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Polarized K3 surfaces of genus thirteen 

Shigeru Mukai 

A smooth complete algebraic surface S is of type K3 if S is regular 
and the canonical class Ks is trivial. A primitively polarized K3 surface 
is a pair (S, h) of a K3 surface S and a primitive ample divisor class 
h E Pic S. The integer g := !(h2 ) + 1 ~ 2 is called the genus of (S, h). 
The moduli space of primitively polarized K3 surfaces of genus g exists 
as a quasi-projective (irreducible) variety, which we denote by :F9 . As 
is well known a general polarized K3 surface of genus 2 :::; g :::; 5 is a 
complete intersection of hypersurfaces in a weighted projective space: 
(6) c P(1112), (4) c P 3 , (2) n (3) c P 4 and (2) n (2) n (2) c P 5 . 

In connection with the classification of Fano threefolds, we have 
studied the system of defining equations of the projective model 829 _ 2 C 

pg and shown that a general polarized K3 surface of genus g is a com
plete intersection with respect to a homogeneous vector bundle V9 _ 2 (of 
rank g- 2) in a g-dimensional Grassmannian G(n, r), g = r(n- r), in a 
unique way for the following six values of g: 

g 6 8 9 10 
r 2 2 3 5 

V9-2 30c(1) E6 Oc(2) 60c(1) /\:& £ E6 40c.(1) 1\4 £ E6 30c(i) 

12 20 
3 4 

3{\"£EB0c(1) 3/\:& £ 

Here£ is the universal quotient bundle on G(n, r). See [4] and [5] for 
the case g = 6, 8, 9, 10, [6, §5] for g = 20 and §3 for g = 12. 

By this description, the moduli space :F9 is birationally equivalent 
to the orbit space H 0 (G(n,r), Vg-2)/(PGL(n) x Autc(n.r) Vg-2) and 

Received May 30, 2005. 
Revised October 5, 2005. 
Supported in part by the JSPS Grant-in-Aid for Scientific Research (B) 

17340006. 



316 S. Mukai 

hence is unirational for these values of g. The uniqueness of the descrip
tion modulo the automorphism group is essentially due to the rigidity 
of the vector bundle E := Els- All the cohomology groups Hi(sl(E)) 
vanish. 

A general member (S, h) E :F9 is a complete intersection with respect 
to the homogeneous vector bundle 8U in the orthogonal Grassmannian 
O-G(10, 5) in the case g = 7 ([4]), and with respect to 5U in O-G(9, 3) 
in the case 18 ([6]), where U is the homogeneous vector bundle on the 
orthogonal Grassmannian such that H 0 (U) is a half spinor representa
tion U16 . Both descriptions are unique modulo the orthogonal group. 
Hence :F7 and :F18 are birationally equivalent to G(8, U16)/ PS0(10) and 
G(5, U16)/ S0(9), respectively. The unirationality of :Fn is proved in [7] 
using a non-abelian Brill-Noether locus and the unirationality of Mn, 
the moduli space of curves of genus 11. 

In this article, we shall study the case g = 13 and show the following: 

Theorem 1. A general member ( S, h) E :F13 is isomorphic to a 
complete intersection with respect to the homogeneous vector bundle 

of rank 10 in the 12-dimensional Grassmannian G(7, 3), where :F is the 
dual of the universal subbundle. 

Corollary :F13 is unirational. 

Remark 1. A general complete intersection (S, h) with respect to 
the homogeneous vector bundle 1\4 :FffiS2[ in the 10-dimensional Grass
mannian G(7, 2) is also a primitively polarized K3 surface of genus 13. 
But (S, h) is not a general member of :F13 . In fact, S contains 8 mutually 
disjoint rational curves R 1 , ... , R 7 , which are of degree 3 with respect 
to h. This will be discussed elsewhere. 

Unlike the known cases described above, the vector bundle E = Els 
in the theorem is not rigid. Hence the theorem does not give a birational 
equivalence between :F13 and an orbit space. But E is semi-rigid, that 
is, H 0 (sl(E)) = 0 and dimH1 (sl(E)) = 2. Instead of :F13 itself, the 
theorem gives a birational equivalence between the universal family over 
it and an orbit space. 

