ti) = 0 because w3 E 

H0(0~ 1 (D(t))( -1)) ~ H 0 (0p1 (1)). Therefore there is only one i which 
satisfies w2(ti) =f. 0. In this case, w3(ti) = 0 and so q = ti, which means 
that the image p(E1,E2,¢, V',cp,{lj}) is contained in the fiber Di of 
P* (0~ 1 (D(t)) EBCJp1) over ti. Applying certain automorphisms of E1 
and E2 represented by a matrix of the form 

(oc 01) 0 (c E H (0~1)), 

we may assume that 

where z is a fixed inhomogeneous coordinate of P 1 . Then giving a value 
rest;(w4) is equivalent to giving a point p(EI,E2,¢,\7,cp,{q) in the 
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fiber Di· Applying an automorphism of E 1 represented by a matrix of 
the form 

we may assume that w4 is of the form 

with a E C. a is determined by the value rest, (w4). Thus the matrices 
representing ¢ and V' are determined uniquely, up to automorphisms of 

E1 and E2, by the point p(El,E2,¢,\i',cp,{lj}). Recall that vii)-=/= 0, 
v(i) = 0 and res .(w )v(j) +res .(w )v(j) +res .(...!E___)v(j) = >.·v(j) for 2 t 1 3 1 t 1 4 2 t 1 z-t4 2 J 2 
j-=/= i. Since rest1 (w3) -=/= 0 for j-=/= i, every v(j) (including v(i)) is uniquely 
determined up to a scalar multiplication. Thus the parabolic structure is 
determined by¢, \7. Hence (E1, E 2 , ¢, \7, cp, {lj}) is uniquely determined 
by the point p(E1, E2, ¢, \7, cp, {lJ} ). 

Next we assume that¢= 0. Let 

be a matrix representing \7. Let q be the point ofP1 satisfying w3 (q) = 0. 
We may assume without loss of generality that q-=/= ti fori= 1, 2, 3. From 
the proof of Lemma 4.2, we have w4 (q) -=/= 0. Applying an automorphism 
of E 1, we may assume 

For a nonzero element v(il Eli, we have (rest, V')(v(il) = >.i¢dv(il) = 0 
for i = 1, ... , 4. Thus det(V't;) = w1(ti)w4(ti) - w2(ti)w3(ti) = 0 for 
i = 1, ... , 4. Since w3(ti) -=/= 0 fori = 1, 2, we have w2(ti) = 0 fori = 1, 2. 
We write 

(z- t1)(z- t2)ud 
W2 = 4 Z 

Tij=l (z - tj) 

with u a polynomial in z of degree less than or equal to 1. Applying a 
certain automorphism of E2 of the form 
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we may assume that u = z- t3. Note that '\1 is of the form 

dz ( a (z- h)(z- t2)(z- ta)) o 
04 (z-t·) z-q (z-tt)(z-t2) (aEH (Opt(2))) 

J=l J 

Since det("Vt3 ) = 0, we have a(t3) = 0. The condition det("Vt4 ) = 0 
implies that a is of the form a = (z - t3)(c(z - t4) + t4 - q), where 
c E C. If c = 1, we have '\l(E1 ) c Opt ( -1) ® O~t (D(t)) after 
applying a certain automorphism of E 2. Then there is a decomposi
tion (E1, E 2, ¢, '\1, {li}) = (E1, Opt ( -1), ¢, '\1, {li}) EB (0, Opt, 0, 0, {0} ), 
which contradicts the stability of (El> E 2, ¢, '\1, cp, {li} ). Thus we have 
c =J 1. Applying a certain automorphism of E2 of the form 

(ot (1 - t)1(z - t3)) o x )) (t E H (Opt , 

we may assume that c = 0. Since "Vt; =J 0, ker('\lt;) = li for i = 
1, ... , 4. Hence (E1, E 2, ¢, '\1, cp, {q) is uniquely determined by q and it 
is determined by the point p(E1, E2, ¢, '\1, cp, {q ). Q.E.D. 

Proposition 4.3. Under the assumption of Lemma 4.2, Mf' ( -1) 
is smooth over T4 x A4. 

Proof. Let A be an artinian local ring over T4 x A4 with residue 
field A/m = k and I be an ideal of A such that ml = 0. It is sufficient 
to show that 

Mf'(-1)(A)---> Mf'(-1)(Ajl) 

is surjective. Take any member 

Note that E1 ~ Opt EB Opt (-1) and E2 ~Opt EB Opt (-1). 
A/ l A/ l Af l Af I 

Then the homomorphism ¢ : E1 -t E2 can be represented by a matrix 
of the form 

As in the proof of Proposition 4.2, we may assume that ¢3 E m ® 
H 0 (0pt (1)). Put 

A/l 

A:= (q2 ® 1) o V'- do q2 o¢: E1---+ Opt ® f!~t(D(t)) 3:' Opt (2), 
A/ I A/ I 

B: = (p2 ® 1) o V'- do P2 o ¢: E1 ---+Opt ( -1) ® f!~t (D(t)) 3:' Opt (1), 
A/ I A/ I 
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where Q2 : E2 ___... Op1 , P2 : E2 ___... Op1 ( -1) are projections with 
A/ I A/ I 

respect to the decomposition of E2. Let (w1,w2) and (w3,w4) be the 
matrices representing A and B, respectively. We can see that the con
dition 

is equivalent to the equality 

Let (t1, ... , t4) E P 1(A) x · · · x P 1(A), (>.1, ... , >.4) E A x · · · x A be 
the data corresponding to the structure morphism Spec(A {:) T)4 x A4 . 

Let v(il be a basis of li. Then we can write v(il = ~~i) with 

vii) E Op~)t, and v~i) E Op~/I ( -1)1t, We must find lifts 

( 
(i) ) 

over A of ¢1, ¢2, ¢3, w1, w2, w3, w4, ~~i) i=l, ... ,4 satisfying the follow-

ing conditions: 

Since we have already proved the smoothness of M::12 ( -1) over 
T4 x A4 , we may assume that A2¢ E mA/ I. 

