Advanced Studies in Pure Mathematics 45, 2006
Moduli Spaces and Arithmetic Geometry (Kyoto, 2004)
pp. 315-326

Polarized K3 surfaces of genus thirteen

Shigeru Mukai

A smooth complete algebraic surface S is of type $K 3$ if S is regular and the canonical class K_{S} is trivial. A primitively polarized K3 surface is a pair (S, h) of a K3 surface S and a primitive ample divisor class $h \in \operatorname{Pic} S$. The integer $g:=\frac{1}{2}\left(h^{2}\right)+1 \geq 2$ is called the genus of (S, h). The moduli space of primitively polarized K3 surfaces of genus g exists as a quasi-projective (irreducible) variety, which we denote by \mathcal{F}_{g}. As is well known a general polarized K3 surface of genus $2 \leq g \leq 5$ is a complete intersection of hypersurfaces in a weighted projective space: $(6) \subset \mathbf{P}(1112),(4) \subset \mathbf{P}^{3},(2) \cap(3) \subset \mathbf{P}^{4}$ and $(2) \cap(2) \cap(2) \subset \mathbf{P}^{5}$.

In connection with the classification of Fano threefolds, we have studied the system of defining equations of the projective model $S_{2 g-2} \subset$ \mathbf{P}^{g} and shown that a general polarized K 3 surface of genus g is a complete intersection with respect to a homogeneous vector bundle \mathcal{V}_{g-2} (of rank $g-2$) in a g-dimensional Grassmannian $G(n, r), g=r(n-r)$, in a unique way for the following six values of g :

g	6	8	9	10
r	2	2	3	5
\mathcal{V}_{g-2}	$3 \mathcal{O}_{G}(1) \oplus \mathcal{O}_{G}(2)$	$6 \mathcal{O}_{G}(1)$	$\bigwedge^{2} \mathcal{E} \oplus 4 \mathcal{O}_{G}(1)$	$\bigwedge^{4} \mathcal{E} \oplus 3 \mathcal{O}_{G}(1)$

12	20
3	4
$3 \bigwedge^{2} \mathcal{E} \oplus \mathcal{O}_{G}(1)$	$3 \bigwedge^{2} \mathcal{E}$

Here \mathcal{E} is the universal quotient bundle on $G(n, r)$. See [4] and [5] for the case $g=6,8,9,10,[6, \S 5]$ for $g=20$ and $\S 3$ for $g=12$.

By this description, the moduli space \mathcal{F}_{g} is birationally equivalent to the orbit space $H^{0}\left(G(n, r), \mathcal{V}_{g-2}\right) /\left(P G L(n) \times A u t_{G(n, r)} \mathcal{V}_{g-2}\right)$ and

Received May 30, 2005.
Revised October 5, 2005.
Supported in part by the JSPS Grant-in-Aid for Scientific Research (B) 17340006.
hence is unirational for these values of g. The uniqueness of the description modulo the automorphism group is essentially due to the rigidity of the vector bundle $E:=\left.\mathcal{E}\right|_{S}$. All the cohomology groups $H^{i}(s l(E))$ vanish.

A general member $(S, h) \in \mathcal{F}_{g}$ is a complete intersection with respect to the homogeneous vector bundle $8 \mathcal{U}$ in the orthogonal Grassmannian $O-G(10,5)$ in the case $g=7([4])$, and with respect to $5 \mathcal{U}$ in $O-G(9,3)$ in the case $18([6])$, where \mathcal{U} is the homogeneous vector bundle on the orthogonal Grassmannian such that $H^{0}(\mathcal{U})$ is a half spinor representation U^{16}. Both descriptions are unique modulo the orthogonal group. Hence \mathcal{F}_{7} and \mathcal{F}_{18} are birationally equivalent to $G\left(8, U^{16}\right) / P S O(10)$ and $G\left(5, U^{16}\right) / S O(9)$, respectively. The unirationality of \mathcal{F}_{11} is proved in [7] using a non-abelian Brill-Noether locus and the unirationality of \mathcal{M}_{11}, the moduli space of curves of genus 11 .