Let S c G(7, 3) be a general complete intersection with respect to 
V. Then S is the common zero locus of the two global sections of 1\2 [ 

corresponding to general bivectors a-1 , a-2 E 1\2 C 7 and one global section 
of 1\3 :F corresponding to a general T E 1\3 C 7' v. The 2-dimensional 
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subspace P = (cr1, cr2) C A 2 C 7 is uniquely determined by S. Let P 1\ P 
be the subspace of A 3 C 7·v corresponding to p 1\ p c A 4 C 7 . Then 
CT modulo P 1\ P is also uniquely determined by S. It is known that 
the natural action of PGL(7) on G(2, A2 C7) has an open dense orbit 
(Sato-Kimura[9, p. 94]). Hence we obtain the natural birational map 

4 

(1) '1/J: P*(A C 7 j(P A P))/G · · · -4 :F13, 

which is dominant by the theorem, where G is the (10-dimensional) 
stabilizer group of the action at P E G(2, A 2 C7 ). 

Theorem 2. For every general member p = (S, h) E :F13 , the fiber 
of 'ljJ at p is birationally equivalent to the moduli K3 surface Ms(3, h, 4) 
of semi-rigid rank three vector bundles with c1 = h and x = 3 + 4. 

As is shown in [8], S := Ms(3, h, 4) carries a natural ample divi
sor class h of the same genus (=13) and (S,h) ~-----> (S,h) induces an 
automorphism of :F13. (In fact, this is an involution.) Hence we have 

Corollary The orbit space P*(A 4 C 7 /(P 1\ P))/G is birationally 
equivalent to the universal family over :F13 , or the coarse moduli space 
of one pointed polarized K3 surfaces (S, h, x) of genus 13. 

Remark 2. 8 Kond6[3] proves that the Kodaira dimension of :F9 is 
non-negative for the following 17 values: 

g =41,42,50,52,54,56,58,60,65,66,68,73,82,84,104,118,132. 

The Kodaira dimension of :Fm2(g-l)+l is non-negative for these values 
of g and for every m 2:: 2 since it is a finite covering of :F9 • 

Notations and convention. Algebraic varieties and vector bun
dles are considered over the complex number field C. The dual of a vec
tor bundle (or a vector space) E is denoted by Ev. Its Euler-Poincare 
characteristic Li(-)ihi(E) is denoted by x(E). The vector bundles of 
traceless endomorphisms of E is denoted by sl(E). For a vector space 
V, G(V,r) is the Grassmannian of r-dimensional quotient spaces of V 
and G(r, V) that of r-dimensional subspaces. The isomorphism class of 
G(V, r) with dim V = n is denoted by G(n, r). The projective spaces 
G(V, 1) and G(1, V) are denoted by P*(V) and P*(V), respectively. 
Oa(1) is the pull-back of the tautological line bundle by the Pliicker 
embedding G(V, r) ~ P*(Ar V). 



318 S. Mukai 

§ 1. Vanishing 

We prepare the vanishing of cohomology groups of homogeneous 
vector bundles on the Grassmannian G(n, r), which is the quotient 
of SL(n) by a parabolic subgroup P. The reductive part Pred of P 
is the intersection of GL(r) x GL(n - r) and SL(n) in GL(n). We 
take {(a1, ... , ar; ar+l, ... , an) 1 I:~ ai = o} c zn as root lattice and 
zn /Z(1, 1, ... , 1) as the common weight lattice of SL(n) and Pred· We 
take { ei - ei+ 1 11 ~ i ~ n - 1} as standard root basis. The half of the 
sum of all positive roots is equal to 

6 = (n- 1, n- 3, n- 5, ... , -n + 3, -n + 1)/2. 

Let p be an irreducible representation of Pred and 
w E zn /Z(1, 1, ... , 1) its highest weight. We denote the homogeneous 
vector bundle on G(n, r) induced from p by Ew. w is singular if a 
number appears more than once in w + 6. If w is not singular and 
w+6 = (a1, a2, ... , an), then there is a unique (Grassmann) permutation 
a = O:w such that aa(l) > aa(2) > · · · > aa(n). We denote the length of 
aw, that is, the cardinality of the set {(i,j) 11 ~ i < j ~ n, ai < aj}, by 
l(w). 