Assume that ¢1 E mA/ I and ¢2 E (A/ I) x. Still we may assume 
that ¢3 = 0. In this case we can see from the proof of Proposition 4.2 
that rest;(w3) E mA/I and rest;(w2) E (A/I)x for some i. Take lifts 

w~i) E n~1 (D(t))(1)t" w4 E H0 (n~l (D(t))), J1 E A and J2 E A of 
A A 

w2(ti), w4, ¢1 and ¢2, respectively. Put w1 := -w4¢1¢;;1. Then we can 
find a lift w3 E H0 (n~ 1 (D(t))( -1)) of w3 satisfying 

A 
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Let w2 be the element of H0 (!1~ 1 (D(t))(1)) satisfying 
A 

(reStj (wt) - >..j¢1) (reStj (w4) + (reStj ( z~~4) - Aj) Jz) 
- rest1 (wz) restj (w3) = 0 

£ . -/.. . d - (t ) - (i) D . 1 4 t k l"ft -(j) or J r t an w2 i = w2 . ror J = , ... , , we can a e 1 s v1 E 

0 I -(j) 0 ( 1)1 f (j) (j) t" fy" pt t., v2 E pt - t. o v1 , v2 sa 1s mg 
A J A J 

( ( - ) \ ;, )-(i) (- )-(i) 0 rest, Wt - /\i'f'l v1 + rest, wz v2 = . 

and 

£ . _;_ . P t ;, ·- 0 Th J. ;, ;, - - - - ( -(J) -(J) )4 or J r t. u V'3 .- . en V'l,<p2,<p3,Wt,Wz,w3,w4, v1 ,v2 j=l are 
desired lifts. 

Next assume that ¢2 Em/ I. In this case, we can see from the proof 
of Proposition 4.2 that ¢1 E m/I and ¢2 E mH0 (0p1 (1)). Take a lift 

A/ I 

w3 E H0 (!1~ 1 (D(t))( -1)) of w3 and let q E P 1(A) be the zero point of 
A 

w3. There exists i E {1, ... , 4} such that restj (w3) E Ax for j f' i. Ap-
plying a certain auotomorphism of E 1, we may assume that rest, (w4) E 

(A/ I)X. Take lifts w4 E H0 (!1p~ (D(t))), w~i) E !lp~ (D(t)(1))t, and 

Jz E A of w4, w2(ti) and ¢2, respectively. We can see from Lemma 
4.2 that w4(q) is a basis of !1~ 1 (D(t))lq· Then we can find an element 

A 

w1 E H0 (!1~ 1 (D(t))) such that 
A 

(rest;(wl)w4(q) + >..iwt(q)¢2) (rest;(w4) +(rest, (z ~ztJ- >..i) Jz) 

= rest;(w3) rest;(w~i))w4(q)- >..i (rest;(w1)¢2w4(q)- rest;(w4)w1(q)¢2). 

We can take an element J1 of A such that ¢ 2w1 ( q) + ¢ 1 w4 ( q) = 0. Then 
there is an element ¢ 3 E H 0 (0pt (1)) such that 

A 

w1J2- w3¢3 + w4¢1 = o. 

Let w2 be the element of H0 (!1~ 1 (D(t))(1)) satisfying w2 (ti) = w~i) and 
A 

(restj (wt)- >..j¢1) (reStj (w4) + (restj c~~J -Aj) ¢2) 

= restj(w3)(restj(w2)- >..1¢3(t1)) 
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£ · ...J. · ur t k l"ft -(j) /'"I I -(j) ""' ( 1) I f (j) (j) or J r z. vve can a e 1 s v1 E vp~ ti, v2 E vp~ - ti o v1 , v2 

such that 

restj (w3)viil + (restj (w4) + (restj ( z ~zt4 ) - >..i) ¢2) v~i) = 0 

£ . - 1 4 Th ;.. ;.. ;.. - - - - (-(i) -(i)) 4 d . d or J - , ... , . en '1'1. '1'2, '1'3, Wt, w2, w3, W4, v1 , v2 j=l are es1re 
lifts. Q.E.D. 

4.4. Proof of Theorem 4.1 

We put >..i := Ai for i = 1, ... , 4, >..; := ->..i for i = 1, ... , 3 and 
>..4 := 1 - >..4. Let Di be the fiber of P * (!1~ 1 (D(t)) EB Op1) over ti E P 1 

and bi (resp. bi) be the point of Di corresponding to >..i (resp. >..;). 
Put Z := {bt, ... ,bt,b!, ... ,b4}. 

Proposition 4.4. Under the above notation, 

is an isomorphism. 

Proof. Let Do be the section of P*(n~,(D(t)) EB Op1) over P 1 

defined by the injection fl~1 (D(t)) .,___. !1~1 (D(t)) EB Op1. First we will 
show that 

i=O i=O 

is an isomorphism. Fix a section 

of the canonical homomorphism 

where 

11"1: P 1 X (P1 \ D(t))---+ P 1, 11"2: P 1 X (P1 \ D(t))---+ P 1 \ D(t) 

are projections and~ c P 1 x (P1 \ D(t)) is the diagonal. Take a point 
s of P*(n~,(D(t)) EB Op1) \ u:=o Di, which is given by q E P 1 and an 
injection ( -h1. h2) : C .,___. n~, (D(t))lq EB Op1lq· We may assume that 
h2 = 1. We put 

w4 := Tq(hl) E H0 (!1~1(D(t))), 

w3 := (t4 -q)Tif~,(z-tj)dz E H0 (n~,(D(t))(-1)), 
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where z is a fixed inhomogeneous coordinate of P 1 . Let w2 be the 
element of H0 (r1~ 1 (D(t))(1)) determined by 

fori= 1, ... , 4. Define a rational connection \7 on Op1 EB Op1 ( -1) by 

for fl E Op1 and hE Op1(-1). Then sf-+ (Op1 EB Op1(-1),V') 
determines a morphism 

4 4 

P *(f2~l(D(t)) EB Op1) \ U Di ----+ Mf' (t, A, -1) \ U p- 1 (Di), 
i=O i=O 

which is just the inverse of the morphism ( 42). Then the morphism ( 41) 
is surjective, since it is proper and dominant. The morphism ( 41) is also 
injective by the above argument and Proposition 4.2. Thus, by Zariski's 
Main Theorem, the morphism (41) is an isomorphism. Q.E.D. 

