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Abstract. 

In this paper we present a survey of rigid geometry. Here, spe­
cial emphasis is put on the so-called "birational approach" to rigid 
geometry, which adopts classical methods of birational geometry to 
the theory of rigid spaces. The paper is divided into three parts. 
Part I is a general introduction to rigid geometry ala J. Tate and M. 
Raynaud. In Part II we are to overview the birational approach to 
rigid geometry, which combines the idea of Raynaud and that of 0. 
Zariski, as one of the conceptual starting points of rigid geometry. In 
Part III we discuss some applications, which reveal the effectiveness 
of the ideas in rigid geometry that arise from our viewpoint. 
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Part I. Classical rigid analytic geometry 

§1. What is rigid geometry? 

1.1. Introduction 

It is well-known that the field Q of rational numbers admits for any 
prime number p a so-called p-adic norm l·lp, and they together with 
the usual absolute value norm l·loo constitute the complete list of non­
trivial norms on Q up to equivalence. The completion of Q by the usual 
absolute value l·loo yields the field lR of real numbers, and its algebraic 
closure C, the field of complex numbers. These complete fields are at 
the bases of real and complex analytic geometries. As the absolute value 
norm is merely one of infinitely many possible norms on Q, it is only 
natural to imagine a similar realm of analytic geometries arising from 
p-adic norms. The completion of Q by the p-adic norm l·lp is the field Qp 
of p-adic numbers, and the p-adic counterpart of the field C of complex 
numbers, denoted by Cp, is the completion of the algebraic closure of 
Qp. Note that it is not simply the algebraic closure QP, since that turns 
out not to be complete with respect to the unique extension of the p­
adic norm. Assuming the existence of analytic geometry based on the 
complete fields Qp and Cp corresponding to real and complex analysis, 
one would, thus, finally arrive at the diagram starting from Q as in 
Figure 1. The vacant slot in the diagram is actually occupied by rigid 

Q 

R~~Q, 
I I 

Real-Complex 
analytic geometry ? 

Fig. 1. Dichotomy between real-complex world and p-adic 
world 
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geometry, 1 which provides a systematic theory for analytic geometry 
over complete non-archimedean valued fields, not only QP and eP. 

Table 1 shows points of similarity between the fields e and eP, which 
are considered to be important in the genesis of analytic geometry. As 

Table 1. C vs Cp 

e ep 

Algebraically closed Algebraically closed 

Complete with respect Complete with respect 
to absolute value l·loo to p-adic norm l·lv 

the table shows, eP is algebraically closed2 and complete. By complete­
ness one can speak of convergent power series and functions expressed 
by them, which are, as in complex analysis, the fundamental things to 
consider also in rigid analytic geometry. 

1.2. Why analytic geometry? 

But, already having nice analytic geometry on the real-complex side, 
why do we need to consider analytic geometry also on the p-adic side? It 
turns out that the reason mainly comes from number-theoretic consid­
erations. This is best explained in the context of uniformization, which 
is one of the useful techniques that reveal already in complex analytic 
geometry the true value of analytic methods. 

Let us first briefly recall complex analytic uniformization of elliptic 
curves: 

• regarded as a compact Riemann surface, an elliptic curve over 
e is realized as a quotient e; A, where A is a lattice in e of the 
form A= 27rH(Z+Z· T) forTE lHI = {z E e1Imz > 0}; 

• another way of analytic representation is provided by the quo­
tient ex _,ex jqz = ejA, where q = exp(27rHT), which 
factorizes the previously mentioned quotient map e -> e; A 
through the exponential mapping exp(.): e _, ex. 

Whereas rigid analytic geometry over eP fails to have an analogue 
of the first uniformization, it actually affords that of the second, the 
so-called Tate's uniformization, given by a quotient of the form e; _, 

1The reason for the adjective "rigid" will be explained later (cf. §2.4). 
2The non-trivial fact that Cp is algebraically closed is due to Krasner. 
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c; lqZ with q E C~, lqlv < 1, of which Tate was able to give an analytic 
description [41]. In fact, we have the Weierstrass p-function on c; 
defined by the usual (but transcribed by the coordinate change w = 
e21rv'=Tz) formula, which induces the following commutative diagram 

where the dashed arrow embeds c; lqz in IP'2 (Cv) onto a cubic curve. 
The analytic curve c; I qZ thus obtained is called a Tate curve. 

Remark 1.1. Contrary to the complex case, not all elliptic curves 
can be realized as Tate curves. It is known that an elliptic curve E over 
Cp is realized as a Tate curve if and only if lj(E)Iv > 1, where j(E) 
denotes the j-invariant of E; note that the last condition is equivalent 
to E having multiplicative reduction. 

Now we return to our first question: why do we need analytic geome-
. try on thep-adic side? Consider an elliptic curve E over Q. The complex 

analytic method tells us that the Riemann surface E(C) is a complex 
torus, and gives us several useful analytical and topological properties. 
On the p-adic side, on the other hand, assuming that there exists a 
prime pat which E has multiplicative reduction, we know that E(Qp) 
is written in the form Q; lqz (by the Qp-rational version of Tate's uni­
formization). This representation of E allows one to have a good grasp 
on rational points on E; for example, one is able to show at a glance 
that the torsion part of E(Q) is a finite group (Nagell-Lutz Theorem; 
this is, however not the way they proved it). 

One can therefore expect in general that for an algebraic variety X 
over a number field, rigid analytic geometry reveals number-theoretic 
information hidden behind X, and thus compensates for properties that 
complex analytic geometry fails to capture. This is the reason why rigid 
analytic geometry is useful. 

The Tate curve c; I qZ is our first example of a rigid analytic space, 
which will appear again and again in the sequel. Also for Tate, this curve 
was. actually the starting point that led him to discover rigid analytic 
geometry. In the next section, we will overview Tate's theory of rigid 
analytic geometry [40], and will see at the end (in Example 2.15) how 
the above picture is justified. 
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§2. Tate's rigid analytic geometry 

2.1. Non-archimedean valued fields 

The above-mentioned normed fields (Qp, l·lp) and (Cp, l·lp) are ex­
amples of so-called complete non-archimedean valued fields with non­
trivial valuation, which are one of the basic cornerstones of Tate's rigid 
analytic geometry. 

By a non-archimedean valued field we mean a pair (K, 1·1) consisting 
of a field K and a non-archimedean norm 1·1, that is, a mapping 1·1 : K ---+ 

~~o such that 

(1) lxl = 0 {==} x = 0; 
(2) lxyl = lxiiYii 
(3) lx + Yl ~ max{lxl, IYI}, 

for any x,y E K. The norm 1·1 is said to be non-trivial if IKxl # {1}. 
Finally, we need to assume that ( K, 1·1) is complete, that is, K is complete 
with respect to the norm 1·1· 

Example 2.1. Let V be a complete discrete valuation ring, and K 
its field of fractions. As usual, the field K comes with a discrete valuation 
v: K ---+ Z U { oo}, which induces the corresponding norm 1·1 v : K ---+ ~~0 
by the formula lxlv = e-v(x) for any x E K, where e is a real number 
withe> 1. Then the pair (K, l·lv) is a complete non-archimedean valued 
field with non-trivial valuation. 

The p-adic number field (Qp, l·lp) together with the p-adic norm is an 
example of this kind. Another such example is provided by (k((x)), l·lx), 
where k((x)) is the fractional field of V = k[[x]], the ring of formal 
power series over a field k endowed with the x-adic valuation. These 
are examples of complete discrete valuation fields, which the reader is 
invited to always bear in mind. 

Similarly to the construction of CP, the completion CK of the alge­
braic closure of the valuation field K from Example 2.1 is algebraically 
closed, and the resulting pair (CK, l·lv) provides another example of a 
complete non-archimedean valued field with non-trivial valuation. 

Notice that one can perform a similar construction as in Example 
2.1 starting from a valuation ring V of height 1 (but not necessarily 
discrete), that is, the fractional field K has a valuation of the form 
v: K---+ ~ u { oo }.3 

In the sequel of this section, K denotes a complete non-archimedean 
valued fields with non-trivial valuation. 

3For generalities of valuations, we refer to [7, Chap. VI] and [46, Chap. 
VI]. 
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2.2. Basic idea 

Tate modeled his rigid analytic geometry on the geometry of schemes 
in the sense that his rigid analytic spaces are constructed by gluing 
certain "affine" objects. As such objects are defined, like affine schemes, 
as certain spectra of rings of some kind, one can say that Tate's rigid 
analytic geometry belongs to the general trend of understanding spaces 
as spectra of rings, the historical origin of which can be traced back to 
Gelfand. A consequence of this is the seemingly strange-looking fact 
that Tate's rigid analytic geometry is better understood in analogy with 
classical algebraic geometry over a field k than with complex analytic 
geometry. 

Table 2. Comparison between algebraic geometry and rigid 
geometry (the italic-written items are explained in 
the text.) 

Algebraic geometry / k Rigid geometry / K 

Function Finitely generated 
Topologically finitely 

generated algebra A/ K 
algebra algebra A/k 

(called: affinoid algebra) 

Points Maximal ideals of A 
Maximal ideals of A 

(Naive) (with Zariski topology) 
(with admissible 

topology) 

Building Affine variety Affinoid 
block (Specm A, {jx) (SpmA, (Jx) 

The rings that rigid analytic geometry deals with, which in algebraic 
geometry correspond to finitely generated algebras over k, are the so­
called affinoid algebras,4 which are by definition topologically finitely 
generated algebras over K (cf. Definition 2.4). Similarly to algebraic 
geometry, Tate's rigid analytic geometry takes the maximal ideals of A 
as the spectrum. As a counterpart of Zariski topology, we have the so­
called admissible topology, which is, however, not a topology in the naive 
sense, but is actually a Grothendieck topology. 5 Finally, the maximal 

4In some literature, affinoid algebras are called Tate algebras. Here we 
follow the terminology of [5], where Tate algebra means affinoid algebra of a 
special kind; cf. Definition 2.3. 

5That one has to use a Grothendieck topology is a fatal drawback of Tate's 
theory, which makes the theory look extremely difficult. It is one of our aims 
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spectrum Spm A together with a suitably defined structure sheaf with 
respect to the admissible topology provides the basic building block 
of general analytic spaces in a similar way that varieties in algebraic 
geometry are constructed by gluing affine varieties. The building block 
thus obtained is called an affinoid. 

Remark 2.2. Notwithstanding the perfect looking comparison with 
algebraic geometry, there is in fact no a priori reason in rigid geometry 
why one should take maximal ideals as points, and one could even say 
that here lies a serious problem of Tate's approach. In fact, Tate's rigid 
analytic spaces in general are severely deficient in points, and it is for 
this reason that one has to use Grothendieck topology as the natural 
topology to think about. This mismatching of points and topology leads 
to several problems: for instance, points of Tate's rigid analytic spaces 
are not enough to detect abelian sheaves with respect to the admissible 
topology. 

As a matter of fact, there are many more approaches to rigid geom­
etry, including ours (which will be explained later), and one of the most 
important differences between these approaches lies in what to choose as 
points. Namely, the notion of points in rigid analytic geometry depends 
entirely on the way one approaches it. Thus one can say that it is only 
due to Tate's way of approaching rigid geometry that one takes maxi­
mal ideals as points. This means, in other words, that another choice 
of points would avoid Grothendieck topology. We will see that this is in 
fact the case. 6 

2.3. Affinoid algebras 

The most important example of affinoid algebras, which plays the 
role of polynomial rings in algebraic geometry, is the so-called Tate al­
gebra. 

Definition 2.3 (Tate algebra). 

of this paper to show that it is by no means essential to use Grothendieck 
topologies in developing rigid geometry. See Remark 2.2. 

6Here we would like to stress that, nevertheless, it is not our intension 
to defy Tate's approach; each approach has its own advantage and drawback. 
Rather, we believe that a good attitude is to have various approaches at one's 
disposal and to feel free in choosing one of them depending on the situation. 
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The similarity with the polynomial ring comes from the fact that 
the Tate algebra K((T1, ... , Tn)) is the K-algebra consisting of power 
series converging absolutely and uniformly on the closed unit polydisk 
{(z1, ... , Zn) E Kn llzil :S: 1 for 1 :S: i :S: n} in Kn. 7 Assume for sim­
plicity that K is algebraically closed. Then the set of all maximal ideals 
of K ((T1, ... , Tn)) coincides with the closed unit polydisk (this follows 
from the weak Nullstellensatz for affinoid algebras stated below). The 
corresponding affinoid is, therefore, underlain by this set. Table 3 shows 
the dictionary for comparison between the polynomial ring and the Tate 
algebra. 

Table 3. Polynomial ring vs Tate algebra 

Algebraic geometry I k = k Rigid geometry I K = K 

k[X1, ... ,Xn] K((X1, ... , Xn)) 

kn (z1, ... , Zn) E Kn 
with lzil :S: 1 

An 
k 

j[))n 
K 

affine space closed unit polydisk 

Basic properties. Here we list some basic properties of the Tate al­
gebra; one finds more in [5, Chap. 5]: 

• it is a K-Banach algebra endowed with the so-called Gauss 
norm: 

• it is Noetherian, and every ideal is closed with respect to the 
topology induced by the Gauss norm. 

Definition 2.4 (Affinoid algebra). An affinoid algebra is a K-algebra 
of the form 

A= K((T1, ... ,Tn))II 

for some n, where I is an ideal. This is a K-Banach algebra by the norm 
induced from the Gauss norm. 