Theorem 3 (Borel-Hirzebruch[2]). (a) If w is singular, then 
all the cohomology groups Hi(G(n,r),Ew) vanish. 

(b) lfw is not, then all the cohomology groups Hi(G(n, r), Ew) van
ish except for one i := l(w). Moreover, H 1(w)(G(n,r),£p) is an 
irreducible representation of S L ( n) with highest weight 

The dimension of this unique nonzero cohomology group is equal 
to rrl:'Oi<j:'On lai - aj 1/ (j - i). 

l ( w) is called the index of the homogeneous vector bundle Ew. 

Example. In the following table, - means that the weight w is 
singular and we put s = n- r. 
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weight w homogeneous bundle Ew l(w) Hl(w) 

(1, 0, 0, ... '0, 0; 0, ... '0, 0) £, universal quotient 0 en 
bundle 

(0, 0, 0, ... ' -1, 0; 0, ... '0, 0) £V -
(1, 1, 0, ... '0, 0; 0, ... '0, 0) /\2£ 0 /\2Cn 
(1, 1, 1, ... ' 1, 1; 0, ... '0, 0) Oc(1) = det£ = detF 0 f\rcn 

(0,0,0, ... ,0,0; -1, ... ' -1) 
(0, 0, 0, ... '0, 0; 1, ... '0, 0) ,rv, universal sub bundle -
(0, 0, 0, ... '0, 0; 0, ... '0, -1) F 0 cn,V 

(1, 0, 0, ... '0, 0; o, ... '0, -1) Tc(n,r), tangent bundle 0 sl(Cn) 
(0, 0, 0, ... ' -1; 1, 0, ... '0, 0) nc(n,r)l cotangent bundle 1 c 
( -s, -s, ... , -s; r, r, ... ,·r) Oc( -n), canonical bundle rs c 

We apply the theorem to the 12-dimensional Grassmannian G(7, 3). 

Lemma 4. (a) All cohomology groups of the homogeneous vec-
tor bundle /\P(2£(-1)) ® /\q(F(-1)) on G(7,3) vanish except 
for the following: 

i}p=q=O, h0 (0c)=1,and 
ii} p = 6, q = 4, h12 (0c( -7)) = 1. 

(b) All cohomology groups of Oc(1) ® /\P(2£(-'-1)) ® /\q(F(-1)) 
vanish except for the following: 

i} p = q = 0, h0 (0c(1)) = 35, 
ii} p = 1, q = 0, h0 (2£) = 2 · 7 = 14, and 
iii} p = O,q = 1, h0 (F) = 7. 

(c) All cohomology groups of£® /\P(2£( -1)) ® 1\ q (F( -1)) vanish 
except for h0 (£) = 7 with p = q = 0. 

(d) All cohomology groups ofF®/\P(2£(-1))®/\q(F(-1)) vanish 
except for h0 (F) = 7 with p = q = 0. 

(e) All cohomology groups of /\2 £®/\P(2£(-1))®/\q(F(-1)) van
ish except for the following: 

i} p = q = 0, h0 (/\2 £) = 21, and 
ii} p = 1, q = 0, h0 (/\ 2£ ® (2£( -1))) = 2. 

(f) All cohomology groups of f\3 F®/\P(2£(-1))®/\q(F(-1)) van-
ish except for the following: 

i}p=q=O, h0 (/\3 F)=35, 
ii}p=O,q=1, h0 (/\3 F®F(-1))=1, and 
iii)p=2,q=O, h1(f\3 F®/\2(2£(-1))) =3h1(f\3 F® 

/\2 £V) = 3. 
(g) All cohomology groups ofsl(£)® /\P(2£( -1)) ® 1\ q (F( -1)) van

ish except for h6 = 2 with p = 3, q = 2. 
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Proof. The following table describes the decomposition of 
/\P(2£(-1)) into indecomposable homogeneous vector bundles. 