Proposition 4.5. If >.i =/= >.;, then p- 1(bt) ~ P 1, p- 1(bi) ~ P 1 

and these are (-I)-curves. 

Proof. We can see that p- 1(bt) is just the moduli space of (t, A)
parabolic ¢-connections (Op1 EB Op1( -1), Op1 EB Op1( -1), ¢, \7, cp, {l1}) 
satisfying · 

¢ ( :~ ) = ( ¢~:1 ) 

v (:: ) ~ ( •::' ) + ( 

for s1 E Op1 and s2 E Op1(-1), where ¢ 1 E C, l1 = ker(rest1 (\7)
>.j¢lt1 ) for j = 1, ... ,4 and w2 E H0 (f2~ 1 (D(t))(1)) satisfies the condi
tion 
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for k #- i. Then we can define a mapping 

p-l(bt) ----> pl 

which is an isomorphism. 
Similarly we can see that p- 1(b{) ~ P 1. Since Mf'(t,A,-1) and 

P *(0~1 (D(t))EBOp1) are smooth, p- 1(bt),p- 1(bi) must be ( -1)-curves. 
Q.E.D. 

Proposition 4.6. Assume that >.t = >.;. Put 

c1 := {(El,E2,¢,V','P,{lj}) Ep-1(bt)jzi =L~0Jit,}, 
C2 := { (Et, E2, ¢, '\7, 'fJ, {lj}) E p-1(bt)l rest;('\7) = >.i¢t.}. 

Then C1 ~ P 1 , C2 ~ P 1, C1 n C2 = {one point}, C1 n Y(t, A) 
{one point}, C2 c Mf(t, A, -1), (Ci)2 = -1, (C2)2 = -2 andp- 1(bt) = 
c1 u c2. 

Proof p- 1 (bt) is the moduli space of the objects 

satisfying 

( 
(i) ) . 

for k #- i. If v(il = :~i) is a basis of li, rest, (w2)v~') = 0. Thus we 

have 
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We can see that {v~i} = O}np-1(b{) = C1 and {w2(ti) = O}np-1(bi) = 
C2. From the proof of Proposition 4.2, we can see that the objects of C2 
satisfies the condition <Pt # 0. Thus we have C2 n Y(t, ~) = 0. We can 
also see that cl n c2 consists of one point corresponding to the object 
of p- 1(bi) satisfying W2(ti) = 0, <Pt = 1 and li = L~0)lt,. cl n Y(t,~) 
consists of one point corresponding to the object of C1 satisfying ¢1 = 0. 
We have C1 ~ P 1 by the same proof as Proposition 4.5. ¢, '\7, cp and 
lk for k # i are all constant on C2. So C2 is just the moduli of lines 
li C Opt It, EEl Opt ( -1) It" which is isomorphic to P 1. 

Let N4(t, ~' -1) be the moduli space of rank 2 bundles E with 
a connection '\7 : E ~ E ® n~t (D(t)) and a horizontal isomorphism 
cp : 1\2 E ~ Opt ( -x4) satisfying 

(1) det(rest;('\7)- .XiidEI,J = 0 fori= 1, ... , 4 and 
(2) (E, '\7) is stable in the sense of Simpson [Sim]. 

Then there is a canonical morphism 

Mf(t, ~' -1)--* N4(t, ~' -1), 

which is obtained by forgetting parabolic structure. We can see that the 
image of C2 in N4(t, ~' -1) is a singular point with A1-singularity. Thus 
C2 is a (-2)-curve and we can see that C1 is a ( -1 )-curve. Q.E.D. 

The morphism p: Mf'(t,~,Opt(-t4)) ~ P(O~t(D(t)) EEl Opt) 
defined in (39) extends to the morphism 

p: Mf' (Opt XT4XA4 ( -i4)) -t p ( n~t XT4XA4/T4XA4 (D(t)) EEl Opt xT4XA4) . 

We can check that the inverse image p- 1(B+) is a Cartier divisor on 
Mf' (t, ~'Opt ( -t4) ). Since Z is a blow up of 

p ( n~txT4XA4/T4XA4 (D(t)) EEl OptxT4XA4) 

along B+, p induces a morphism 

f: Mf'(t,~,Opt(-t4))--* Z. 

We can also check that f- 1(g- 1(B)) = p- 1(B) is a Cartier divisor on 

Mf' (t, ~'Opt ( -t4)). Since Sis a blow up of Z along g- 1(B), f induces 
a morphism 

f': Mf'(t,~,Opt(-t4))--* S. 

We can see by Proposition 4.4, Proposition 4.5 and Proposition 4.6 that 
each fiber of f' over T4 x A4 is an isomorphism. Thus f' is an isomor
phism and Theorem 4.1 (1) is proved. 
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Theorem 4.1 (2) is easy. It is well-known that K-8 = -(2Do + 
(t,Jo.) 

D1 + D2 + D3 + D4). So it is sufficient to prove the following proposition 
in order to prove Theorem 4.1 (3). 

Proposition 4. 7. Y is a Cartier divisor on Mf' ( -1) fiat over T4 x 

A4 and the divisor Y(t, A) on Mf' (t, A, -Op1 ( -t4)) has multiplicity 2 
along (piY(t,.x))-1(Do) and 1 along (PIY(t,.x))-1(Di) fori= 1, ... , 4. 