7Note that this set is an open subset of Kn with respect to the metric 
topology. · 
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Among several basic properties of affinoid algebras, we mention the 
analogue of Noether's normalization theorem ([5, 6.1.2]): 

• (Noether's normalization theorem for affinoid algebras) for any 
affinoid algebra A over K there exists a finite injective K­
algebra homomorphism 

for some d 2: 0. 

By this we have the following property, which implies the functoriality 
of taking the maximal spectrum: 

• (Weak Nullstellensatz for affinoid algebras) for any maximal 
ideal m of A, the residue field Ajm is a finite extension of K. 

2.4. Wobbly topology 

For an affinoid algebra A we set Spm A to be the set of all maximal 
ideals of A. For any K -algebra homomorphism A ---+ B between affinoid 
algebras8 we have an induced mapping Spm B ---+ Spm A. As usual, any 
element f of A is regarded as a function on the set Spm A; since for any 
x E Spm A the residue field at x is a finite extension of K and thus admits 
a unique extension of the norm 1·1, one can put lf(x)l =If mod xl. For 
any f,g E A we set 

R(f,g) = {x E SpmAIIf(x)l::; lg(x)l}. 

As a subset of Spm A, we have 

R(f,g) = SpmA((X))/(gX- !), 

where A((X)) denotes the ring A0KK((X)). The ring A((X))/(gX- !), 
which is again an affinoid algebra, is often abbreviated as A((£-)). 

Definition 2.5 (Wobbly topology). The wobbly topology on the set 
Spm A is the topology having { R(f, g)} f,gEA as open basis. 

Example 2.6. Suppose for simplicity that K is algebraically closed, 
and consider IDK = Spm K ((X 1 , ... , Xn )) , which is identified as a set 
with the closed unit polydisk in Kn. Then one sees easily that the 
wobbly topology on IDK coincides with the topology induced from the 
metric topology on Kn (which is, as is well-known, totally disconnected). 

8 Any K-algebra homomorphism between affinoid algebras is automati­
cally continuous. 
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Difficulties. As Example 2.6 indicates, the wobbly topology is not 
such a good topology; for example: 

• Spm A with the wobbly topology is, in most cases, not quasi­
compact, which would be troublesome when one considers glu­
ing; 

• the presheaf R(f, g) f-+ A(( f)), which comes as the most natural 
candidate for the structure sheaf on Spm A, is in general not a 
sheaf. 

These difficulties come from the fact that the wobbly topology is some­
what too fine. Indeed, considering the sheafification of the above presheaf, 
we would get a ring of functions on Spm A that is much larger than A 
itself, which contradicts our basic requirement that A should be the ring 
of all "holomorphic" functions on Spm A. In other words, the wobbly 
topology leads to a very feeble notion of analytic functions. Hence, to 
obtain a reasonable theory of analysis, one has to "rigidify" the notion 
of analytic functions, 9 and, to this end, one wants to replace the wobbly 
topology with a more legitimate one. 

2.5. Admissible topology 

In 1961 Tate [40] overcame the above-mentioned difficulties by in­
troducing the so-called admissible topology. The admissible topology is, 
in short, a Grothendieck topology that is 

• weaker than the wobbly topology, 
• the strongest one that makes each R(f, g) quasi-compact. 

The actual definition is given as follows. 

Definition 2. 7 (Admissible site). Let 2lK be the category of affinoid 
algebras over K and K-algebra homomorphisms. For any object A of 
2lK, we denote by Spm A the same object considered as an object of the 
opposite category 2l~P. We define a Grothendieck topology on 2l~P as 
follows: a finite collection {Spm Ai ---+ Spm A hE I of morphisms in Qt~P 
is a covering of Spm A if and only if --

(1) each Ai is etale over A (see, for example, [17, §8.1] for the 
definition of etaleness); 

(2) Spm Ai ---+ Spm A is injective for each i and induces an isomor­
phism between the residue fields at each point of Spm Ai; 

(3) SpmA = UiEI SpmAi. 

We denote the resulting site by 2l':,~d. 

9This is the reason for the name "rigid" geometry. 
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Here is a typical example of coverings in the admissible site. Let A 
be an affinoid algebra over K, and fo, ... , fn E A elements of A such 
that (fo, ... , fn) = A. Set 

Then the collection {SpmAi -> SpmA}o<i<n is a covering in the site 
m-:,~d; for each i, the image of Spm Ai -~ Spm A is given as {X E 
Spm A llfi(x)l :2: lfJ(x)l for j =1- i}. Let us denote this covering by 
&f!(fo, · · ·, fn)· 

Theorem 2.8 (Gerritzen-Grauert). Any covering family {Spm Ai _, 
Spm A hEI in the site m':~d has a refinement to a covering of the form 
&f!(fo, ... , fn) for some fd, ... , fn E A. 

Another version of the Gerritzen-Grauert theorem will be stated in 
Corollary 6.21 below. 

Affinoids and general rigid spaces. For an affinoid algebra A over K, 
consider the presheaf O'spmA on the comma site (m':,~d)SpmA defined by 

The following theorem says that the admissible topology defined above 
is the good one in the sense that it gives rise to the correct notion of 
"holomorphic" functions. 

Theorem 2.9 (Tate's acyclicity theorem). The presheaf O'spmA zs 
a sheaf on (m':,~d)spmA with respect to the admissible topology. 

Definition 2.10 (Tate's rigid analytic space). (1) A representable 
sheaf on the site m-:,~d is called an affinoid. 

(2) A map fY' '----+ &: between affinoids is said to be an open immer­
sion if, identified with a morphism in the category m':p' it satisfies the 
conditions (1) and (2) in Definition 2.7. 

(3) A sheaf &: of sets on the site m':~d is called a (Tate's) rigid 
analytic space if there exists a surjective m~p of sheaves 

II ~ _____. :r, 
iEJ 

where ~ for each i E I is an affinoid, such that, for each i, j E J, the 
projection ~ x x '19j -> ~ is isomorphic to the limit of a filtered direct 
system {'PI'>. -> ~hEA of maps between affinoids such that all maps in 
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the commutative diagram for f..L ~ >. 

are open immersions. 

In other words, Tate's rigid analytic spaces are constructed by gluing 
affinoids. As the definition indicates, it allows non-separated or non­
quasi-separated gluing. 

Remark 2.11. In Tate's original approach, rigid analytic spaces are 
regarded as local ringed spaces with Grothendieck topology. 1° For ex­
ample, an affinoid is such a space isomorphic to the one given by the 
data (Spm A, .9'A, D'spm A) consisting of the set Spm A, the Grothendieck 
topology ._o/'A (equivalent to the admissible topology in our sense), and 
the sheaf of rings (essentially the same as the one that we have given 
above). General rigid analytic spaces are obtained by gluing these spaces 
with respect to what is called the strong topology. This viewpoint of rigid 
analytic geometry is surely useful. But one has to be careful, since, as we 
have already seen in Remark 2.2, the point set SpmA is not the correct 
"underlying set" for the affinoid Spm A. 

In the sequel, for brevity and conformity with the usual notation, 
we denote the afflnoid Spm A simply by Spm A. 

2.6. Examples 

Example 2.12 (Annulus). An annulus is an affinoid that is, if K 
is algebraically closed, supported on the set 

{z E Kllal ~ lzl ~ lbl} 

with a, b E K. The corresponding affinoid algebra is given by 

K((~, *)) = K((X, Y))/(XY- %). 

Note that, since it is an affinoid, it is quasi-compact. 

In general, a rigid analytic space is said to be quasi-compact if it has 
an admissible covering consisting of finitely many affinoids. 

10See [5, 9.1] for what "Grothendieck topology" means here. 
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Example 2.13 (Affine line). An affine line A:}{an in rigid analytic 
geometry is realized as, for example, the limit of concentric closed disks, 
each of which is an affinoid: 

A:}{an = ~SpmK((anz)), 
n2:1 

where a is an element of K with lal < 1. This of course reflects the 
equality 

K = U l!J)(O, lai-n), 
n2:1 

where l!J)(O, r) = {z E K llzl :::; r}. The affine line A:}{an is not quasi­
compact. 

Example 2.14 (Multiplicative group). Let a E K be as above. The 
multiplicative group K x is regarded as the union of countably many 
annuli: 

Kx U {z E K I lain:::; lzl :::; lai-n} 
n2:1 

U {z E K llaln+l :::; lzl:::; lain}. 
nEZ 

Taking up, for example, the latter description, one defines 

!G':::_,K = UnEZ Spm K (( anz+ 1
' a";,)). 

This is again a rigid analytic space that is not quasi-compact. 

Example 2.15 (Tate curve). The last description of the rigid ana­
lytic multiplicative group !G':::_ K allows one to display the analytic struc­
ture of the Tate curve disc~ssed in §1.2. For q E K with lql < 1, 
the Tate curve is given by !G':::_ K I qz. In order to describe an analytic 

covering, take a E K such that lalk = lql for some k 2:: 2 and the an­
alytic covering !G':::_,K = UnEZ An considered in Example 2.14, where 

An = Spm K (( anz+ 1
, azn )) . Multiplication by q maps each An isomorphi­

cally onto An+k· Thus, !G':::_,Kiqz is written as the union of k annuli, 
glued together by identifying the "exterior" boundary component with 
the "interior" boundary component of another one. In particular, it is 
a quasi-compact rigid analytic space. 

As mentioned at the end of §1, one of Tate's goals in formulating 
rigid analytic geometry was to give a legitimate way of regarding c; I qz 
as an "analytification" of an elliptic curve. This was done in the last 
example. 
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§3. Raynaud's approach to rigid geometry 

3.1. Formal models of affinoids 

The moral basis of the p-adic counterpart of real-complex analytic 
geometry, leading to the saga of Tate's theory of rigid analytic geometry, 
was, as we have seen in §1.1, the similarity between the complex number 
field C and its p-adic counterpart Cp, as listed in Table 1. Now we change 
our view to the completely opposite direction, and rather pay attention 
to differences between C and Cp. The most important difference is that 
Cp has, while C does not, the subring consisting of integral elements, 
that is, elements of norm ::; 1 (Table 4). Similarly, any affinoid algebras, 

Table 4. C vs Cp (continued) 

,ll integer ring :J integer ring 

unlike function algebras in real-complex analysis, have a "model" over 
the integer ring. This observation, however simple it might look, is the 
starting point of Raynaud's approach to rigid analytic geometry, which, 
as we will see, leads to a bold shift of viewpoint. 

Situation. In the sequel of this section we work in the following 
situation: 

• V is a valuation ring of height 1 that is complete with respect to 
the a-adic topology for an element a belonging to the maximal 
ideal mv; 

• we set K = Frac(V) (the field of fractions), which has the a­
adic norm 1·1 and is complete with respect to the metric topol­
ogy induced from this norm. 

Note that a valuation ring V of arbitrary height is a-adically sepa­
rated if and only if V[~] is a field (and hence coincides with Frac(V)). 

Example 3.1. The typical example is provided by a complete dis­
crete valuation ring V with 1r-adic topology, where 1r is a generator of 
the maximal ideal ( uniformizer). The corresponding norm 1·1 on the 
fractional field K coincides with the one as in Example 2.1 up to equiv­
alence. 

In this situation, for any topologically finitely generated V-algebra 
A, we obtain an affinoid algebra 
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over K. Here, a V -algebra A is said to be topologically finitely generated 
if it is a quotient by an ideal of an algebra of the form V((X1, ... , Xn)), 
the a-adic completion of the polynomial ring V[X1, ... , Xn]· 

In general, let .91 be an affinoid algebra over K. A formal model of .91 
is a topologically finitely generated V-algebra A such that AK = A!Zlv K 
is isomorphic to .91 as a K-algebra. If, in addition, A is flat over V, or 
what amounts to the same, A is a-torsion free, then we say that A is 
a distinguished (or flat) formal model of .91. For example, the alge­
bra V ((X 1, ... , Xn)) is a distinguished formal model of the Tate algebra 
K((Xb ... , Xn)). Any affinoid algebra has a distinguished formal model; 
indeed, if it is given as K ((X1, ... , Xn)) /I with I = (11, ... , fr) finitely 
generated (recall that the Tate algebra is Noetherian), by multiplying 
each /i with a power of a, one can assume fi E V ((X 1. ... , Xn)) and 
then A/Aa-tor, where A= V((Xl, ... ,Xn))/(/l, ... ,Jr), gives a desired 
formal model. 

Remark 3.2. It is known that, if a topologically finitely generated V­
algebra A is flat, then it is actually topologically finitely presented ([6]). 
As it is also known that any finitely generated ideal of V((Xb ... , Xn)) 
is closed with respect to the a-adic topology (i.e. the Artin-Rees lemma 
is valid for finitely generated ideals; cf. [18]), any topologically finitely 
generated flat V -algebra is complete with respect to the a-adic topology. 

3.2. Raynaud's functor 

Let X = Spf A be an affine flat formal scheme of finite type over 
Spf V, where V is considered with some a-adic topology. Then, as we 
have seen, AK = A!Zlv K is an affinoid algebra, and thus we can consider 
the corresponding affinoid XK = SpmAK over K. This correspondence 
X f--4 XK is globalized in the following way. 

Consider the localization A{f} by an element f E A, that is, the 
a-adic completion of At· Note that we have11 

Au}= A((X))/(JX -1). 