p decomposition weightw' w' + J' 
0 Oc (0,0,0) (3,2, 1) 
1 2£( -1) 2(0, -1, -1) (3,1,0) 
2 3(/\2 £)( -2) 3(-1,-1,-2) (2,1,-1), 

ffiS2£( -2) ffi(O, -2, -2) (3,0,-1) 
(2) 3 40c(-2) 4( -2, -2, -2) (1,0, -1), 

ffi2sl(£)( -2) ffi2(-1, -2, -3) (2, 0, -2) 
4 3£( -3) 3( -2, -3, -3) (1, -1, -2), 

ffi(S2 /\2 £)(-4) ffi( -2, -2, -4) (1, 0, -3) 
5 2(/\2 £)(-4) 2( -3, -3, -4) (0, -1, -3) 
6 Oc(-4) (-4, -4, -4) (-1,-2,-3) 

Here J' = (3, 2, 1) is the head of J = (3, 2, 1; 0, -1, -2, -3). 
1\ q (F( -1)) is indecomposable. The following lists its weight w" and 

w" + J", where J" = (0, -1, -2, -3) is the tail of J. 

q bundle weightw" w" + J" 
0 Oc (0,0,0,0) (0, -1, -2, -3) 

(3) 
1 F(-1) (1, 1, 1, 0) (1, 0, -1, -3) 
2 (/\ 2 F)( -2) (2,2,1,1) (2, 1, -1, -2) 
3 (/\3 F)(-3) (3,2,2,2) (3,1,0,-1) 
4 Oc( -3) (3,3,3,3) (3,2,1,0) 

We prove (a), (f) and (g) applying Theorem 3. The other cases are 
similar. 

(a) Take w' and w" from the tables (2) and (3), respectively, and 
combine into w = ( w'; w"). Then w is singular except for the two cases 

w + J = (3, 2, 1; 0, -1, -2, -3) with p = q = 0 

and 

w+J=(-1,-2,-3;3,2,1,0) with p=6,q=4. 

The indices l(w) are equal to 0 and 12, respectively. 
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(f) The homogeneous vector bundle 1\3 F 181 1\ q (F( -1)) decomposes 
in the following way: 

q weight w" w" + li" 
0 (0 -1 -1 -1) 

' ' ' 
(0 -2 -3 -4) 

' ' ' 
(4) 

1 (1,0,0, -1) EB (0,0,0,0) (1, -1, -2, -4), (0, -1, -2, -3) 
2 (2,1,0,0) EB (1,1,1,0) (2, 0, -2, -3), (1, 0, -1, -3) 
3 (3,1,1,1) EB (2,2,1,1) (3, 0, -1, -2), (2, 1, -1, -2) 
4 (3,2,2,2) (3,1,0,-1) 

Take w' and w" from the table (2) and this table, respectively, and 
consider w = ( w'; w"). Then w is singular except for the following three 
cases. 

i) p = q = 0, w + li = (3, 2, 1; 0, -2, -3, -4), l(w) = 0, 
ii) p = 0, q = 1, w + li = (3, 2, 1; 0, -1, -2, -3), l(w) = 0, and 
iii) p = 2, q = 0, w + li = (2, 1, -1; 0, -2, -3, -4), l(w) = 1. 

(g) The following table shows the indecomposable components of 
sl(£) 181 /\P(2£( -1)) which do not appear in that of /\P(2£( -1)). 

p weight w' other than Table (2) w' + li' 
0 (1,0,-1) (4,2,0) 
1 2(1, -1, -2) EB 2(0, 0, -2) (4, 1, -1), (3, 2, -1) 
2 4(0, -1, -3) EB (1, -2, -3) (3, 1, -2), (4, 0, -2) 

(5) 3 2(0, -2, -4) EB 2( -1, -1, -4) (3, 0, -3), (2, 1, -3) 
EB2(0, -3, -3) (3,-1,-2) 

4 ( -1, -2, -5) EB 4( -1, -3, -4) (2, 0, -4), (2, -1, -3) 
5 2( -2, -3, -5) EB 2( -2, -4, -4) (1, -1, -4), (1, -2, -3) 
6 ( -3, -4, -5) (0, -2, -4) 

Take w' and w" from the table (2) and this table, respectively, and 
consider w = ( w'; w"). Then w is singular except for the case w + li = 
(3, 0, -3; 2, 1, -1, -2) with p = 3 and q = 2. The index is equal to 
6. Q.E.D. 