Proof Let (£1,£2, ¢, '\7, rp, {fi}) be a universal family on P 1xMf' ( -1). 
Then¢: £1 ---7£2 determines a section f of (7rMf )*(det(£1)-1®det(£2)), 
whose zero scheme is Y. Since (7rMf )*(det(£1)-1®det(£2)) is a line bun

dle on Mf'(-1), Y is a Cartier divisor on Mf'(-1). Y(t,A) is also a 

Cartier divisor on Mf' (t, A, -1) and soY is flat over T4 x A4. 
Let Ui be the open subscheme of Y(t, A) whose underlying space is 

(PIY(t,.x))-1(Di \(Don Di)). Then Ui is just the moduli space of the 
objects (Op1 E90p1(-1),0p1 E90pl(-1),¢,V',cp,{lj}) satisfying 

V' ( /1 ) _ ( 0 ) + ( hRt::~:=:~~dz ) 
h - dh hn~:~~~~;j) + hm=:t:-t;) 

for /1 E Op1 and h E Op1 ( -1), where a E C and l1 = ker( rest; (V') -
>..1 4>t;) for j = 1, ... , 4. Thus Ui ~ A 1 and Ui is reduced. 

Let Uo be the open subscheme of Y(t, A) such that p(Uo) = Do\ 
Uj=1 D1 as sets. Uo is the moduli space of the objects (Op1 E9 Op1 ( -1), 
Op1 E9 Op1 ( -1), ¢, V', <p, { l1}) satisfying 

¢ ( j~ ) = ( j~:~ + h¢3 ) 

v(~)=(~:+~~)+(:~+~h) 
for h E Op1 and h E Op1(-1) with the conditions ¢1¢2 = 0 and 
w1¢2- w3¢3 + w4¢1 = 0, where q E P 1 \ { t1, ... , t4}, lj = ker(rest; (V')
Aj 4>t; ) for j = 1, ... , 4 and 

TI~-3 (z- tk + (tk- h)(tk- t2)>.k¢>1) d (z- q)dz 
W1 = 4 Z, W3 = 4 

nj=l(z- tj) (t4- q) nj=l(z- tj) 

TI~=l (z- tk + (tk - t3)(tk - t4)>.k¢>2) d 
W4 = 4 z. 

nj=l(z-tj) 
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¢2 and ¢3 are determined by ¢1 and the conditions 

w1(q)¢2 +w4(q)¢1 = 0, w3(ti)¢3(ti) = w1(ti)¢2 +w4(ti)I/J1 (j = 1, 2) 

and ¢2 must satisfy the condition¢~ = 0. Thus Uo ~ P 1 \ {t1, ... , t4} x 
SpecC[¢1]/(¢~) and Y(t,.X) has multiplicity 2 along (PIY(t,~))- 1 (Do). 

Q.E.D. 

§5. Moduli of stable parabolic connections in general case 

In this section, we will formulate the general moduli theory of a
stable parabolic connections over a curve and state the existence theorem 
of the coarse moduli scheme due to Inaba [Ina]. We fix integers g, d, r, n 
with g 2: 0, r > 0, n >0 and let (C, t) = (C, h, ... , tn) be ann-pointed 
smooth projective curve of genus g, which consists of a smooth projective 
curve C and a set of n-distinct points t = {tih::S:i::S:n on C. We denote 
by D(t) = t1 + · · · + tn the divisor associated to t. Define the set of 
exponents as 
(43) 

An(d) ·= {.x = (.A(i))1::S:i_::S:n E cnr 
r · 1 O::S:J::S:r-1 

Definition 5.1. A (t, .X)-parabolic connection of rank r on C is a 

collection of data (E, '\7, {lii)h::;i::;n) consisting of: 

(1) 
(2) 

(3) 

a vector bundle E of rank r on C, 
a logarithmic connection '\7: E ~ E 0 nb(D(t)), 
and a filtration ziil : EJt, = z~i) :::l z~il :::l · • · :::l l~~ 1 :::l l~i) = 0 for 

each i, 1 :::; i :::; n such that dim(lJi) fl]~ 1 ) = 1 and (rest, ('\7) -
, Cil)(zCiJ) zCil c . 
/\j j C i+1 tOr J = 0, 1, · · · , r - 1. 

We set deg E = deg ( N E) as usual. 

Take a sequence of rational numbers a= (aY))~~~~; such that 

(44) 

£ . 1 d (i) _J_ (i') £ (. ") _J_ ( ., "') ur h or t = , ... , n an aj r aj' or t, J r t , J . vve c oose a = 
(aY)) sufficiently generic. Let (E, '\7, {ziilh::;i::;n) be a (t, .X)-parabolic 
connection, and F C E a nonzero subbundle satisfying 'V(F) c F 0 
fl~(D(t)). We define integers len(F);i) by . 

(45) len(F);il = dim(Fit, n z;~ 1 )/(Fit, n zjil). 
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Note that len(E)(i) = dim(l(i) /l(i)) = 1 for 1 < J. < r. 
J J-1 J - -

Definition 5.2. A parabolic connection (E, V', {zii)h<i<n) is a
stable if for any proper nonzero subbundle F ~ E satisfyi~g- V'(F) C 

F 0 Dh(D(t)), the inequality 
(46) 
d F "\"m "\"r (i) l (F)(i) 

eg + L...i=l L...j=l 00 j en j 
d E "\"n "\"r (i) l (E)(i) 

eg + L...i=l L...j=l aj en j 

rankF 

holds. 

< --------~~~~~----~
rankE 

For a fixed ( C, t) and A, let us define the coarse moduli space by 
(47) 
M~c,tp)(r,n,d) = 

(i) an a-stable (t, A)-parabolic connection }/ ~ 
{(E, V', {l* h::;i::;n) I of rank rand degree dover C - · 

Varying (C, t) and A, we can also consider the moduli space in rel
ative setting. Let M 9 ,n be the coarse moduli space of n-pointed curves 
of genus g. Here we assume that every point of M 9 ,n corresponds to 
an n-pointed smooth curve (C, t) such that t = (t1, ... , tn) is a set of 
n-distinct points on C. We consider a finite covering M~,n --+ M 9 ,n 
where M~,n is the coarse moduli space of n-pointed curves of genus g 
with a suitable level structure so that there exists the universal family 
(C, t) = (C, t1 , ... , tn) of n-pointed curves (with a level structure). From 
now on, for simplicity, we set 

(48) T = M~,n 

and let 

(49) (C, t) --+ T = M~,n 

be the universal family. 
We can show the existence theorem of moduli space as a smooth 

quasi-projective algebraic scheme (cf. [IIS1], [Ina]). 