Therefore, the corresponding affinoid Spm(A{f})K is nothing but R(1, f) 
(cf. §2.4), an admissible open subset of SpmAK with respect to the 
admissible topology. Hence, by patching, one obtains a functor 

11 Indeed, while the a-adic completion of A ((X))/ (f X - 1) obviously co­
incides with Au}, as we have mentioned in Remark 3.2, A((X))/(JX- 1) is 
already complete, whence the equality. 
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from the category of coherent ( = quasi-compact and quasi-separated) 
flat formal schemes of finite type over V to the category of Tate's rigid 
spaces over K ([37]). This functor is called the Raynaud functor, and 
the rigid space XK associated to X is the Raynaud generic fiber of X. 
Put in the other way, when a rigid space !!£ is isomorphic to XK for a 
flat formal scheme X as above, we say that X is a (distinguished) formal 
model of !!£. 

Note that, by the definition of the functor, if X has an affine covering 
X= uiEI ui, then we get an admissible covering XK = uiEI Ui,K· Let 
us call this covering of XK the admissible covering induced from the 
affine covering {Ui}iEI of X. 

Example 3.3. Let V be as in Example 3.1, and consider a semi­
stable curve E ____. Spec V such that the generic fiber Ery is an elliptic 
curve over K, and that the closed fiber Eo is the union of non-singular 
rational curves arranged as type Ik in Kodaira's classification. Consider 
the formal completion E along the closed fiber E 0 . It admits the affine 
covering E = u~=l Un, where each Un = Spf v (( 7l"nz+l, 1l"zn )) is isomorphic 

to SpfV((X, Y))/(XY- n). The corresponding rigid space If? = EK 
is the Tate curve, which has the induced admissible covering Un,K = 

SpmK((7l"n2+1
, 7l"zn)). Note that this rigid analytic space If?, as well as the 

admissible covering, is nothing but the one we have already described in 
Example 2.15. 

3.3. Zariski topology vs admissible topology 

Needless to say, there may be many choices of formal models for 
a given rigid space, and this diversity of choice is, in fact, reflected in 
diversity of choice of admissible coverings of the rigid space. To see this, 
let us first establish a typical change of formal models. 

Admissible blow-up. Let X be a formal scheme of finite type over 
V. An admissible ideal is a quasi-coherent open ideal / of {jx of finite 
type. For an admissible ideal /, the admissible blow-up along / is the 
morphism of formal schemes 

where Xk = (X,(Jx/ak+l(Jx). If, for instance, X= SpfA is affine, 
then / is of the form 12 Jf1 for a uniquely determined finitely generated 

12Here we followed the commonly used notation as in [EGA, Inew, 
(10.10)]. 
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ideal J of A that contains a power of a, and the admissible blow-up 
X' ---+ X is nothing but the a-adic completion of the usual blow-up 
Y' = Proj ffin~O Jn ---+ Y = Spec A. 

Example 3.4. Consider X= SpfV((z)). The corresponding rigid 
space XK is the "closed unit disk" ll}k = SpmK((z)). Consider the 
admissible ideal J = (X,a) of V((z)). The admissible blow-up X' 
along J is the union of two affine subsets U = Spf V (( ~ )) and W = 
SpfV((z, ~)) = SpfV((z,w))/(zw- a). The resulting rigid space X~ is 
therefore covered by two admissible open subsets UK = Spm K (( ~ )) and 
WK = SpmK((z, ~)); UK is again a closed disk but having a different 
radius equal to Ia I, and W K is a closed annulus "{ z E K II a I ~ lzl ~ 1 }". 
Thus the rigid space X~ is isomorphic to XK. The difference is that, 
while XK was considered as rigid space by the trivial covering (the cov­
ering by itself), X~ has the non-trivial induced covering {UK, WK }. 

As indicated in Example 3.4, whereas an admissible blow-up does 
not change the Raynaud generic fiber, viz. for a coherent ( = quasi­
compact and quasi-separated) flat formal V-scheme of finite type X and 
an admissible blow-up X' ---+ X we have X~ = XK, it replaces the 
admissible covering by a refinement. Raynaud's very important insight 
is that this fact is the key point for comparing admissible topology and 
Zariski topology. 

Consider, for example, the affine case X = Spf A, and let U be a 
quasi-compact open subset of an admissible blow-up X' of X: 

U~X' 

~ 
X. 

Then we have the open immersion 

UK~SpmAK 

identifying UK with a quasi-compact open subset of Spm AK with re­
spect to the admissible topology. Due to the Gerritzen-Grauert theorem 
(Theorem 2.8), the open subsets of the form UK constructed as above 
constitute an open basis for the admissible topology. Thus one can re­
cover the admissible topology on XK from the Zariski topology of formal 
models. The important fact is that, in order to recover the admissible 
topology, one has to vary the formal model. 

3.4. Raynaud's viewpoint 
The important point of the above observation is that it explains the 

admissible topology entirely in terms of formal models. Based on this, 
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we can now illustrate Raynaud's viewpoint of rigid analytic geometry; 
this is itemized as follows: 

• from this viewpoint, rigid analytic geometry in totality is in­
duced from a geometry of "models" (Figure 2); 

• as the geometry of models, Raynaud suggests geometry of for­
mal schemes over valuation rings. 

Geometry of 
models 

Rigid analytic 
geometry 

Fig. 2. Raynaud's viewpoint 

For instance, if K is the fractional field of a complete discrete valuation 
ring V, then theorems in rigid analytic geometry over K should follow 
from theorems in formal geometry over V, already stated in [EGA, III, 
§4, §5]. 

In practice, this program goes along the following thread. Starting 
from a coherent formal scheme X of finite type over V, we obtain the 
rigid analytic space !1: = XK over K, whose topology, points, and 
structure sheaf are characterized as follows. 

• Topology: a quasi-compact admissible open subset of !1: is of 
the form IP/ = UK where U is a quasi-compact open subset of 
an admissible blow-up X' of X; 

• Points: 

!r(K) 

IP/(K) 

{sections SpfV-+ X}, 

{sections that factors through U}; 

• Structure sheaf: when U = Spf A, then r( IP/, fJ :JC) = AK. 
This viewpoint culminates in the following theorem. 

Theorem 3.5 (Raynaud 1972 [37]). The Raynaudfunctor X~---+ XK 
gives rise to the categorical equivalence 

{ 
Coherent formal} { Coherent rigid } 
schemes of finite ~ analytic spaces of . 

type over V I {Admissible} finite type over K 
blow-ups 
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Here the left-hand category is the quotient category, that is, the category 
consisting of the same objects as the category of coherent formal schemes 
of finite type over V but of arrows with all admissible blow-ups inverted. 

Remark 3.6. (1) The objects in the right-hand category are defined 
a priori by "patching affinoids" (cf. Definition 2.10). The equivalence 
shows that this patching turns out to be equivalent to, so to speak, 
"birational patching" (birational up to admissible blow-ups). This in­
vokes a birational viewpoint in rigid geometry, which will play a very 
important role in our approach (to be explained) to rigid geometry. 

(2) Let us briefly mention something about the proof of Theorem 
3.5. There are two important ingredients: 

• existence of formal birational patching, 
• comparison of topologies. 

The last point was already mentioned in connection with the Gerritzen­
Grauert Theorem. 

3.5. Significance of Raynaud's viewpoint 

Perhaps the most significant aspect of Raynaud's viewpoint (and 
Raynaud's theorem) lies in the shift from "analysis" to "geometry". 
To be more precise, whereas Tate's rigid analytic geometry is moti­
vated by "analysis" over non-archimedean fields, Raynaud's approach 
starts totally differently, namely from formal "geometry," and is devel­
oped entirely as a geometric theory with seemingly no flavor of analysis. 
Consequently, contrary to Tate's rigid analytic geometry, which aims at 
something similar to complex analytic geometry, Raynaud's approach 
forces one to think that rigid geometry is entirely not similar to complex 
analytic geometry. 

§4. Our approach: brief announcement 

In the next part, we are to exhibit our approach to rigid geometry, 
which is different both from Tate's and Raynaud's approaches. Our 
General Policy is the following. 

General Policy: rigid geometry is a hybrid of formal geome­
try and birational geometry. 

There is little doubt that our approach has been largely influenced by 
Raynaud's approach. But, nevertheless, it differs much from Raynaud's 
in how to deal with birational geometry, on which our approach puts 
much more stress. For the general treatment of birational geometry, we 
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will take up Zariski's classical idea that deals with the so-called Zariski­
Riemann spaces as its foremost objects. Schematically shown, our ap­
proach is an "amalgam" of Raynaud's approach and Zariski's classical 
approach to birational geometry (Figure 3). 

Raynaud's 
approach + 

Fig. 3. Our approach 

Zariski's 
classical idea 

For this reason, we will start the next part of this paper with a brief 
recap of birational geometry from Zariski's classical viewpoint. 

Part II. Birational approach to rigid geometry 

Part II consists of two sections. In §5 we describe some birational 
geometry in the spirit of Zariski's classical viewpoint. What we do in this 
section is a preparation for the next section, §6, where we will outline 
our approach to rigid geometry. 

§5. Birational geometry from Zariski's viewpoint 

5.1. Basic Question: Extension problem 

Throughout this section we work in the following situation: 

• S: a coherent scheme, 
• .Jf = .JfD: a quasi-coherent ideal sheaf of finite type such that 

U = S \Dis a dense open subset of S, where D = V(.Jf). 

Here a scheme is said to be coherent if it is quasi-compact and quasi­
separated.13 Note that, as the ideal sheaf .JfD is of finite type, the open 
subset U is quasi-compact. 

The basic problem we are concerned with is of the following type. 

13Coherent schemes are the analogue of compact Hausdorff topological 
spaces in the category of schemes. 
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Fig. 4. Situation for the extension problem 

Problem 5.1 (Extension problem). Let P be a property of mor­
phisms (e.g. P ="fiat"). Let fu: Xu-+ U be a morphism of schemes 
of finite presentation with the property P. Suppose there exists at least 
one morphism f : X -+ S such that f x s U = fu. Then, can one find 
such an f that satisfies the property P? 

This problem may have a trivial solution; for instance, if P ="flat", 
then f = j o fu, where j: U -+ S is the open immersion, gives a solution. 
Such a solution is, needless to say, not the one we want to have. We like 
to find a "good" solution. However, if we like to clarify what "good" 
means, we find that the problem itself is not well-posed (or, say, not 
reasonable). For instance, if, trying to make the problem well-posed, we 
put P ="proper and flat" , then a moment thought immediately gives 
a negative answer in practically important cases (e.g. family of curves 
over a surface S with D a normal crossing divisor), and hence we find 
that the problem in this case is not reasonable. 

5.2. Admissible modifications and modified extension prob­
lem 

In order to make the extension problem more reasonable, one needs 
to allow birational changes of S that preserve the dense open part U. 
Thus we are naturally led to the following notion. 

Definition 5.2 (U-admissible modification). (1) A U-admissible 
modification of S is a diagram 

such that the vertical arrow is proper and the other arrows are open 
immersions onto dense open subsets (hence the vertical arrow is bira­
tional). 
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(2) A morphism between two U-admissible modifications S' ----> S 
and S"----> Sis an S-morphism S'----> S". 

U-admissible modifications constitute the category MD(s,u), which 
is cofiltered; indeed, for two U-admissible modifications S' ----> S and 
S" ----> S one constructs the diagram in MD(s,u) 

S"' 

/~ 
S' S" 

' 
where S"' is the closure of the image of the diagonal mapping U "---' 
S' xs 8". 14 

The following special class of U-admissible modifications will be of 
particular importance. 

Definition 5.3 (U-admissible blow-up). A U -admissible blow-up of 
S is a blow-up S' ----> S whose center is given by a quasi-coherent ideal 
/ of {j s of finite type such that the corresponding closed subscheme 
V(/) is set-theoretically contained in D, or what amounts to the same, 
there exists a positive integer n such that ,yrp; ~ /. 

Here is an example: when S =Spec A is affine, and D = V(I), then 
aU-admissible blow-up is given by 

S' = Proj EBn::::o Jn ----> S, 

where J is a finitely generated ideal of A that contains Jk for some k > 0. 
We denote by BL(s,u) the full subcategory of MD(s,u) consisting 

of U-admissible blow-ups. To state the modified extension problem, we 
need yet one more concept. 

Definition 5.4 (Strict transform). Let S' ----> S be a U-admissible 
modification, and f: X ----> S an S-scheme. The strict transform f': X' ----> 

S' of f is the S' -scheme defined by the commutative diagram 

where the map X'"---' Xs' is the closed immersion given by dividing out 
,yr v- torsion. 

14The scheme S"' might be called the join of S' and S". 
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Having these notions on birational changes of schemes, we can now 
state the desired "modified" version of our basic question that we are 
going to consider. 

Problem 5.5 (Modified extension problem). Let fu: Xu ---' U be 
a morphism of finite presentation that satisfies the property P. Suppose 
an extension f: X ---' S of fu on S, that is, a morphism such that 
f x s U = fu, is given. Then, can one find a U -admissible modification 
( resp. blow-up) S' ---' S such that the strict transform f': X' ---' S' off 
satisfies P? 

5.3. Flattening theorem 

Problem 5.5 in the case P ="flat" is the so-called flattening problem, 
and was affirmatively solved by Raynaud and Gruson [38]. 

Theorem 5.6 (Raynaud-Gruson 1970 [38]). Let f: X ___. S be a 
morphism of finite presentation such that f x s U: X x s U ---' U is flat. 
Then there exists a U -admissible blow-up S' ---' S such that the strict 
transform f': X' ---' S' is flat of finite presentation. 

Among many valuable corollaries of this theorem, we refer to the 
following one. 

Corollary 5.7 ([38, (5.7.12)]). The full subcategory BL(s,u) is co­
final in the category MD(s,u). 