Let S c G(7, 3) be a complete intersection with respect to V = 

2 1\2 £ EB 1\3 F. The Koszul complex 

2 9 10 

K : Oa .__ vv .__ f\ Vv .__ · · · .__ f\ vv .__ f\ Vv .__ 0 

gives a resolution of the structure sheaf Os. 1\ n vv is isomorphic to 
$p+q=n /\P(2£( -1)) 1811\ q(F( -1)). 

Proposition 5. (a) H0 (S, Os) = C, H 1(S, Os) = 0. 
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(b) The restriction map H 0 (G(7, 3), Oc(1)) ---+ H 0 (S, Os(l))is 
surjective, H0 (S, 0 5 (1))is of dimension 14 and H 1(S, Os(1)) 
= H 2 (S, Os(1)) = 0. 

(c) The restriction map H 0 (G(7, 3), £)---+ H 0 (S, E) is an isomor
phism and H 1 (S, E) = H 2 (S, E) = 0. 

(d) The restriction map H 0 (G(7,3),F) ---+ H 0 (S,F) is an iso
morphism. 

(e) H 0 ( G ( 7, 3), 1\2 £) ---+ H 0 ( S, 1\2 E) is surjective and the kernel 
is of dimension 2. 

(f) H 0 ( G(7, 3), 1\3 F) ---+ H 0 (S, 1\3 F) is surjective and the kernel 
is of dimension 4. 

(g) E is simple and semi-rigid, that is, H 0 (sl(E)) = 0 and 
h 1 (sl(E)) = 2. 

Proof. We prove (a) and (f) as sample. Other cases are similar. 

(a) The restriction map H 0 (G(7, 3), 0 0 )---+ H 0 (S, Os) is surjective 
by the vanishing H 1(Vv) = H 2(/\2 Vv) = · · · = H 10 (f\ 10 Vv) = 0 and 
the exact sequence 0 ,...__ Os ,...__ K. H 1 (S, Os) vanishes since H 1 (0c) 
= H2(Vv) = ... = Hll(/\ w vv) = 0. 

(f) The restriction map is surjective by the vanishing Hn(/\ 3 F 0 
1\ n vv) for n = 1, ... ) 10 and the exact sequence 

3 3 

0 ,.__1\F ,.__f\F0K. 

The dimension of the kernel is equal to 

3 3 2 

h0 (f\ F 0 Vv) + h1(f\ F 01\ Vv) = 1 + 3 = 4 

since Hn- 1(/\3 F 0 1\n Vv) = 0 for n = 3, ... , 10. Q.E.D. 

§2. Proof of Theorems 1 and 2 

Let S be the zero locus (s) 0 of a general global section s of the 
homogeneous vector bundle V = 1\2 £ EB 1\2 £ EB 1\3 F on the Grassman
nian G(7, 3). Since V is generated by global sections, S is smooth by 
[6, Theorem 1.10], the Bertini type theorem for vector bundles. Since 
r(V) = 3 + 3 + 4 = dimG(7, 3)- 2 and 

det V ~ Oc(2) 0 Oc(2) 0 Oa(3) ~ det Ta(7,3)' 

S is of dimension two and the canonical line bundle is trivial. By (a) 
of Proposition 5, S is connected and regular. Hence S is a K3 sur
face. We denote the class of hyperplane section by h. Then, by (b) of 
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Proposition 5, we have x(Os(h)) = 14, which implies (h2 ) = 24 by the 
Riemann-Roch theorem. Hence we obtain the rational map 

to the moduli space F~3 of polarized K3 surfaces which are not neces
sarily primitive. 