Theorem 5.1. ( Cf. [IIS1J, [Ina]). Assume that r, n, d are positive 
integers. There exists a relative moduli scheme 

(50) 'Pr,n,d: M~,t)/T(r,n,d)--+ T X A~n)(d) 

of a-stable parabolic connections of rank r and degree d, which is smooth 
and quasi-projective overTxA~n) (d). Moreover the fiber M~c,t),.X) (r, n, d) 

of 'Pr,n,d over ((C, t), A) E T x A~n)(d) is the moduli space of a-stable 
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(t, A)-parabolic connections over C, which is a smooth algebraic scheme 
and 

(51) dim M~c,t),.X) (r, n, d) = 2r2 (g- 1) + nr(r- 1) + 2. 

Remark 5.1. 

(1) When C = P 1 and r = 2, Theorem 5.1 is proved in [IISl]. 
(2) Inaba [Ina] showed that the moduli space M~c,t),.X) (r, n, d) is 

irreducible in the following cases: 
(a) g 2: 2,n 2:1, 
(b) g=l,n2:2, 
(c) g=O,r2:2,rn-2r-2>0 

5.1. The moduli space of representations 

For each n-pointed curve (C, t) = (C, t1, · · · , tn) E T = M~,n (g 2: 
0, n 2: 1), set D(t) = t1 + · · · + tn. By abuse of notation, we denote by 
1r1(C \ D(t)*) the fundamental group of C \ {t1, · · · , tn}· The set 

(52) Hom(nl(C \ D(t), *), GLr(C)) 

of GLr(C)-representations of n1(C \ D(t),*) is an affine variety, and 
GLr(C) naturally acts on this space by the adjoint action. 

We define the moduli space by 

(53) RP(c,t) = Hom(nl(C \ D(t), *), GLr(C))I IAd(GLr(C)). 

Here the quotient I I means the categorical quotient ([Mum]). More 
precisely, it is known that n1(C \ D(t),*) is generated by (2g + n)
elements o:1, ... , o:9 , /31, ... , (39 , ')'1, ... , 1'n with one relation 

g 

II[o:i, /3ih1 · · · 1'n = 1. 
i=1 

Therefore if we denote by R the ring of invariants of the simultaneous 
adjoint action of GLr(C) on the coordinate ring of GLr(C) 2g+n-I, then 
we have an isomorphism 

(54) RP(c,t) ~ Spec(R). 

Hence the moduli space RP(c,t) becomes an affine algebraic scheme. 
Furthermore, each closed point of RP(c,t) corresponds to a Jordan 
equivalence class of a representation ( cf. [Section 4, [IIS 1]]). 
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Let us set 

(55) A (n) ._{a_ (a{i))1$;i$;n E cnr la(1)a{2) a(n) _ (-1)rn} 
r .- - j O$;j$;r-1 0 0 · · · 0 - · 

For each a= (a(i)) E A(n) and i 1 < i < n we set aCil = (a(i) · · · a(i) ) 
J r ' - - ' 0 ' ' r-1 

and define 

(56) ( ) r + {i) r-1 + + {i) Xa(iJS=S ar_ 1s ··· a0 • 

Moreover we define a morphism 

(57) </>(c,t) : RP(c,t) ----+ A~n) 

by the relation 

(58) det(slr- p('yi)) = Xa<iJ (s) 

where [p] E RP(c,t) and 'Yi is a counterclockwise loop around ti. 

For a = (aji)) E An), we denote by RP(c,t),a the fiber of </>(c,t) 
over a, that is, 
(59) 

RP(c,t),a = {[p] E RP(c,t)ldet(slr ..,.-- p('yi)) = Xa<;J(s), 1::; i::; n}. 

For any covering T' ~ T, we can define a relative Il)oduli space 
RP~,T' = ilcc,t)ET' RP(c,t) of representations with the natural mor
phism 

(60) RP~,T'----+ T'. 

As in Section 4, [IIS1], there exists a finite covering T' ----+ T with 
the morphism 

(61) ,I,T • ""Pr ----+ T' X A(n) 
'+'n · 1~ n,T' r ' 

such that 
(¢~)~ 1 ((0, t), a)= RP(c,t),a· 

§6. The Riemann-Hilbert correspondence 

Next we define the Riemann-Hilbert correspondence from the mod
uli space of a-stable parabolic connections to the moduli space of the 
representations. 

Let us fix positive integers r, d, a = (aY)) as in (44), and (C, t) E 

T' = M~,n· For simplicity, we set M~c,t),>.) = M~c,t),>.)(r,n,d) (cf. 
( 4 7) ). 
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We define a morphism 

(62) 

by the relation 

r-1 

(63) IT (s- exp( -2rr.J=I.Xjil)) = sr + a~~ 1sr- 1 + ... + a~i). 
j=O 

For each member (E, V, {ly)}) E M(c,t),.X' the solution subsheaf of 
Ean 

(64) 

becomes a local system on C \ D( t) and corresponds to a representation 

(65) p: rr1(C \ {t}, *) _. GLr(C). 