Remark 5.8. Here a few remarks on the flattening theorem are in 
order. 

(1) The theorem is entirely clear in case S = Spec V where V is a 
discrete valuation ring. Indeed, in this case, one can take as S' ---' S 
the identity map S' = S, and thus the strict transform X' is the closed 
subscheme of X given by dividing out V -torsions. 

(2) More generally, if S = Spec V where V is a (not necessarily 
discrete) valuation ring, then flatness of a similarly defined X' is clear 
by the same reasoning, whereas the finite presentation of f' is rather 
difficult to show. 

5.4. Revival of Zariski's idea 

In the rest of this section we are going to outline the proof of Theo­
rem 5.6. The proof that we are going to present here is not the one in [38], 
but is done by Zariski's classical idea, which Zariski invented in order to 
apply it to the resolution of singularities of algebraic surfaces [44]. The 
keystone of Zariski's argument is the so-called Zariski-Riemann space, 
and the most crucial point of the proof is its quasi-compactness. 



350 K. Fujiwara and F. Kato 

Definition 5.9 (Zariski-Riemann space; cf. [44][45]). 

(U)cpt = lim 
f--

S' ) 
S'EBL(s,U) 

where the projective limit is taken in the category of local ringed spaces. 

Let us say that an ideal ,/ of ffs is admissible if it is quasi-coherent 
of finite type and the corresponding closed subscheme V(,/) is set­
theoretically contained in D. Then U-admissible blow-ups are exactly 
the morphisms of the form Proj EBn>O ,/n ----+ S by an admissible ideal 
,/. Hence the projective limit in Definition 5.9 is regarded as the filtered 
projective limit taken along the directed set of all admissible ideals with 
the ordering :::; defined as follows: ,/ 2:: ,/' if and only if there exists an 
admissible ideal ,/ 11 such that ,/ = ,/ ',/ 11 • This justifies Definition 
5.9, for the category of local ringed spaces is closed under filtered projec­
tive limits. Note that the Zariski-Riemann space thus defined generalizes 
the so-called abstract Riemann surface, the introduction of which traces 
back to Dedekind-Weber in the 19th century, for if S is a regular curve 
then we have (U)cpt = S. 

Points. Let x E (U)cpt· The point x is, by definition, a compatible 
system of points {xs' }s'EBL<s.u) with xs' E S' for any S' E BL(s,U)· 

• The topological space (U)cpt contains U. If x E U, then the 
corresponding points xs' lie in the common U, and all of them 
are equal. 

• If on the other hand x tj_ U, then the system { xs'} is described 
in terms of a valuation ring15 as follows: there exists a valuation 
ring Vx (of height 2:: 1) and a map a:: Spec Vx ----+ S of schemes 
mapping the closed point to xs and the generic point to a point 
in U. For any U-admissible blow-up S' ----+ S, by the valuative 
criterion of properness, one has a unique arrow a:': Spec Vx ----+ 

S' such that the resulting triangle 

commutes. The point xs' is the image of the closed point by 
a:'. 

15See, for example, [46, Chap. VI] and [7, Chap. VI] for basics of valuation 
rings. 
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Local rings. The local rings of the structure sheaf tJ(U)cpt are best 
described by the following notion. 

Definition 5.10. Let A be a ring, and I a finitely generated ideal. 
The ring A is said to be I -valuative if any finitely generated ideal J 
of A that contains Jk for some k > 0 (called an I -admissible ideal) is 
invertible. 

In case A is a local ring, then A is !-valuative if and only if I is a 
principal ideal I = (a) generated by a non-zero-divisor a E A and every 
!-admissible ideal is principal. 

Proposition 5.11. (1) Let A be a local ring, and I= (a) a principal 
ideal generated by a non-zero-divisor a E A. Set J = nn>l In. Suppose 
A is I -valuative. Then: -

(a) B = A[~] is a local ring, and V = A/ J is a valuation ring, 
which is a-adically separated, where a= (a mod J); 

(b) A = {! E B I(! mod mB) E V}, where mB is the maximal 
ideal of B; 

(c) J=mB. 

(2) Conversely, if B is a local ring and V is an a-adically sep­
arated valuation ring for some non-zero a E V such that the frac­
tional field of V coincides with the residue field of B, then the sub ring 
A = {! E B I(! mod mB) E V} is an !-valuative local ring for any 
finitely generated ideal I such that IV = (a), and B = A[~]. 

Proposition 5.11 shows that an !-valuative local ring is a "com­
posite" of a local ring and a valuation ring. The following proposition 
follows from basic properties of U-admissible blow-ups, and is easy to 
verify. 

Proposition 5.12. For any point x E (U)cpt the local ring tJ(U)cpt,x 
is an (Y'vtJ(U)cpt,x)-valuative ring. 

For Ax = tJ(U)cpt,x' we set Bx =Ax[~] (where Ix = Y'vtJ(U)cpt,x = 
(a)) and Vx = Axflx, where lx = nn>l 1:;. The local ring Bx is a local 
ring on U, and the valuation ring Vx is the one that describes the point 
x = {xs' }S'EBL(s,uJ as above. In other words, each local ring of (U)cpt 
is a "composite" of a valution ring and a local ring of U. 

Note that the above description of points and the local rings is es­
sentially due to Zariski's original description of Zariski-Riemann space, 
which Zariski originally introduced not by projective limit of varieties, 
but as a certain space of places. 
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Remark 5.13. Notice that the valuation rings Vx that appear in the 
above context are not necessarily of height 1 even if the scheme S is 
Noetherian (e.g. an algebraic variety over a field). This is exactly the 
reason why valuation rings of higher height need to be considered in 
Zariski's argument. See Table 5 for the classification given by Zariski 
[44] of possible valuations that appear on algebraic surfaces. 

Table 5. Valuation rings on algebraic surfaces 

Height Rational rank 

0 0 trivial valuation 

1 1 divisorial 

non-divisorial 

2 non-divisorial 

2 2 composite of two divisorial valuations 

Intuitive description. Recall that the set of ideals of a valuation 
ring V is totally ordered by the inclusion order. In particular, the spec­
trum Spec V consists of points that are linearly configured as depicted 
in Figure 5. It can therefore be understood as a "long curve" 16 with 

··-.... ·---4•t- 0 0 0 0 0 0 0 0 .......__..... 

~ mv 

Fig. 5. Spectrum of valuation ring 

the extremities (0), the generic point, and mv, the closed points. Each 
point is the specialization of points sitting on its left (in the figure), and 
the generalization of points sitting on its right. In the finite height case, 
the height is the number of points minus one. 

It is, therefore, appropriate to say that (the image of) a map Spec V --+ 

S of schemes from a valuation ring is a "long path" in S. Intuitively, 
from what we have seen above in the description of points, one can say 

16The adjective "long" indicates that it might be of large height. 
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that the space (U)cpt is like a "path space." More precisely, we have a 
set-theoretical decomposition 

(U)cpt = U II Tl!;;s' 

where TJ!y18 is the set of all "long paths" that pass through D, or is, so 

to speak, an analogue of a tubular neighborhood17 of DinS; see Figure 
6. 

Fig. 6. Set-theoretical description of (U)cpt 

5.5. Quasi-compactness 

The space (U)cpt, being defined as the projective limit of all U­
admissible blow-ups, would seem fairly gigantic. The following theorem, 
which turns out to be ineffably important, says that it is actually not. 

Theorem 5.14 (Zariski 1944). The space (U)cpt is quasi-compact. 

This theorem played one of the most essential roles in Zariski's 
proofs of resolution of singularities on algebraic surfaces ( cf. §5. 7) and 
Abhyankar's proof for three-folds. Also in our proof of the flattening 
theorem, quite similarly, this plays a very important role. The proof 
of Theorem 5.14 is by no means technical, but rather, one can say, the 
quintessence lies in a general principle applicable to a much wider situ­
ation. 

One way of proof relies on the fact that the (2-categorical) filtered 
projective limit of coherent topoi with coherent transition maps is again 
coherent [SGA4-2, Expose VI], which confers with the well-known fact 
that the filtered projective limit of compact Hausdorff spaces is again 
compact Hausdorff. Applying Deligne's theorem on the existence of 
points for locally coherent topoi, one shows the theorem. 

17It might be more precise to say deleted tubular neighborhood. 
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A more handy way is provided by Stone's representation theorem, 
which asserts that the category of coherent topological spaces18 and 
quasi-compact maps is categorically equivalent to the opposite category 
of unital distributive lattices (cf. [24]). As the latter category is closed 
under filtered direct limit, the theorem follows immediately (a minor 
point that should be confirmed here is that the direct limit taken in the 
category of topological spaces is equal to the one taken in the category 
of coherent topological spaces and quasi-compact maps). 

In both proofs, the most important point is the following fact (ex­
istence of points): the filtered projective limit of non-empty coherent 
spaces with coherent transition maps is non-empty. An extensive use 
of this fact verifies the finite intersection property for open coverings, 
whence the quasi-compactness as desired. Notice that the above two 
ways of the proof are not entirely different from each other, and both 
arguments actually prove coherence, not only quasi-compactness. 

5.6. Outline of the proof of Theorem 5.6 

Now we can outline the proof of Theorem 5.6. The idea of the proof 
is the following. 

Idea: reduction to the case of "long curves" Spec V by means 
of quasi-compactness of Zariski-Riemann space. 

This can be regarded as a "curve-cut" technique, which is quite often 
employed in algebraic geometry. In this sense, one can say that our 
approach is a quite geometric one. 

First step. Observe first that the theorem is true for long curves 
S = Spec V, where V is a valuation ring. As we have mentioned in 
Remark 5.8, the flattening theorem in this case is not easy, whereas the 
"flattening part" (without finiteness property) is trivial. The proof of 
the finiteness part has a quite different flavor from the other part; first, 
using composition of valuation rings, we reduce to the case of height 1, 
and then employ Grabner basis arguments to show the finiteness. We 
omit the details here, and proceed to the general case, assuming the 
validity of the theorem in this case. 

Second step. Observe next that the theorem is true for S = Spec A, 
where A is the local ring at a point of (U)cpt· Here we use the fact that 
the ring A is !-valuative, and the assertion follows from the previous 

18 A sober topological space is said to be coherent if it is quasi-compact, 
quasi-separated (i.e., the intersection of finitely many quasi-compact open 
subsets is quasi-compact), and has an open basis consisting of quasi-compact 
open subsets. Notice that this condition is equivalent to that the associated 
topos is coherent in the sense of [SGA4-2, Expose VI]. 
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step, the assumption that f is flat on U, and patching of flatness, where 
"patching" means composition in the sense of Proposition 5.11. 

Third step. By the previous steps and the fact that the property 
P ="flat" is locally finitely presented, one deduces that the assertion is 
true locally on (U)cpt 1 that is, for any point x E (U)cpt, there exists an 
admissible blow-up S' --+ S and a quasi-compact open subset Ux of S' 
such that 

• Ux contains the image of x by the projection (U)cpt --+ S'; 
• !'lux is flat and finitely presented, where f': X' --+ S' is the 

strict transform of f. 
Here we have tacitly used the following extension of admissible ideals. 

Proposition 5.15. LetT c S be a quasi-compact open subset of 
S, and f an admissible ideal on_! (with respect to~ = U n T). Then 

there exists an admissible ideal f on S such that f lr = f. 

Fourth step. Finally, by quasi-compactness (Theorem 5.14), the as­
sertion follows by birational patching. More precisely, there exist finitely 
many points Xi (i = 1, ... 'n) such that (U)cpt = u~=l Pi 1 (UxJ, where, 
for each i, Ux, c Si, and Pi: (U)cpt --+ Si is the projection map. Take 
S' E BLcs,u) that dominates the S/s. Replacing S' by the blow-up 
along o!/vfJs,, we may assume that o!/vfJs, is an invertible ideal. Let u; 
be the pull-back of Ux, by the map S' --+ Si. Then S' = U~=l u;, and 
thus the strict transform f': X' --+ S' is flat and finitely presented. 

5.7. Other applications 
The argument of the above type, which uses the quasi-compactness 

of Zariski-Riemann spaces, was largely applicable to several other situ­
ations. Let us list some of them (which are, however, not new). 

Resolution of singularities of quasi-excellent surfaces. This is the 
one to which Zariski originally applied this argument (in the case of 
algebraic sufaces). Similarly to the above-mentioned procedure, one first 
reduces the claim to the case of "long curves" to show that resolution can 
be done locally (local uniformization), and then patches the resulting 
local resolutions into a regular model by using quasi-compactness of 
Zariski-Riemann space. See, for example, [31, Chap. I] for more details. 

Embedding theorem for algebraic spaces (cf. Nagata 1963). This as­
serts that a separated algebraic space of finite type over a coherent 
scheme can be embedded into a proper space. This was first proved 
by Nagata in 1963 for Noetherian separated schemes. Considering "long 
curves", one first observes that, locally, an appropriate embedding can be 
constructed (local extension lemma), and then birationally patches these 
locally extended data into a globally extended space, which is possible 
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because of the quasi-compactness of Zariski-Riemann space. Finally by 
the valuative criterion of properness, one shows that the resulting space 
is proper. 

Remark 5.16. There are two remarks in order on the Nagata's em­
bedding theorem. 

(1) The theorem is true not only for schemes but also for algebraic 
spaces. There are several motivations for this generalization. One of 
them will be seen below (Theorem 6.11). Another motivation is that the 
embedding theorem potentially has large applications to the compacti­
fication of moduli spaces that are usually not representable by schemes; 
e.g. M. Rapoport's Habilitationschrift. We also remark that this gener­
alized form of Nagata's embedding theorem has an application to trace 
formula; cf. Remark 8.3. 