By (g) of Proposition 5, the vector bundle E = Els is simple. Let 
(S', h') be a small deformation of (S, h). Then there is a vector bun
dle E' on S' which is a deformation of E by Proposition 4.1 of [6]. 
E' enjoys many properties satisfied by E: E' is simple, generated by 
global sections, h0 (E') = 7, 1\3 H 0 (E') ______, H 0 (1\ 3 E') is surjective, etc. 
Therefore, E' embeds S' into G(7, 3) and S' is also a complete intersec
tion with respect to V. Hence the rational map w is dominant onto an 
irreducible component of F~3 and Theorem 1 follows from the following: 

Proposition 6. The polarization h of (S, h), a complete intersec
tion with respect to V in G(7, 3), is primitive. 

In the local deformation space of (S, h), the deformations (S', h')'s 
with Picard number one form a dense subset. More precisely, it is the 
complement of an infinite but countable union of divisors. Hence we 
have 

Lemma 7. There exists a smooth complete intersection S with re
spect to V whose Picard number is equal to one. 

Proof of Proposition 6. Since the assertion is topological it suffices 
to show it for one such ( S, h). We take ( S, h) as in this lemma. Assume 
that h is not primitive. Since (h2 ) = 24, h is linearly equivalent to 2l 
for a divisor class l with (lZ) = 6. The Picard group Pic S is generated 
by l. By the Riemann-Roch theorem and the (Kodaira) vanishing, we 
have h0 (0s(nl)) = 3n2 + 2 for n 2: 1. 

Claim 1. h0 (E( -l)) = 0. 

Assume the contrary. Then E contains a subsheaf isomorphic to 
Os(nl) with n 2: 1. Since h0 (0s(nl)):::; h0 (E) = 7, we haven= 1 and 
the quotient sheaf Q = E/Os(l) is torsion free. Since 5 = h0 (0s(l)) < 
h0 (E) = 7, we have H 0 ( Q) =F 0. Since Q is of rank two and det Q c::: 
Os(l), we have Hom (Q, Os(l)) =F 0, which contradicts (g) of Proposi
tion 5. 

Now we consider the vector bundle M = (/\ 2 E)( -l). By the 
claim and the Serre duality, we have h2 (M) = dimHom(M, Os) = 
h0 (E( -l)) = 0. Hence we have h0 (M) 2: x(M) = 4. Take 4 linearly 
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independent global sections of M and we consider the homomorphism 
cp : 40s -----+ M. 

Claim 2. cp is surjective outside a finite set of points on S. 

Let r be the rank of the image of cp. Since Hom(Os(l), M) 
H 0 (f\ 2 E)( -h)) = H 0 (Ev) = H 2 (E)v = 0 by (c) of Proposition 5, 
we have r 2 2. Since Hom(M, Os) = 0, r = 2 is impossible. Hence 
we have r = 3. Since the image and M have the same determinant line 
bundle ( ~ 0 s ( l)), the co kernel of cp is supported by a finite set of points. 

The kernel of cp is a line bundle by the claim. It is isomorphic to 
Os( -l). Hence we have the exact sequence 

0-----+ Os( -l) -----+ 40s ~ M. 

Since x(Cokercp) = 3 < x(M), cp is not surjective. In fact, the cokernel 
is a skyscraper sheaf supported at a point. Tensoring Os(l), we have 
the exact sequence 

2 
cp(l) 1\ 

0 -----+ 0 s -----+ 40 s ( l) -----+ E -----+ C (p) -----+ 0. 

H 0 (cp(l)) is surjective since h0 (40s(l)) = 20 and h0 (/\2 E) = 19. But 
this contradicts (e) of Proposition 5. Q.E.D. 

Proof of Theorem 2. Let P = (a1 , a 2 ) be a general 2-dimensional 
subspace of 1\2 C 7 and X 6 c G(7, 3) the common zero locus of the 
two global sections of 1\2 E corresponding to a 1 and a 2 . A point q of 
P * (/\ 3 C7•v I P 1\ P) determines a global section of 1\3 Fix. We denote 
the zero locus by Sq c X 6 . 