Since the eigenvalues of the residue matrix of van at ti are _xjil, 0 :::; 
j :::; r- 1, considering the local fundamental solutions of van = 0 near 
ti, the monodromy matrix of p('yi) has eigenvalues exp( -2rrv'-I.Xjil), 
0 :::; j :::; r - 1. Hence under the relation (63), or a = rh(~), we can 
define a morphism 

(66) RHcc,t),.X: M({c,t),.X)--> RP(c,t),a· 

Replacing T = M~,n by a certain finite etale covering u: T' _. T 

and varying ((C, t), ~) E T' x A~n)(d) we can define a morphism 

(67) RH: M(C,t)/T'(r,n,d)--> RP~,T' 

which makes the diagram 

M~,t)/T' (r, n, d) 

(68) 'Pr,n,dl 
T' x A~n)(d) 

RH 
---+ RP~,T' 

1¢~ 
Idxrh T' A(n) ---+ X r 

commute. The following result is proved in [Ina]. 

Theorem 6.1. ([Theorem 2.2, [Ina]] ). Assume that a is so generic 
that a-stable{::} a-semistable. Moreover we assume that r ~ 2, rn-2r-
2 > 0 if 9 = 0, n ~ 2 if 9 = 1 and n ~ 1 if 9 ~ 2. Then the morphism 

(69) RH: M~,t)/T'(r,n,d)--> RP~,T' X A~n) A~n) 



Moduli of stable parabolic connections 423 

induced by {67) is a proper surjective bimeromorphic analytic morphism. 

In particular, for each ((C, t), .X) E T' x A~n) (d), the restricted morphism 

(70) RH((c,t),>.) : M~c,t),>.)(r, n, d)--+ RP(c,t),a 

gives an analytic resolution of singularities of RP(c,t),a where a = 
rh(.X). 

Remark 6.1. Take .X E A~n) such that rh(.X) =a. A representation 
p such that [p] E RP(c,t),a is said to be resonant if 

(71) dim(ker(p("yi)- exp( -27rH.AJi)))) 2: 2 for some i, j. 

The singular locus of RP(c,t),a is given by the set 

(72) ( RP(c,t),a) sing := { [p] E RP(c,t),a I pr!:::::~ible or } . 

Moreover we denote the smooth part of RP(c,t),a by 

(73) ( RP(c,t),a) ~ = RP(c,t),a \ ( RP(c,t),a) sing . 

Theorem 6.1 implies that the restriction 

( ) ~ ~ ( )~ (74) RH · Mo: ---=--. npr ((C,t),>.)l (M(c.t),:..) ~ . (C,t),>. (C,t),a 

is an analytic isomorphism, where 

(M(c,t),>.) ~ = RH~~,t),>.) ( ( RP{c,t),a) \ 

§7. Isomonodromic flows and Differential systems of Painleve 
type 

Consider the family of the moduli spaces of a-stable parabolic con
nections 

(75) cpr,n,d: M{C,t)/T(r, d, n)--+ T X A~n)(d) 

where T = M~,n as in (48). 

Fix ((C0 , t 0 ), .X0 ) E T x A~n) (d) and take an a-stable parabolic con

nection x = (E,V',{lii)h~i~n) E M~co,to),>.o)(r,d,n). Let~= {t E 

C\ltl < 1} be the unit disc and let h : ~ --+ T be a holomorphic 
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embedding such that h(O) = (Co, t 0 ). Then pulling back the univer
sal family, we obtain the family of n-pointed curves f : (C, t) ----> ~ 
with the central fiber f- 1 (0) =(Co, t 0 ). An a-stable parabolic connec
tion (£, V', l) on the family of n-pointed curves (C, t) over~ is called a 
(!-parameter) deformation of (E, '\7, {lii)h::;i::;n) if we have an isomor

phism (£, V', l)I(Ca,ta) ~ (E, V', {lii)h::;i::;n)· Restricting the a-stable 
parabolic connection (£, V', l) to each fiber (Ct, tt), we have a family of 
a-stable parabolic connections (£t, Y't, lt) over (Ct, tt) which are auto
matically flat in the direction of each fiber. If the connection V' on £ 
is flat on the total space C, which means that the curvature 2-form 
of V' vanishes over the total space C, the associated representations 
Pt: 7rl(Ct \ {tt}, *)----> GLr(C) is constant with respect totE~. More
over the converse is also true. Therefore such a deformation (£, V', l) 
over C ----> ~ is called an isomonodromic deformation of a a-stable 
parabolic connection. Under an isomonodromic deformation, local ex
ponents At of the connection (£t, Y't, lt) are also constant, so we have 
At = Ao. Therefore an isomonodromic deformation determines a holo
morphic map h: ~----> M(C,t),Aa/T(r, d, n) which is a lift of h: ~----> T 

such that h(O) = x E Mfcca,ta),Aa)(r,d,n). 

M(C,t),Aa/T(r, n, d) 

h/ 1,, ..J. Yr,n,d,.>..o 

T x {Ao} 

Next we will define a global foliation I:F on the total space of 
M(C,t)/T(r, d, n) from isomonodromic deformations of the a-stable par
abolic connections. We mean that a foliation I:F is a subsheaf of the 
tangent sheaf eM"' (r d n). We will show that the global foliation I:F 

(C,t)/T ' ' 

coming from isomonodromic deformations has the Painleve property, 
whose precise meaning will be defined in Theorem 7.1. 

Let us consider the universal covering map u: T----) T = M~,n· Note 

that u factors thorough the morphism u' : T ----) T'. Pulling back the 
fibration¢~ : RP~,T' ----> T' x An) in (61) by u', we obtain the fibration 

RP~ T' XT' T----> 'i', which becomes a trivial fibration as explained in 
Secti~n 4 in [1181]. This means that if we fix a point (C0 , t 0 ) E T there 
exists an isomorphism 

(76) 1l":RP~T' Xr,f'~Rpr(C t) xf' ' o, 0 
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which makes the following diagram commute. 

RP~T' XT' t 7r 
RP(co,to) X T ------> 

c::: 

(77) 
¢:;1 1p2x¢(co,to) 

T X A~n) ------> T X A~n). 