(2) One can actually simplify the proof of the embedding theorem 
by using ideas from rigid geometry. The details will be shown in [21]. 

§6. Birational approach to rigid geometry 

6.1. Introduction 
Now we come to the stage of expounding our approach to rigid 

geometry. As we have briefly announced in §4 our general policy is that 
rigid geometry is a hybrid of formal geometry and birational geometry; 
here, in our approach to rigid geometry, we will see that Zariski's classical 
idea of birational geometry explained in §5 revives, and plays one of the 
most important roles. One can thus refine the picture from Figure 3 into 
the one from Figure 7. 

As Raynaud's viewpoint of rigid geometry takes up geometry of for­
mal schemes as the starting point, from which rigid geometry is supposed 
to arise in the way that birational changes by admissible blow-ups are 
inverted, the birational geometry on the right-hand side means, so to 
speak, birational geometry of formal schemes, which should be a theory 
of a formal analogue of Zariski-Riemann spaces. One arrives in this way 
at the following "central dogma," which realizes more concretely our 
general policy for approaching rigid geometry: 19 

Birational geometry of formal schemes I Rigid geometry I· 
The analogue of Zariski-Riemann spaces in this context gives rise to 
the so-called Zariski-Riemann triples (Definition 6.15), which provide 

19There is no reason why we should deal only with formal schemes, and a 
perhaps more reasonable formulation would be given by allowing formal spaces 
(=formal algebraic spaces) to enter in. See Theorem 6.12. 
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for each rigid space a topological space together with two sheaves of 
local rings, the integral structure sheaf and the rigid structure sheaf 
We think of these objects as the most basic figure in rigid geometry in 
which rigid analytic and formal geometric aspects are amalgamated and 
crystalized in a certain canonical way. Moreover, the admissible topology 
of a rigid space is honestly represented by the topology of the underlying 
topological space of the corresponding Zariski-Riemann triple. In this 
sense, one can say that the Zariski-Riemann triple visualizes the rigid 
space (cf. Proposition 6.16). 

Our basic dictionary of comparing the situation of birational geom­
etry as in §5.1 with that of, say, p-adic rigid geometry is as follows: 

• S ,_______.. formal scheme of finite type over Spf Zp; 
• D ,_______.. the closed fiber, that is, the closed subscheme defined 

by "p = 0." 

Note that, by means of this comparison, the notion of U -admissible blow­
ups as in §5.2 precisely correspond to the admissible blow-ups introduced 
in §3.3. The object corresponding to the classical Zariski-Riemann space 
(U)cpt is the underlying topological space of the Zariski-Riemann triple 
arising from formal schemes. 

6.2. Adequate formal schemes 

We have seen in Remark 5.13 that, in Zariski's approach to bira­
tional geometry, one needs to consider valuation rings of large height in 
general, even when dealing with Noetherian schemes. It turns out, for 
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the same reason, that valuation rings of higher height have to be consid­
ered also in our situation. Indeed, even when we deal with Noetherian 
formal schemes to define rigid spaces, points are described by means of 
valuation rings. However, the valuation rings that enter in this situa­
tion may be of height greater than 1. Note that, without such valuation 
rings, or, as a result, without enough points, one cannot detect topology 
and sheaves. Hence, as such valuation rings are rarely Noetherian, one 
almost always has to deal with non-Noetherian formal schemes, of which 
we lack sufficiently practical knowledge; even in [EGA], apart from the 
generalities at the first set-up, most of the theorems, such as finitudes, 
GFGA, etc., are proven under the Noetherian hypothesis. Thus, one 
first has to establish a class of formal schemes that is wide enough to 
contain Noetherian and some other hitherto considered classes of formal 
schemes (such as formal spectra of a-adically complete valuation rings), 
and to generalize the necessary theorems. 

The new class of adic formal schemes that we would like to offer here 
is that of so-called adequate formal schemes. We postpone the precise 
definition of them to another opportunity [21], and confine ourselves to 
the following rough explanation. 

Basic properties. 

• the definition is given ring theoretically; 
• the rings are Noetherian outside the ideal of definition. 

Objects. Let Fsadq denote the category of adequate formal schemes. 
It contains as objects 

• SpfV, where V is an a-adically complete valuation ring for 
some non-zero a E mv, 

• Noetherian formal schemes. 

Functoriality. The category Fsadq has the following pleasant func­
toriality: it is 

• closed under finite type extensions; 
• closed under base change by finite type morphisms. 

Figure 8 depicts the category Fsadq together with some subcate­
gories, where FsNoe, Fs?V., Fs?nvR denote respectively the categories 
of Noetherian formal schemes, of formal schemes of finite type over an 
a-adically complete valuation ring, and of formal schemes of finite type 
over a complete discrete valuation ring. Notice that: 

• the height of valuation rings appearing in the category Fsadq 
is arbitrary, finite or infinite; 
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Fig. 8. Category of adequate formal schemes 

• more importantly, the category Fsadq contains all objects of the 
form Spf A, where A is a formal model of an affinoid algebra 
in Tate's theory of rigid analytic geometry. 

Among several nice points of adequate formal schemes, we would 
like to announce that most of the important theorems, such as fini­
tudes, GFGA comparison, GFGA existence theorems, can be proved 
in this category, which therefore gives generalizations of the theorems 
in [EGA, III]. The details will be shown in [21]. There, these theo­
rems are stated and proved entirely by using systematically the derived 
categorical framework. 20 

6.3. Coherent rigid spaces 

Let us denote by CFsadq the category of coherent adequate formal 
schemes. 

Proposition 6.1. (1) Any coherent (= quasi-compact and quasi­
separated) adequate formal scheme has an ideal of definition of finite 
type. 

20Let us list two reasons why it is necessary to work in the derived cat­
egorical language: (1) it is user-friendly for applications; (2) recently, the 
importance of derived categories has been more and more recognized in alge­
braic geometry and in mathematical physics. The last point is related to the 
cohomological mirror symmetries speculated on by Kontsevich-Soibelman and 
Fukaya et al., in which our theorems in terms of the derived categorical lan­
guage, as well as our approach involving higher-height valuation rings, could 
be important. 
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(2) Let X be a coherent adequate formal scheme, and ,;r an ideal of 
definition. If tfx is ,;r -torsion free, then tfx is coherent21 as a module 
over itself. 

Definition 6.2 (Admissible ideal). Let X be a coherent adequate 
formal scheme, and ,/ an ideal of tfx. Then ,/ is said to be admissible 
if it is an adically quasi-coherent open ideal of finite type. 

Here an tfx-module § is said to be adically quasi-coherent if the 
following conditions are satisfied: 

(a) §is complete with respect to .;r-adic topology, where .;r is an 
ideal of definition of X; 

(b) for any k ;::: 0, the sheaf §k = §I ,yrk+l § is a quasi-coherent 
sheaf on the scheme Xk = (X, tfx I ,yrk+l ). 

Definition 6.3 (Admissible blow-up). Let X be a coherent ade­
quate formal scheme, and ,/ an admissible ideal. The admissible blow­
up along ,/ is the morphism of formal schemes 

":here xk = (X, tfx I ,yrk+l) is the scheme defined as above. 

As X' is clearly of finite type over X, X' is again a coherent adequate 
formal scheme. Notice that the above definition of admissible blow-ups 
does not depend on the choice of an ideal of definition .;r. 

Having obtained a nice category of formal schemes and a nice notion 
of admissible blow-ups, we can now define rigid spaces in our approach 
by applying Raynaud's idea. 

Definition 6.4 (Coherent rigid spaces). The category CRf of co­
herent rigid spaces is defined to be the quotient category of CFsadq 
where all admissible blow-ups are inverted: 

CRf = CFsadql{admissible blow-ups}. 

We denote the quotient functor CFsadq -+ CRf by 

21Perhaps the reader might complain that there is too much use of "co­
herent." Do not mix up the coherence of sheaves and the coherence of spaces. 
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For a coherent rigid space !!!: , a formal model of !!!: is defined to be 
a coherent adequate formal scheme X such that xrig ~ !!!: . A formal 
model X of!!!: is said to be distinguished if Ux is .Jl'-torsion free, where 
.Jl' is an ideal of definition of X. 

6.4. Admissible topology 

Definition 6.5. (1) A morphism%' -+ !!!: of coherent rigid spaces 
is said to be a (coherent) open immersion if it has as a formal model an 
open immersion U '""--+ X. 

(2) Let {%'a'""--+ !!!:} be a family of open immersions between coher­
ent rigid spaces. We say that the family is a covering with respect to 
the admissible topology if it has a finite refinement{~ '""--+ !!!:} satisfying 
the following condition: there exist a formal model X of !!!: and formal 
models Vi '""--+ X of ~ '""--+ !!!: such that X = U K 

The last notion gives rise to a topology on CRf, called the admis­
sible topology. The resulting site is denoted by CRfad· 

6.5. General rigid spaces 

The category CFsadq is a good category that allows "formal bira­
tional patching"; the following statement is a consequence of the exis­
tence of formal birational patching of morphisms. 

Proposition 6.6. Any representable presheaf on CRfad is a sheaf. 

The proposition allows a consistent definition of more general rigid 
spaces. 

Definition 6. 7 (General rigid spaces). A general rigid space is a 
sheaf§ of sets on the site CRfad such that the following conditions are 
satisfied: 

(1) there exists a surjective map of sheaves 

where {~hE I is a collection of sheaves represented by coherent 
rigid spaces; 

(2) for i,j E J, the map ~ xs; rt!lj --+ ~ is isomorphic to the 
direct limit of a direct system{%'.>. -+ ~hEA of maps between 
coherent rigid spaces such that all maps in the commutative 
diagram for J.L ::::; >. 
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are coherent open immersions. 

We denote by Rf the category of general rigid spaces. It has CRf 
as a full subcategory. 

Example 6.8. Here is an example of (coherent) rigid spaces that 
cannot be dealt with in classical rigid geometry (by Tate). Consider the 
ring Z[[q]] of formal power series with integral coefficients. This ring is 
not a valuation ring, but is a complete ring with respect to the q-adic 
topology. Hence we can consider the formal schemeS = Spf Z[[q]], which 
is clearly adequate, since it is Noetherian. Any adic formal scheme X 
of finite type over s therefore gives rise to a rigid space X' = xrig over 
Y' = srig. A particularly important example of this form, which we will 
discuss later in §7.1, is a Tate curve over Y'. 

Rigid spaces of the above form over (Spf Z[[q]])rig (or higher dimen­
sional adic rings) enter quite naturally in discussions on compactification 
of moduli spaces. Although such kinds of rigid spaces are ruled out in 
the classical rigid geometry, they come rather naturally in our approach 
to rigid geometry, and this proves to be one of the advantages of our 
approach. 

6.6. Fiber products 

A morphism 'P: X' __, rfY of coherent rigid spaces is said to be of 
finite type if it has a formal model f: X __, Y that is of finite type. 
The notion of "locally of finite type" is defined for morphisms between 
general rigid spaces in an obvious way. The following proposition follows 
from the fact that the adequateness of formal schemes is closed under 
base change locally of finite type (as we have mentioned in §6.2). 

Proposition 6.9. Consider the diagram 

in Rf. If either one of the morphisms is locally of finite type, then the 
fiber product X' x y rfY is representable in Rf. 

Remark 6.10. As we will see later (Remark 6.17), for a rigid space 
X', points (in a certain topos-theoretic sense) correspond to valuation 
rings of a certain kind; that is, points are represented by morphisms 
of the form (Spf V)'ig __, X', where V is an a-adically complete valua­
tion ring. Hence, in our rigid geometry, "fibers over points" are those 
fiber products taken with morphisms of this kind. The importance of 
studying rigid spaces over rigid spaces of the form (Spf V)'ig thus arises. 
Notice that, even if we work in the categories of rigid spaces coming 
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from Noetherian formal schemes, valuation rings V of higher height are 
inevitable. 

Technically, the importance of the last remark lies in the fact that, 
by considering fibers over points, one can usually reduce quite a few 
geometric properties of rigid spaces of finite type to those of rigid spaces 
of finite type over valuation rings. In case the valuation ring is of finite 
height, one can further reduce to the case of height 1 (by the gluing 
method), where one can use some extra tools, such as Noether's normal­
ization theorem, etc. 

6.7. Relation with algebraic spaces 

Let Spf A be an affine adequate formal scheme, and I a finitely 
generated ideal of definition of A. We set U =Spec A\ V(I), which is 
a Noetherian scheme (cf. §6.2). The precise meaning of the following 
somewhat vague statement will be clarified in [21]. 

Theorem 6.11 (GAGA functor). The GAGA functor 

{ Separated algebraic spaces} Rf 
of finite type jU ---+ y, 

X f-+ xan, 

where Y = (Spf A)'ig, exists. 

Notice that the GAGA functor of this general form has not been 
defined even in the classical rigid geometry (at least in literature). There 
are two main ingredients for the proof. One is the embedding theorem 
(of Nagata) for algebraic spaces, and the other one is the following. 

Theorem 6.12 (Equivalence theorem). Let S be a coherent ade­
quate formal scheme. Then the natural functor 

{
Formal alge-} 

Formal schemes b · f 
. . ---+ ra1c spaces o 

{of fimte type IS} I { Admiss1ble} finite type IS I {Admissible} 
blow-ups bl ow-ups 

is a categorical equivalence. 

This follows from the following theorem. 