Sq c X 6 c G(7, 3) 
n n n 

p13 c p20 c p34 

The restriction of E to Sq is semi-rigid by (g) of Proposition 5. Let 
3 31 c P * (/\ 3 C 7• vI P 1\ P) be the open subset consisting of points q such 
that Sq is a K3 surface and the restriction Elsq is stable with respect to 
h. 

Lemma 8. 3 31 is not empty. 

Proof. Let (S, h) be as in Lemma 7 and put E = Els. Then, by 
Proposition 6, Pic Sis generated by h. Since h0 (0s(h)) = 14 > h0 (E) = 
7, we have Hom(Os(nh),E) = 0 for every integer n 2 113. Since 



K3 surfaces of genus thirteen 325 

c1(E) =hand since Hom(E, Os(nh)) = 0 for every integer n ~ 1/3, E 
is stable. Q.E.D. 

The correspondence q f---> £1sq induces a morphism from a general 
fiber of 3 31 /G · · · -+ F 13 at [Sq] to the moduli space Ms(3, h, 4) of semi
rigid bundles. Conversely there exists a morphism from a non-empty 
open subset of Ms(3, h, 4) to the fiber since a small deformation E' of 
£1sq gives an embedding of Sq into G(7, 3) such that the image is a 
complete intersection with respect to V. 

Remark 3. By (f) of Proposition 5, H 0 (X6 , 1\3 Fix) is isomorphic 
to I\3 C 7,vjPI\P. Hence the rational map '1/J in (1) coincides with 
P *(H0 (X6 , 1\3 Fix ))/G · · ·-+ F13 induced by sf---> (s)o. 

§3. K3 surface of genus seven and twelve 

We describe two cases g = 7 and 12 closely related with Theorems 
1 and 2. The proofs are quite similar to the cases g = 13 and 18, 
respectively, and we omit them. 

First a polarized K3 surface of genus 7 has the following description 
other than that in the orthogonal Grassmannian O-G(5, 10): 

Theorem 9. A general polarized K3 surface (S, h) of genus 7 is a 
complete intersection with respect to the rank four homogeneous vector 
bundle 20a(1) EB £(1) in the 6-dimensional Grassmannian G(5, 2). 

Sis the common zero locus of two hyperplane sections H1 and H2 of 
G(5, 2) c P 9 corresponding to a 1 , a 2 E 1\2 C 5 and one global section s 
of £(1). The 2-dimensional subspace P = (a1,a2) c /\2 C 5 is uniquely 
determined by S and X 4 = G(5, 2) n H 1 n H 2 is a quintic del Pezzo 
fourfold. Let Q be the image of C 5 Q9 P by the natural linear map 
C 7 0/\2 C 7 -----+ H 0 (£(1)). Then Q is of dimension 10 and we obtain 
the natural rational map 

as in the case g = 13, where G8 is the general stabilizer group of the 
action PGL(5) n. G(2, 1\2 C 5 ). H 0 (£(1)) is a 40-dimensional irreducible 
representation of GL(5) by Theorem 3. The fiber of the map (6) at 
general (S, h) is a surface and birationally equivalent to the moduli K3 
surface Ms(2, h, 3) of semi-rigid rank two vector bundles with c1 = h 
and x = 2 + 3. 

Secondly, in the 12-dimensional Grassmannian G(7, 3), there is an
other type of K3 complete intersection other than Theorem 1. 
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Theorem 10. A general member (S, h) E :F12 is a complete inter
section with respect to V10 = 3/\2 t' EB Oa(l) in G(7, 3). 

Sis the common zero locus of the three global sections of 1\2 t' cor
responding to general bivectors a 1 , a 2 , a3 E 1\2 C 7 . The 3-dimensional 
subspace N = (a1, a 2, a3) C 1\2 C 7 is uniquely determined by S. The 
common zero locus XN of the global sections of /\2 t' corresponding toN 
is a Fano threefold and is embedded into P 13 anti-canonically. XN's are 
parameterized by an open set 3 6 of the orbit space G(3, 1\2 C 7 )/ PGL(7). 
See [5] for other descriptions of XN's and their moduli spaces. The mod
uli space :F12 is birationally equivalent to a P 13-bundle over this 3 6 . 
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