Fixing a E A~n), we set RP~ T' a = (¢~)- 1 (T' X {a}). From the mor
phisms (57) and (61), we also'h~ve the following commutative diagram: 

RP~,T',a XT' T 7ra 
RP(co,to),a X T ------> 

c::: 

(78) ¢;,,a 1 1P2 

T x {a} -----=-----. t. 
By using the isomorphism (78) we can define the smooth part of 

RP~,T',a Xr' T by 

where ( RP(ca,to),a) ~is the smooth locus ofRP(ca,to),a (cf. (73)). Note 

that for generic a the variety RP(co,to),a is non-singular, but for special 
a, RPr(C t ) a does have singularities (cf. [(72), Remark 6.1]). a, o , 

We also have the following commutative diagram 

(RP~,T',a XT' t)~ 7ra 
( RP(co,to),a) ~ X T ------> 

c::: 

(79) 
1 1P2 

T x {a} ------> T 

By using this isomorphism, for any fixed a E A~n), we define the set of 
constant sections 
(80) 

Isomd(T, ( RP~,T',a XT' t)~) = { cr: T ~ ( RP~,T',a XT' t)~, constant}. 

Note that by using the isomorphism (79), we have a natural isomorphism 

(81) Isomd(T, ( RP~,T',a XT' t/) ':::::' ( RP(co,to),a) ~ · 
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- ( -) ~ A section u E Isomd(T, RP~,T',a xT' T ) is called an isomonodromic 

section by trivial reason and its image u(T) is called an isomonodromic 
flow. 

Next, considering the pullback of 'Pr,n,d in (50) by T ___, T, we can 
obtain the family of moduli spaces of a-stable parabolic connections 

(82) ~ · M 0 T- A(nl(d) 
'Pr,n,d . (C,t)jT ___, X r . 

Fixing .X E A such that rh(.X) = a, we also obtain the restricted family 
overT x {.X} 

(83) 'P-;;:;;,>..: M~C,t),>..)jT ___, t X {.X}. 

Restricting the Riemann-Hilbert correspondence (68) to this space, we 
obtain the following commutative diagram 

M~C,t),>..)/T(r, n, d) 
RH.,. 

RP~raxrT ----+ , , 

(84) 4'~.>.1 1 </J';.,a 

T X {.X} 
Idxrh 

T x {a} ----+ 

Note that by Theorem 6.1 the morphism RH>.. gives an analytic resolu
tion of singularities. Set 

(85) (M~C,t),>..)/T(r, n, d))/ = RH_\ 1 ((RP~,T,a xr T)~), 
and 

(86) (M~C,t),>..)jT(r, n, d))) sing = RH_\ 1 ((RP~,T,a Xr T)sing). 

(Cf. (72), (73)). Then we have an analytic isomorphism 

(RH>..)~: (M~C,t),>..)jT(r, n, d)))~ ---=--. (RP~,T,a Xr T)~. 
Now we define: 
(87) 

Isomd(T, (M~c,t),>..)/i'(r,n,d)))~) = RH,X 1 (Isomd(T, (RP~,r,axrT)~)). 

Each section u E Isomd(T, (M~C,t),>..)fT(r, n, d))~) is called an isomon

odromic section on (M~C,t),>..)/T(r, n, d))~ and its image 

u(T) c (M~c,t),>..)/i'(r, n, d))~ 
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is called an isomonodromic flow. Note that since the Riemann-Hilbert 
correspondence (RH.x)" is a highly non-trivial analytic isomorphism, 
isomonodromic flows { a(T)} are not constant any more and it is known 
that they define highly transcendental analytic functions. 

From the morphism (83) restricted to (M((c,t),>.)/T(r, n, d))", we 
obtain the natural sheaf homomorphism 

~~. 

e 'Pr,n,d,>. -------- *(e ) O 
( ) a ----+ 'Pr n d >. - r ( ) a ----+ · 
M~C.i),>.)/T(r,n,d) ' ' ' I M~C,i),>.)/T(r,n,d) 

Then the set of all isomonodromic sections defines a sheaf homomor
phism 

(88) V.x:c.p~.x*(e:t)I(M"" _ -(r dJ)a----+8(M"" _ -( dl)a 
((C,t),>.)/T ,n, ((C,t),>.)/T r,n, 

which gives a splitting of the homomorphism 'P~>. *. The splitting 
(88) is algebraic, because the condition of isomonodromic flows given by 
the vanishing of the curvature 2-forms of the associated universal connec
tions. Since the exceptional locus for RH = U.x RH.x has codimension 
at least 2, by Hartogs' theorem, it is easy to see that this algebraic split
ting (88) can be extend to the whole family of moduli spaces, and we 
obtain an extended homomorphism 

(89) 

(90) 

V.x : 'P--;;:;;>. * (8r-) ----+ 8 M"" _ _ (r n d)· 
' ' ' ((C,t),A)/T ' ' 

Under the notation above, we have the following 

Definition 7 .1. 
sheaf 

(1) The foliation IF>. defined by the sub-

(2) 

IF.x = V.x(rr;;;:;;.x*(er-)) c 8M"" _ -(rnd) 
T ' ' ' ((C,t),A)/T ' ' 

is called an isomonodromic foliation on M((c,t),>.)/T(r, n, d). 

Let h : ~ ----+ T be a holomorphic embedding such that 
h(t) = (Ct, tt) for t E ~- A holomorphic map h : ~ ----+ 

M((c,t),>.)/T(r, n, d) such that 'P~>. o h = his called a IF .x

lift of h if his tangent to IF.x, that is, h*(8~) C IF.x. 

Lemma 7 .1. Let h : ~ ----+ T be a holomorphic embedding and h ~ 
~ ----+ M((c,t),>.)/T(r, n, d) a IF>. -lift of h. Then the image of RH.x oh 

lies in the image of a constant section a E Isomd(T, ( RP~,T',a XT' t) ). 
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Proof. Note that a lift ii of h corresponds to a !-parameter de
formation of a-stable parabolic connection under a deformation of n-

pointed curves associated to h : ~ ____... T. Since (M~C,t),.>.)/i'(r, n, d))~ 
is a Zariski dense open subset of (M~c,i),>.)/T(r, n, d)), we see that the 
curvature form vanishes on the IF-foliation defined on the total space 

(M~c,i),>.)/T(r, n, d)). Therefore if ii is a IF-lift of h, we can conclude 
that the deformation of connections is isomonodromic. Hence the asso
ciated representations of the fundamental group of Ct \ { tt} are constant, 
which means that RH.x(ii(~)) is contained in the image of a constant 

section of ( RP~,T' ,a XT' t) ____... T. Q.E.D. 