Theorem 6.13. LetS be as above, and X~ S a formal algebraic 
space of finite type. Then there exists an admissible blow-up X' ~ X 
such that X' is a formal scheme. 

The proof of this theorem uses (again!) the technique of Zariski­
Riemann spaces. 
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6.8. Tate's rigid analytic spaces 

Tate's rigid analytic spaces are naturally objects of the category Rf 
via Raynaud's theorem (Theorem 3.5) and obvious patching arguments, 
that is, we have the natural functor 

{
Tate's rigid} 

----+ Rf spaces ' 

which maps affinoids to affinoids. Here by an affinoid in Rf we mean a 
coherent rigid space of the form (Spf A)'ig. 

The essential image of the above functor considered on the category 
of Tate's rigid analytic spaces over K is the category of rigid spaces 
locally of finite type over (Spf V)'ig, where V is a complete valuation 
ring of height 1, and K is its fractional field. Note that this is essentially 
the assertion of Raynaud's theorem (Theorem 3.5). 

6.9. Visualization 

The moral basis of our (and hence Raynaud's) defining rigid spaces 
as "generic fibers" of formal schemes stems from the policy that rigid 
geometry is so to speak the birational geometry of formal schemes ( cf. 
§6.1). It being so, one can say that the visualization of rigid spaces, 
which we are going to pursue below, is the way to enhance the bira­
tional geometric aspect of rigid geometry. It does this job by adopting 
Zariski's old idea of birational geometry, and the visualization itself is 
given by the so-called Zariski-Riemann triple. The pleasant thing is that 
the admissible topology attached to a rigid space is equivalent to the 
topology (in the usual sense) of the associated Zariski-Riemann space, 
the underlying topological space of the Zariski-Riemann triple. This is 
the origin of the name "visualization." As we can easily imagine, having 
the genuine ringed space that really represents the rigid space helps and 
streamlines discussions, and enables many applications. 

Definition 6.14. Let &: = xrig be a coherent rigid space. 
(1) Define the projective limit 

(&:') = lim X' 
f---

X'---+X 

along all admissible blow-ups of X taken in the category of local ringed 
spaces. Note that, by the similar reasoning as in §5.4, the projective limit 
can be replaced by the filtered projective limit taken along the directed 
set of all admissible ideals, and hence is well-defined as a local ringed 
space. The canonical projection map (&:') ----+ X' for any admissible 
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blow-up X' of X is called the specialization map, and is denoted by 

This is a continuous map. 
(2) The structure sheaf of(.¥"), which is the direct limit of the sheaf 

spx~ (jx,, is called the integral structure sheaf, and is denoted by {j~t. 
(3) The rigid structure sheaf {j:z- is the sheaf on (.¥") defined by 

here we take an ideal of definition ~ x of X and set ~ = ( sp x 1 ~ x) {j~t. 

Here the definition of {j :r calls for an explanation. It turns out that 
the sheaf {j~t oflocal rings is ~-valuative, and due to Proposition 5.11, 
one sees that the sheaf {j :r is also a sheaf of local rings. For example, in 
the p-adic situation, we have {j :r = {j~t [ ~ ]. As this particular example 
indicates, it is {j :r that plays the role of the structure sheaves of Tate's 
rigid analytic geometry. In fact, when .¥" comes from a rigid analytic 
space in the sense of Tate via the functor as in §6.8, (j :r "is" the struc­
ture sheaf of the original Tate rigid space. Thus the realization of rigid 
spaces as a topological space (.¥") naturally weaves its structure sheaf 
{j :r with, one can say, its "canonical" formal model {j~t. 

Definition 6.15 (Zariski-Riemann triple). We write 

ZR( .¥") = ( ( .¥"), {f~t, {f :r), 

and call it the Zariski-Riemann triple associated to the rigid space .¥". 

One can, in fact, extend the above definition to general rigid spaces 
by gluing. It is worth remarking here that the idea of considering the 
triple as above, rather than merely a local ringed space, comes from the 
analogy between hermitian vector bundles (c&", 1·1) and pairs (c&", gint) of 
vector bundle with its integral model (which is at the center of the idea 
of, for example, Arakelov geometry). 

Be that as it may, the main motivation for introducing Zariski­
Riemann triples is that they really visualize the rigid spaces, as the 
following proposition indicates. 

Proposition 6.16. The topos associated to the topological space 
( .¥") is isomorphic to the admissible topos .¥"a'd. 22 

22An essentially equivalent statement was proved by Huber [23]; a similar 
but different approach was taken by van der Put-Schneider [42]. 
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Remark 6.17. The last proposition forces us to review the issue of 
points of rigid analytic spaces, which was already considered during the 
discussion of Tate's basic idea of approaching rigid geometry (see Re­
mark 2.2). Even in case where :!C comes from a Tate rigid analytic space, 
the topological space (!C) was not considered by Tate, since Tate's no­
tion of points only grasps points coming from maximal ideals of affinoid 
algebras, which occupies only a very small part of the space (!C). This 
is why Tate had to introduce the Grothendieck topology machinery to 
obtain the admissible topology. 

Now, the space (!C) gives the correct notion of points for rigid ana­
lytic spaces; in fact, quite similarly to §5.4, points of (!C) are described 
in terms of a-adically complete valuation rings. It is based on this fact 
that we say that the Zariski-Riemann triple visualizes rigid spaces. 

Remark 6.18. We would like to mention that, by using visualiza­
tion, one can simplify the definition of the so-called "dagger-ring" that 
appears in the theory of rigid cohomology (cf. [4]). Let us give a sim­
ple example. Let A = V ((X)), where V is a complete discrete valua­
tion ring of mixed characteristic (O,p) such that the residue field k is 
perfect, and consider ][)) = (Spf A)'ig (closed unit disk). It is a coher­
ent open rigid subspace of the projective line IF!r = ( (IFt, )11 )rig, where 
9 = (Spf V)'ig. Consider the closure (IDl) of (IDl) in (IF!r). Consider 

the sheaf ob defined by the pull-back i* O'lP'' of O'lP'' by the inclusion 
Y' Y' 

i: (IDl) '--+ (IF!r). The dagger-ring in this case, usually denoted by Ak, is 
the ring r( (IDl), i* O'lP'' ). 

Y' 

6.10. Relation with other theories 

Now let us mention something about the relation between our ap­
proach to rigid geometry and other hitherto known approaches. 

(1) As we have already mentioned in §6.8, there exists a natural 
functor that maps Tate's rigid analytic spaces to rigid spaces in Rf. 

(2) Zariski-Riemann triples are regarded as Huber's adic spaces, 
whence we have a natural functor 

ZR: Rf---+ {Huber's adic} 
spaces ' 

which is, however, not fully faithful in general; but it is fully faithful in 
practically important situations. 
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(3) Each Zariski-Riemann space (.2'") admits, by means of maximal 
generalization23 of all points, a so-called separation map 

sep~: (.2'") -t [.2'"], 

where [ .2'"] is the set of all points of ( .2'") of height 1. The map sep .?r 

is a continuous map. At least in case where .2'" comes from a Tate 
rigid analytic space via the functor as in §6.8, the target space [ .2'"] 
(with more structure coming from .2'") can naturally be regarded as a 
Berkovich space ([2][3]). 

Figure 9 depicts the above mentioned relations. 

Rf 

PP ~! 
~ ZR notf.f. 

{ Tate's rigid} ~{Huber's adic} 
spaces spaces 

~ 
{ Berkovich} 

spaces 

Fig. 9. Relation with other theories (f.f.= fully faithful) 

6.11. Formal flattening theorem 

Applying Zariski's idea explained in §5, but now using the Zariski­
Riemann triple introduced as above, one can show the following theorem. 

Theorem 6.19 (Bosch-Raynaud, Fujiwara). Let f: X _, S be a 
morphism of finite type between coherent adequate formal schemes. Then 
the following conditions are equivalent: 

(1) Fig: xrig -; srig is fiat, that is, (!rig): (X rig) -; (Srig) is fiat 
as a mapping of local ringed spaces (with the rigid structure 
sheaf); 

23It can be shown that any point of (!£) has a unique maximal 
generalization. 
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(2) there exists an admissible blow-up S' ---7 S such that the strict 
transform f': X' ---7 S' is flat. 

Corollary 6.20. Admissible blow-ups are cofinal in the category of 
formal modifications. 

The following corollary is, as we have already seen in §3.3, important 
in Tate's rigid analytic geometry (see Theorem 2.8). 

Corollary 6.21 (Gerritzen-Grauert). Let cp: :!£' ---7 ?Y be a mor­
phism of Tate's rigid analytic spaces over a complete non-archimedean 
valued field K with non-trivial valuation. Then the following conditions 
are equivalent: 

(1) cp is an open immersion; 
(2) cp is separated, f!-iale, and injective, and induces an zsomor­

phism between the residue fields at any point. 

6.12. Properness in rigid geometry 

Definition 6.22. (1) A morphism cp: :!£' ---7 ?Y of rigid spaces is 
said to be closed if the induced map (cp): (:!C) ---7 (?Y) of topological 
spaces is closed. 

(2) Let cp: :!£' ---7 ?Y be a morphism locally of finite type. The 
morphism cp is said to be universally closed if, for any morphism :!Z ---7 ?Y 
of rigid spaces, the base change cp x : :!£' x '!!/ :!Z ---7 :!Z is closed. 

Definition 6.23. A morphism cp: :!£' ---7 ?Y of rigid spaces is said 
to be proper if it is universally closed, separated, and of finite type. 

In case :!£' and ?Y are coherent, according to our general policy of 
regarding rigid geometry as birational geometry of formal schemes, the 
properness thus defined should be equivalent to that in formal geometry 
as follows. 

Proposition 6.24. Let cp: :!£' ---7 ?Y be a morphism of coherent 
rigid spaces. Then the following conditions are equivalent: 

( 1) cp is proper; 
(2) (Raynaud properness) there exists a proper formal model f: X ---7 

Y of cp. 
(3) (Kiehl properness) there exist affinoid enlargements ( cf. [26]) 

of coverings for each relatively compact affinoid open subset; 
that is, there exists a finite admissible covering :!£' = U Cf4 
consisting of affinoids together with a refinement :!£' = U "Pi 
again consisting of affinoids with Cf4 '---+ "Pi such that, for each 
i, (Cf4) C ("Pi), where the closure is taken in ( :!£'). 



Rigid geometry and applications 369 

Historically, properness in Tate's rigid geometry has been first de­
fined by Kiehl in his work [26] on finiteness theorem; there, properness 
was defined by existence of enlargements according to the general idea 
by Cartan-Serre and Grauert for proving finiteness of cohomologies of 
coherent sheaves. 

Whereas the implication (3) ::::} (2) is in general not difficult to show, 
the converse is a very difficult theorem; even in case where all rigid 
spaces are of finite type over (Spf vyig with V being a complete discrete 
valuation ring, Liitkebohmert's 1990 paper [32] was the first for the 
proof. We claim (in [21]) that this is also valid in general. In the case 
over (Spf V)'ig where V is an a-adically complete valuation ring, this 
amounts to showing the following statement. 

Theorem 6.25. Let f: X ---+ Spf V be a morphism of adequate 
formal schemes of finite type, and U c X an affine open subset such that 
U is proper. Then there exists an admissible blow-up 1r: X' ---+ X and 
an open subset W C X' such that the following conditions are satisfied: 

(a) 7r- 1 (U) <;;;; W; 
(b) there exists a map W ---+ Spf A to an affine adequate formal 

scheme that is a contraction (that is, wrig = (Spf A)'ig). 

6.13, Cohomology theory 

Let !i: be a rigid space, and $ an abelian sheaf on the topological 
space (&:'). We write 

Similarly, for a morphism <p: &:' ---+ ifJI of rigid spaces, we write 

As we have mentioned before, an affinoid is a coherent rigid space of the 
form Xrig, where X is an affine adequate formal scheme. For a rigid 
space &:', by a coherent sheaf on &:',we mean a coherent 0'~-module 
on(&:'). 

Theorem 6.26. For a rigid space&:', the rigid structure sheaf 0'~ 
is coherent. 

Thus an 0' ~-module is coherent if and only if it is finitely presented. 

Definition 6.27. An affinoid &:' is said to be a Stein affinoid if one 
of the following equivalent conditions is satisfied: 

(1) H1(&:',§) = 0 for any coherent sheaf$; 
(2) Hq(&:',$) = 0 for q ~ 1 and for any coherent sheaf$; 
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( 3) There exists a formal model X of !!r such that X is affine 
X = Spf A and that Spec A\ V(I) is an affine scheme, where 
I is an ideal of definition of A. 

(4) There exists a distinguished formal model X of !!r such that X 
is affine X= Spf A and that Spec A\ V(I) is an affine scheme, 
where I is an ideal of definition of A. 

The equivalence of the above conditions follows from the compari­
son theorem for affinoids and GFGA existence theorem. It can be shown 
that, for any rigid space !!r, any admissible covering of !!r by affinoids 
can be refined by an admissible covering consisting of Stein affinoids. 
Combined with this fact, the next theorem shows that one can compute 
cohomology of coherent sheaves by means of Cech calculation using ad­
missible covering by Stein affinoids. 

Theorem 6.28 (Theorem A and Theorem B). Let !!r be a Stein 
affinoid, and $ a coherent sheaf on !!r. 

(1) If X = Spf A is a distinguished formal model of !!r such that 
Spec A\ V(I) (where I is an ideal of definition of A) is affine, then there 
exists a finitely presented A-module M such that 

(2) For q ~ 1, we have Hq(!!r, $) = 0. 

Finally; we mention the finiteness theorem for proper morphisms. 

Theorem 6.29 (Finiteness theorem for proper morphisms of rigid 
spaces). Let t.p: !!r---. t!Y be a proper morphism between quasi-compact?4 

rigid spaces. Then the functor R<p* maps D~oh ( !!r) to D~oh ( t!Y) for 
* = 0,+,-, b. 

Here, for a rigid space !!r, D~oh ( !!r) denotes the full subcategory of 
the derived category of the category of 6' ~-modules consisting of objects 
that have only coherent cohomologies. 

Most of material presented in this part will be written in detail in 
the book [21] in preparation by the authors. 

Part III. Applications 

24 A rigid space !£ is said to be quasi-compact if the topological space 
(!£) is quasi-compact; this is equivalent to the small admissible topos !Z"a'd 
being quasi-compact. 
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We expect that rigid geometry, especially that of our approach ex­
plained in the previous part, allows diverse applications. The applica­
tions within our scope at this moment include, at least, the following 
things: 

• arithmetic geometry of Shimura varieties: p-adic period map 
and local models, p-adic automorphic representations, etc., 

• cohomology theory of algebraic varieties: £-adic Lefschetz trace 
formulas, p-adic cohomology theory, etc. 

In this final part, we discuss the applications of these things. In §7 
we discuss arithmetic compactification of moduli of elliptic curves, and 
in §8, Lefschetz trace formulas. 

Although we are not going to treat in this paper, one might moreover 
expect, in addition, the following applications: 

• mirror symmetry (construction of mirror partner); cf. [28], 
• p-adic Hodge theory (via theory of almost etale extensions); cf. 

[22], 
• derived category equivalence, 
• non-archimedean uniformization. 

As for the last, we remark that, by means of the visualization, one can 
understand the known uniformization (e.g. [34], [35]) entirely as topolog­
ical uniformization, that is, the uniformization by taking the universal 
covering. This point also streamlines the theory of orbifold uniformiza­
tions of rigid analytic curves developed in [25] (see also [10]). 

§7. Application to compactification of moduli 

In this section we discuss compactification of moduli spaces. We 
want to show that rigid geometry is useful in the analysis of moduli 
object near the boundary, and thus can be applied to the construction 
of the compactification. As the method that we are going to take is 
abstract enough, it affords the construction of the compactifications not 
only over fields, but over Z, that is, arithmetic compactifications. 

Here, at first, we would like to remind the reader of the fact that, 
in the classical theory of toroidal compactifications, complex analytic 
methods play an important role. The important point here is that the 
notion of rigid spaces is much broader than that of schemes, and rigid 
spaces are much flexible than schemes. In fact, there are several merits 
of using non-scheme theoretical geometric objects, such as rigid spaces, 
in application to the theory of moduli; among them are: 

• topological feature: admissible topology of rigid spaces is finer 
than Zariski topology; 
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• it allows, in general, "construction by infinite repetition;" in 
this context, non-coherent objects play an essential role. 

A typical example of the methods in the second point is the theory of 
p-adic uniformization, which provides, as we have already seen in §1.2, 
numerous nice techniques and viewpoints already in the classical rigid 
geometry by Tate. 

First we fix some notations that we are going to use frequently in the 
sequel. We often consider pairs of the form (X, D), where X =Spec A 
is an affine scheme, and D is a closed subscheme defined by a finitely 
generated ideal I of A. Let A be the I-adic completion of A. We write 
X;v = Spec.A. It forms another pair (X;v,D) of the form as above 

together with the closed subscheme defined by the ideal I A, which is, 
by a slight abuse of notation, again denoted by D. 

In practice, the affine scheme X in the sequel appears as a "partial 
compactification" of a scheme X such that ax =X \X = D. In this 
situation, the complement (X ;v) \D (~X /D;: xX) is denoted by X;v· 

For a pair (X, DJ as above we denote by Xlv the formal com£letion 

of X along D, i.e., Xlv = Spf A. The canonical morphism '"'(y: Xlv--> 
X is factorized into the composite 

Notice that the formal completion of (X;v,D) is the same as that of 
(X, D). 

7 .1. Analysis near cusps 

In this section, we discuss the arithmetic compactification of the 
moduli space of elliptic curves over Z, which is considered as one of the 
simplest but non-trivial examples, and then, later, indicate more general 
situation of Shimura varieties of PEL-type. 

Let .A be the moduli stack of elliptic curves over Z. It is the alge­
braic stack characterized by the following condition: for a scheme S the 
category of Cartesian sections .A ( S) over S forms the groupoid consist­
ing of elliptic curves over S, where morphisms are isomorphisms of the 
elliptic curves. We view .A as a Deligne-Mumford stack, and denote by 
funiv : guniv --> .A the universal elliptic curve. We want to compactify 
the stack .A. To this end, first we are to analyze points near the cusps. 

In order to do this, the construction of the Tate curves as in Example 
3.3 provides a good picture. To apply it to our situation, we need to 
recast the construction in the universal form. Let W be the moduli 
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space of maps of the form 

over Z; that is, an affine scheme identified with SpecZ[q, q- 1]. Notice 
that the map as above is determined by its value at u = 1, and thus, 
the identification of W with Spec Z[q, q- 1] is given by the universal map 
uuniv: Z -+ Gm that maps 1 to q. We choose a torus embedding W '----* 

W = SpecZ[q], which is seen as a partial compactification, and denote 
the infinity W \ W by D. The closed subscheme D is defined by the 
equation q = 0. We consider the pair (W, D). 

By Tate construction (or the generalization due to Mumford), we 
have a semi-abelian scheme d over W 1 v, which has the following prop­
erties: 

(1) the restriction dw1v of d to WID is an elliptic curve, and the 
restriction to D is isomorphic to Gm; 

(2) (dw1v)an is canonically isomorphic to the quotient (Gm)an 
by the subgroup generated by q as a rigid space over 1f/ = 

(WivYig; 
(3) the construction is functorial in the sense as follows: for any 

complete valuation ring V of height 1 and an adic homomor­
phism r(WID• O'w1J = Z[[q]]-+ V that maps q to an element 
in mv (which we again denote by q), the base change of d to 
V corresponds to the Tate curve (Gm,K)an;qz as in Example 
2.15, where K is the field of fractions of V. 

Moreover the following property is known for the Tate construction: 

Proposition 7.1 (Uniformization theorem, converse to 
Tate construction; cf. [16, Chap. II, §4]). Assume that (S, D) = (Spec V, V(I)) 
is a pair of affine schemes, where V is a Noetherian normal ring that 
is complete with respect to the I -adic topology. Let A be a semi-abelian 
scheme over S that satisfies following conditions: 

(1) the relative dimension is 1; 
(2) the restriction of A to D is a split torus; 
(3) the restriction of A to S \ D is an elliptic curve. 

Then there exists a morphism g: S -+ W 1 v such that A is isomorphic 
to the pullback g* d. Moreover, the morphism g is unique up to isomor­
phisms. 

The proposition says that d is seen as the universal Tate curve, and 
W 1 D is the classifying space for elliptic curves with split multiplicative 
reductions over complete base schemes. Moreover one can drop the 
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assumption "normal" of S when S is of dimension 1. The uniformizaiton 
theorem, and the extension to the general !-dimensional base schemes 
due to Raynaud, which we often abbreviate to "Raynaud-Tate theory", 
becomes very important later. 

Now let us return to the moduli stack .A. We have a map 

E: WID ------> .,(( 

defined by the elliptic curve dw1 v over W1 D. This map sits in the 
following 2-commutative diagram in a suitable 2-category of spaces: 

The rigid space "'f/ = (WivYig is considered to be the family of 
"punctured unit disks" over Z, or "(deleted) tubular neighborhood" of 
D inside W. The desired compactification .A is obtained by patching 
the stack .A and the scheme W 1 D along the rigid space "'f/. This will 
be made more precise in the next two sections. 

7.2. Arithmetic compactification 
The following assertion provides the model case of the arithmetic 

compactifications in general. 

Proposition 7.2. There exists a proper smooth Deligne-Mumford 
stack .A over Z that contains .A as an open substack enjoying the fol­
lowing properties: 

- -univ -
(1) there exists a semi-abelian scheme f: g --+ .A that extends 

guniv; 

(2) the morphism E: WID--+ .A extends to "E: WID--+ .A in such 
-univ 

a way that "E* g = d holds; 
(3) moreover, the morphism "E induces a formally etale surjective 

morphism on passage to the formal completions. -In fact, ~e rigid space "'f/ = (W1vlvYig = (Wiv)rig is almost iso-

morphic to (.Aia.,HYig; it gives an isomorphism when we introduce level 
structures to make the moduli problem fine. Thus the compatification 
.A in question should be constructed as the patching of .A and W 1 D -along "'f/ = (W 1 DID Yig. This gives the strategy for the construction 
that is quite similar to the complex analytic case. Notice that, to carry 
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out this strategy, the framework of general rigid spaces (introduced in 
§6.5) is necessary. 

7 .3. Construction 
The construction of .A takes three steps. The method exhibited here 

follows [20]. It is influenced by M. Rapoport work on Hilbert-Blumenthal 
varieties [36] and G. Faltings work on Siegel modular varieties [15]. 

First step (Algebraization). First we are to algebraize the family JZ1 
over W 1 D to a semi-abelian scheme over an affine scheme of finite type 
over Z. For any n ~ 1, by Artin's approximation theorem, we have 
an affine smooth scheme V n over Z and a closed subscheme Dn C V n 

such that the formal completion of V n along Dn is identified with WID 
(we fix this identification). Moreover, there is a semi-abelian scheme An 
of relative dimension 1 over V n such that An is an elliptic curve over 
Vn = V n \ Dn and is a split torus over Dn. 

The family An is "very near" to JZ1 in the following sense: when 
we_:egard An as a quotient of Gm by qn z over V nl Dn for some qn E 

r(WID, tJ.-) by the uniformization theorem (Proposition 7.1), qn = q 
Wlv 

mod qn holds. To achieve the last condition, one must approximate 
the semi-abelian scheme with a line bundle and sections, i.e. with theta 
functions. 

When An is very near to JZ1 in the sense as above and n ~ 2, the 
morphism 

q 1--+ qn 

by the universality of W 1 D (again by Proposition 7.1) is an isomor­
phism25, and that the pull back 8~JZI is isomorphic to An. 

One sets V = V n, D = Dn, and Av = An for some n ~ 2, and 
V=V\D. 

Second step (Openness of versality). We show that the classifying 
morphism V = V \ D ---+ .A defined by Av is etale by shrinking V 
around D if necessary. For this, it suffices to show that V1 D ---+ .A is 
formally smooth at any closed point of VI D (note that the residue field 
at any closed point is a complete discrete valuation field). To show this, 
one uses the infinitesimal criterion offormal smoothness, and reduces to 
show the following assertion. 

Proposition 7.3. Let R 0 be a complete discrete valuation ring, 1r 

a uniformizer, and R a finite local algebra that is a thickening of Ro. 

25The identification by 8n can be different from the one which is already 
chosen 
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Assume that we are given an elliptic curve E over R[~] such that the 
restriction ERo to R0 is a Tate curve over Ro. Then, by replacing R by 
a finite modification ( = finite map that induces isomorphism outside the 
ideal ( 71')) if necessary, E is also a Tate curve. 

This is a direct consequence of the uniformization theorem (Raynaud­
Tate theory over !-dimensional complete rings). Roughly speaking, the 
point is to show the deformations of an elliptic curve with split multi­
plicative reduction are the same as the deformations of corresponding 
1-motives obtained by the Raynaud-Tate theory. (A related work for 
Mumford curves is in [11, §9].) 

Third step (Patching). We construct A by patching V (obtained 
in Step 2) and A along (VIvYig. This is easy by using the openness of 
versality (Proposition 7.3). Since A is a Deligne-Mumford stack, there 
are an etale surjective morphism P ---> A from a smooth affine scheme 
P, and a relation R ---> P Xz P that defines A as a stack. Note that 
we have the pull back Ap to P of the universal elliptic curve. Together 
with Av over V, we have a semi~ abelian scheme A p 11 v on P lJ V. 

We take the normalization R of ( P lJ V) x z ( P lJ V) in R, and show 
that R defines an etale relation on p l1 v and defines a Deligne-Mumford 
stack A. Semi-abelian scheme APUV also descends to a semi-abelian 

scheme c&"univ ---> A. The point here is that one can control the situ­
ation using the semi-abelian scheme on P lJ V and the uniformization 
theorem. By the construction, the properties (1)-(3) of Proposition 7.2 
follow. 

The properness of A follows from the valuative criterion, using 
Grothendieck's semi-stable reduction theorem for abelian varieties. Then 
we finish the construction. 

7.4. General case: Shimura varieties of PEL-type 

The method of. the arithmetic compactification of the moduli of 
elliptic curves generalizes to more general Shimura varieties. 

First, we need a good model of Shimura varieties over Z. For this 
purpose, we must restrict ourselves to the so-called PEL-case, which 
can be seen as a moduli of abelian varieties with some rigidification 
structures, namely a rigidification of a polarization, the endomorphism 
ring, the Hodge filtration, and the Betti realization ([39], [12]). For the 
general definition of Shimura varieties we refer to [12] and [13]. 

Let L be a semi-simple algebra over Q with a positive involution 
*, V a finite dimensional Q-vector space that is a faithful £-module 
with a non-degenerate Q-valued skew symmetric form r.p that satisfies 
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the equality 

cp(£x, y) = cp(x, £*y), for x, y E V, £ E L. 