Now, we can show that the isomonodromic foliation is a differential 
system satisfying the Painleve property (cf. [Mal], [Miwa] and [IIS3]). 

Theorem 7.1. For any A E A~n)(d), the isomonodromic foliation 
IF>. defined on M~c,i),>.)/T(r, n, d) has Painleve property. That is, 

for any holomorphic embedding h : ~ ____... T of the unit disc ~ = 

{t E Clltl < 1} such that h(O) = (C, t) and x = (E, vr; {lii)h:-=:;i:-=:;n) E 

M~c,t),>.) (r, n, d), there exists the unique IF>. -lift 

ii : ~ ____... M~C,t),>.)/T(r, n, d) 

of h such that h(O) = x. 

Proof. Ifx E (M~c,t),>.) (r, n, d)) U, there is a unique isomonodromic 

section a: T ____... (M~c,i),>.)fi'(r,n,d))~ such that a((C,t)) = x. The 

holomorphic map ii = aoh: ~ ____... (M~C,t),>.)/T(r, n, d)) U is the unique 
IF .x-lift of h. 

( ) 
sing 

Let us consider the case when x E M~C,t),>.) (r, n, d) . Pulling 

back the commutative diagrams (84) and (78) via the embedding h : 
~ ____... T, we obtain the commutative diagram 

M~C,t),>.)f~ (r, n, d) 
11"aoRH,., 

RP(c0 ,t0 ),a X ~ 

(91) ~1 1P2 
~ 

Id 
~ ------+ 
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The restriction of the foliation IF>.. to M~C,t),>..)/ Ll. (r, n, d) deter

mines a vector field V>.. on M~C,t),>..)/Ll. (r, n, d) such that 'PLl..(v>..) = j]t 
where t is a coordinate of~. We will show that there exist a unique sec-

- - - a 
tion h: ~--+ M~C,t),>..)/Ll.(r,n,d) such that h(O) = x and h.( 8t) = V>.., 

which gives a IF >..-lift of h. Such a section h can be locally given by an 
analytic solution of the Cauchy problem of an ordinary differential equa
tion associated to the vector field V>... Such an analytic solution can be 
locally given by holomorphic functions oft on~' = { t E C I it!< f} for 

some 0 < f < 1. This gives a section h, : ~' --+ M~C,t),>..)jLl., (r, n, d) 
which is a IF >..-lift of h, = hiLl.,. Let f 1 be the supremum off such that 
a IF.>. lift of h, exists. The above argument shows that fl > 0. Now 
we will show that f 1 = 1. Assume the contrary, that is, f 1 < 1, and let 
h,, : ~,, --+ M~C,t),>..)/ Ll.,, (r, n, d) be the section over ~w 

Let Pl : RP(co,to),a x ~ --+ RP(ca,to),a be the first projection and 
consider the morphism 

Pl o 1ra o RH>..: M~C,t),>..)/Ll. (r, n, d)--+ RP(ca,to),a· 

( ) 
sing 

By definition of M~c,t),>..) (r, n, d) , the pointy= Pl on a oRH>..(x) 

is a singular point of RP(co,to),a and let 

( ) 
sing 

KLl.,y = (na oRH>..)- 1({y} X~) C M~C,t),>..)/Ll.(r,n,d) 

denote the exceptional locus dominated over {y} x ~. Then restricting 
(91) to KLl.,y, we have the following commutative diagram: 

(92) 

Id 
------f ~. 

From Theorem 6.1, we see that 7ra o RH>.. is a resolution of singularity 
of RP(ca,ta),a x ~' hence each fiber of c;;;;;:; : KLl.,y --+ ~ is compact. 

Now from Lemma 7.1, we see that h,, (~,) C KLl., ,y· Moreover since 

c;;;;;:; is proper, we see that h,, ( ~") C K Ll., ,y where ~,, = { t, It I ::::; f 1}. 
Take and fix t = b such that lbl =fl. Then 

h,, (b) = Yb E KLl., ,y C M~c,t),>..)/~(r, n, d) 

Starting from t = band Yb, we can extend the section h,, over ~(b, fb) = 
{t E ~lit- bl < fb} with 0 < fb::::; 1- fl. Again, from the compactness 
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of the fiber of ~ : Kt:.,y --+ ~, we can show that the minimum to of 
Eb for lbl = t 1 is positive, hence for t = t 1 +to the section h< exists and 
this contradicts to the fact that t 1 is the supremum and E1 < t. Q.E.D. 

Remark 7.1. Let us remark that the isomonodromic foliation IF>. 
on M~C,t),>.)/T(r, n, d) descends to a foliation on M~C,t),>.)/T' (r, n, d) 

under the covering map T --+ T', which we also denote by IF>.. Re
call that the isomonodromic section (81) is the constant section with 
respect to the isomorphism (76). Moreover, when the base point * E T' 
corresponds to ( C0 , to), the fundamental group 1!"1 (T', *) acts on the 
moduli space RP(ca,to) via the action to the generators of 7rl(Co \ 
D(t0 ), *'). Therefore, we can define the local isomonodromic sections 
for RP~ T' a' --+ T', which also defines a local isomonodromic sections 

for (M~c,~),>.)/T') ~ --+ T'. Now the set of local isomonodromic sec

tions determines a splitting homomorphism V.x like (89), and it defines 
an isomonodromic foliation 

which is obviously the descent of the original isomonodromic foliation 

on M~C,t),>.)/T' 
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