The reductive group Gover Q is the group of £-linear symplectic simil­
itudes of V. 

Let X be the set of all homomorphisms h: Resc;JRGm ---> GJR such 
that the JR.-Hodge structure defined by h on VJR has the type { ( -1, 0), (0, 
-1)} and polarized by cp. The involution of L is required to be positive 
for this structure. 

Then X carries a natural complex structure. Each connected com­
ponent of X is a hermitian symmetric domain. To simplify the situation, 
we assume that alllR.-simple factors of the derived group cder are of type 
A or C, and hence Gder is simply connected. The corresponding (non­
connected) Shimura variety for (G, X) over Cis defined by 

ShK(G, X)(C) = G(Q)\X x G(AJ )/ K, 

where K is a compact open subgroup of G(AJ ). The space ShK(G, X) is 
a quasi-projective variety defined over an explicit number field E called 
the reflex field of ( G, X). 

To get an arithmetic moduli, except for several successful cases, 
only the case of good reduction has been considered in general. Zink 
[47], Langlands-Rappoport [30] have defined a smooth arithmetic model 
ShK(G, X) over YK of ShK(G, X)(C) as the solution of a moduli prob­
lem involving abelian schemes (under the restriction on G). Here tJe is 
the ring of integers of E, and YK c Spec tJe is an open set explicitly 
described by K (for general K, we regard ShK(G, X) as a Deligne­
Mumford stack). 

By definition, there exists the universal abelian scheme 

rniv: a'univ ___, ShK(G, X) 

that gives Shimura's family over C in [39]. 

Proposition 7.4. Choose an admissible cone decomposition :E that 
is compatible with K. Then the toroidal compactification ShK(G, X)(:E) 
of ShK(G, X) over YK for this cone decomposition that satisfies the 
following properties exists: 

(1) ShK(G, X)(:E) is a proper Deligne-Mumford stack over YK 
whose local structure near the boundary is described by the 
toroidal embeddings that correspond to cones in :E; 

(2) the geometric fiber over SpecC is the one constructed in [1]; 
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(3) the universal abelian scheme rniv: Ji](Univ---; ShK(G,X) ex­
tends uniquely to a semiabelian scheme 

yuniv: Ji](univ --t ShK(G, X)(E). 

Note that our compactification BhK(G, X)(E) is, a priori, an alge­
braic stack or, for K small enough, an algebraic space. Here we suggest 
how the construction will be done along the line described in subsection 
7.3. . 

The role of W in §7.1 is played by (the arithmetic model of) the 
mixed Shimura varieties Sh(P, Xp) associated to Q-maximal parabolic 
subgroup P of G [8]. These mixed Shimura varieties are seen as a 
moduli space of 1-motives with PEL-structure, and admit a fibration 
Sh(P, Xp) ---> Bp by a split torus Tp. Our choice of the cone decom­
position determines a torus embedding Tp ~ TP,a for a cone a, and 
a partial compactification Sh(P, Xp )a of Sh(P, Xp) is obtained by the 
contracted product Sh(P, Xp) ATP TP,a (that is, the fiber bundle with 
the fibers TP,a associated to the torus bundle Sh(P, Xp) ---> Bp ). 

The partial compactification Sh(P, Xp )a plays the role of Win §7.1. 
Then one uses the Mumford construction of semi-abelian schemes, which 
is a generalization of Tate construction to higher dimensional abelian 
schemes, to get a semi-abelian scheme t1'a from the universal 1-motive 
on Sh(P, Xp) after completion along the closed Tp-orbit Da. Then we 
algebraize (t1'a, Sh(P, Xp )a /DJ by using Artin's approximation theo­
rem as in §7.3, Step 1. 

The difficulty to construct ShK(G, X)(E), compared to the elliptic 
curve case, lies in the fact that the openness of versality is much harder 
to show. For example, the types of degenerations of abelian varieties of 
fixed PEL-type is much more complicated, so we must somehow control 
the various types of degenerations and different partial compactifications 
at the same time to show the openness of versality. 

To check the versality, we use rigid geometry and the Raynaud-Tate 
theory for semiabelian schemes over one-dimensional complete rings (the 
argument is similar to that in §7.3, Step 2 and Step 3, but more compli­
cated), with a closer analysis of degenerations using the uniformization 
theory in [16]. 

Recall that the use of rigid geometry in compactification problem 
goes back to Rapoport's fundamental and important work on Hilbert­
Blumental varieties [36]. The use of Artin's approximation theorem goes 
back to Faltings work, and discussed in [16] for Siegel modular varieties. 
For Siegel modular varieties, there is also a method of Chai [9]. He 
constructs the arithmetic toroidal compactification (corresponding to 
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projective cone decomposition) by blowing up the minimal compactifi­
cation, using the theory of algebraic theta functions26 . 

Remark 7.5. In [16], Kodaira-Spencer mappings are used to verify 
the openness of versality, so one needs to assume the smoothness of 
arithmetic models in principle. The method here has the advantage that 
it is singularity free: if a good theory of canonical arithmetic models of 
Shimura varieties over the ring of integers were available, our method 
in §7.3 also gives the arithmetic compactifications including the bad 
reduction cases, as long as arithmetic models of mixed Shimura varieties 
corresponding to parabolics are normal. 

7.5. Applications of arithmetic compactifications 

The existence of arithmetic compactification has important conse­
quences on modular forms. Fix an admissible cone decomposition E and 
consider the arithmetic toroidal compactification. The line bundle 

on ShK(G, X)(E) is semi-ample by a theorem of Moret-Bailly [33]. The 
space of sections 

is independent of E and regarded as a space of geometric modular forms 
of weight k. By the properness of ShK(G, X)(E), Mk is finitely gen­
erated r(CK,O'cK)-module, and the graded ring ffik>lMk is finitely 
generated over r(XK, O'cK) by Moret-Bailly's theorem-:- This is already 
an important finiteness statement on geometric modular forms, which 
is hard to prove by other methods. The geometric modular forms in 
our sense is identified with holomorphic modular forms with integral co~ 
efficients ( q-expansion principle). Summing up, we have the following 
statement. 

Proposition 7.6 (cf. [16, Chap. V, §1] in the Siegel modular case). 
The following properties hold if bad primes are invertible in the coefficients: 

(a) Koecher principle, 
(b) q-expansion principle, 
(c) the finiteness theorem for the space of geometric modular forms 

of given weight (including the vector valued case). 

26This method works over Z[ ~ ]. One must exclude prime 2 since it is a 
bad prime for the theory of algebraic theta functions. 
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One can also show that ShK( G, X)min = Proj ffik>l Mk gives an­
other compactification of ShK(G, X), which is in fact- the arithmetic 
minimal ( = Satake, Baily-Borel) compactification: 

Proposition 7.7 (cf. [16, Chap. V, §2] in the Siegel modular case). 
The compactification ShK( G, X)min of ShK( G, X) has the following 
property: for a Noetherian normal scheme S, an open dense subscheme 
U, and a morphism f: U ~ ShK(G,X) such that the pull-back of the 
universal abelian scheme J*(d'univ) admits a semi-stable reduction to S, 

f has a unique extension f: S ~ ShK(G, X)min· 

These integrality results have very important consequence in number 
theory. For example, one can use q-expansion principle to produce con­
gruence between two modular forms. Deligne and Ribet [14] constructed 
p-adic £-functions for finite order characters over a totally real field by 
using Hilbert-Blumenthal varieties, and recently Urban and Skinner use 
similar method for unitary Shimura varieties in their study of Iwasawa 
main conjecture of elliptic curves over Q. 

§8. Rigid spaces and Frobenius 

The main subject to be dealt with in this section, as the second 
application, is an application of rigid geometry to theory of schemes. 
The category of rigid spaces is, as pointed out before, much broader 
than that of schemes. Hence, what we like to show is, so to speak, one 
of the "non-scheme-theoretic" methods for treating schemes. In fact, 
such methods that derail from scheme theory often reveal hidden and 
important features in scheme theory, which would be quite invisible only 
from the scheme-theoretic point of view. 

In this section, we particularly focus on Frobenius. To do this, we 
first show the general technique to bridge between scheme theory and 
rigid geometry in the next subsection. 

8.1. From schemes to rigid spaces; constant deformation 
technique 

This is the general technique that is important for applying rigid 
geometry to geometry of schemes. The general picture is as follows 
(Figure 10). 

First, start from a variety X over a field k. From X we are going to 
construct canonically a rigid space. Consider the ring of formal power 
series k[[t]] endowed with the t-adic topology, and put Xk[[t]] = X Xk 

Spf k[[t]] (constant deformation). Then one takes its associated rigid 
space (Xk[[t]]Yig over (Spf k[[t]])rig. 
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Variety Formal Rigid space 
scheme 

X xk[[tJJ (Xk[[tJJYig 

1 1 1 
Speck Spf k[[t]] (Spf k[[t]])rig 

Fig. 10. Constant deformation technique 

In spite of its entirely trivial looking, this construction opens the way 
for several effective applications of rigid geometry to algebraic geometry. 

8.2. Frobenius 

Rigid geometry reveals a new feature of Frobenius morphisms in 
positive characteristic. This feature will be given in Claim 8.1. 

Consider the following situation: 

• S: an lFq-scheme, 
• Frq: S--* S: Frobenius over 1Fq, that is, the q-th power map, 
• <(}5 : a category of geometric objects over S. 

One of the properties of Frobenius morphisms that are already 
known to be very important in classical algebraic and arithmetic ge­
ometry is that, most of the time, the Frobenius induces a self-functor 

Fr~ : <(}s ---+ <(/s. 

In other words, one has the "dynamical system" with the "phase space" 
<(}5 acted on by the "self-similarity map" Fr~. As usual in the theory of 
dynamical system, one is particularly interested in the "Fr~-fixed point", 
that is, the Frq-structure 

Fr~A ~A. 

Once one has such a structure, one is interested in the following question. 

Question: what happens near the ''Fr~-fixed point"? 

Constant deformation and Frobenius. In this context, the constant 
deformation technique proves to be useful. First observe that, in complex 
situation with AJ: = Spec C[X], the selfmap 
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is a contracting map near the origin for the analytic topology. The rigid 
geometric counterpart of this is the following: 

is contracting near 0 in the sense that (Frq(Jl))1 (r)) c Jl))1 (rq). 
More precisely, for an lF q-variety X, consider the rigid space 

!!£ = (XIFq[[tlJ)rig 

obtained by constant deformation. Let Y C X be an Frq-invariant 
subspace, and set 

'Y = (YIFq[[tlJ)rig. 

We think of !!£ as the phase space equipped with the dynamical system 

This can be more concretely done by means of the associated Zariski­
Riemann space (!!£); by this, we have a topological space (in the usual 
sense) as the phase space. 

Claim 8.1. "The Frobenius mapping is contracting near Y ," i.e., 
Fr q is contracting near ( 'Y) in ( !!£). . 

The claim can be shown by the reasoning similar to that in the case 
of the unit disk as above. The property of Frobenius that the claim 
shows is so essential in general that it actually simplifies arguments in 
many situations. The Lefschetz trace formula, which we are to discuss 
in the next subsection, is one of them. 

8.3. Trace formula in characteristic p 

The "dynamical system" approach to Frobenius as in §8.2 has al­
ready appeared and applied in the study of Lefschetz trace formula in 
characteristic p by the first-named author (solution of Deligne's conjec­
ture [19]). Let us briefly outline the argument therein. 

Deligne 's conjecture. Let X be an algebraic variety over a field k. 
Consider a correspondence 

such that a1 = pr1 o a is proper and that az = pr2 o a is quasi-finite. Let 
K be a Qg-complex (where i E k) with a cohomological correspondence 
compatible with a. In this situation the Lefschetz number, an element 
of «J!c, is defined by 

Lef(a, Rfc(X, K)) =Trace( a*, Rfc(X, K)). 
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Theorem 8.2 (Deligne's conjecture; [19]). Let k = iFq. If the above 
data admit Frq-structure, then there exists N EN such that the following 
conditions are satisfied: 

(1) dimFix(Fr; o a) = 0 for qn > N; 
(2) for qn > N, 

Lef(Fr; o a, Rrc(X, K)) = 
DEFix(Fr~oa) 

naive.locv(Fr; o a, K). 

Here naive.locv(a, K) vanishes if Kla2 (D) = 0. 

The proof is given by establishing the trace formula for certain rigid 
analytic correspondences; note that this argument is not completely 
scheme-theoretical. 

Another way of proof was given by Shpiz and Pink in their work 
around 1990, in which they assume that X is smooth and K is a smooth 
sheaf, that there exists a good compactification, and that K is tame. 
Recently, T. Saito andY. Varshavsky [43] independently gave scheme­
theoretic proofs. 

Remark 8.3. In [19] it was assumed that X and Y are schemes. 
But, by Equivalence Theorem (Theorem 6.12) and Nagata's Embedding 
Theorem for algebraic spaces, we may weaken the assumption to that 
X and Y are separated algebraic spaces of finite type over k. This 
generalization actually eliminates the use of an argument in [29] to show 
that the moduli space of Shtuka is a scheme. 27 

Applications of Deligne 's conjecture. Finally, let us list some of the 
applications of Deligne's conjecture, which provides a very strong count­
ing argument in arithmetic and many other areas in mathematics: 

• Non-abelian class field theory (Shtuka moduli (L. Lafforgue 
[29]), Shimura varieties (Harris-Taylor ... )), 

• Representation theory of Chevalley groups (Digne-Rouquier, 
... ), 

• Model theory (Hrushovski-Macintyre). 
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