In this article, we shall study the case $g=13$ and show the following:
Theorem 1. A general member $(S, h) \in \mathcal{F}_{13}$ is isomorphic to a complete intersection with respect to the homogeneous vector bundle

$$
\mathcal{V}=\bigwedge^{2} \mathcal{E} \oplus \bigwedge^{2} \mathcal{E} \oplus \bigwedge^{3} \mathcal{F}
$$

of rank 10 in the 12-dimensional Grassmannian $G(7,3)$, where \mathcal{F} is the dual of the universal subbundle.

Corollary \mathcal{F}_{13} is unirational.
Remark 1. A general complete intersection (S, h) with respect to the homogeneous vector bundle $\bigwedge^{4} \mathcal{F} \oplus S^{2} \mathcal{E}$ in the 10-dimensional Grassmannian $G(7,2)$ is also a primitively polarized K3 surface of genus 13. But (S, h) is not a general member of \mathcal{F}_{13}. In fact, S contains 8 mutually disjoint rational curves R_{1}, \ldots, R_{7}, which are of degree 3 with respect to h. This will be discussed elsewhere.

Unlike the known cases described above, the vector bundle $E=\left.\mathcal{E}\right|_{S}$ in the theorem is not rigid. Hence the theorem does not give a birational equivalence between \mathcal{F}_{13} and an orbit space. But E is semi-rigid, that is, $H^{0}(s l(E))=0$ and $\operatorname{dim} H^{1}(s l(E))=2$. Instead of \mathcal{F}_{13} itself, the theorem gives a birational equivalence between the universal family over it and an orbit space.

Let $S \subset G(7,3)$ be a general complete intersection with respect to \mathcal{V}. Then S is the common zero locus of the two global sections of $\bigwedge^{2} \mathcal{E}$ corresponding to general bivectors $\sigma_{1}, \sigma_{2} \in \Lambda^{2} \mathbf{C}^{7}$ and one global section of $\bigwedge^{3} \mathcal{F}$ corresponding to a general $\tau \in \bigwedge^{3} \mathbf{C}^{7, V}$. The 2-dimensional
subspace $P=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \subset \bigwedge^{2} \mathbf{C}^{7}$ is uniquely determined by S. Let $\overline{P \wedge P}$ be the subspace of $\bigwedge^{3} \mathbf{C}^{7, \vee}$ corresponding to $P \wedge P \subset \bigwedge^{4} \mathbf{C}^{7}$. Then $\mathbf{C} \tau$ modulo $\overline{P \wedge P}$ is also uniquely determined by S. It is known that the natural action of $P G L(7)$ on $G\left(2, \bigwedge^{2} \mathbf{C}^{7}\right)$ has an open dense orbit (Sato-Kimura[9, p. 94]). Hence we obtain the natural birational map

$$
\begin{equation*}
\psi: \mathbf{P}_{*}\left(\bigwedge^{4} \mathbf{C}^{7} /(P \wedge P)\right) / G \cdots \rightarrow \mathcal{F}_{13} \tag{1}
\end{equation*}
$$

which is dominant by the theorem, where G is the (10-dimensional) stabilizer group of the action at $P \in G\left(2, \bigwedge^{2} \mathbf{C}^{7}\right)$.

Theorem 2. For every general member $p=(S, h) \in \mathcal{F}_{13}$, the fiber of ψ at p is birationally equivalent to the moduli K3 surface $M_{S}(3, h, 4)$ of semi-rigid rank three vector bundles with $c_{1}=h$ and $\chi=3+4$.

As is shown in [8], $\hat{S}:=M_{S}(3, h, 4)$ carries a natural ample divisor class \hat{h} of the same genus $(=13)$ and $(S, h) \mapsto(\hat{S}, \hat{h})$ induces an automorphism of \mathcal{F}_{13}. (In fact, this is an involution.) Hence we have

Corollary The orbit space $\mathbf{P}^{*}\left(\bigwedge^{4} \mathbf{C}^{7} /(P \wedge P)\right) / G$ is birationally equivalent to the universal family over \mathcal{F}_{13}, or the coarse moduli space of one pointed polarized K3 surfaces (S, h, x) of genus 13 .

Remark 2. 8 Kondō[3] proves that the Kodaira dimension of \mathcal{F}_{g} is non-negative for the following 17 values:

$$
g=41,42,50,52,54,56,58,60,65,66,68,73,82,84,104,118,132
$$

The Kodaira dimension of $\mathcal{F}_{m^{2}(g-1)+1}$ is non-negative for these values of g and for every $m \geq 2$ since it is a finite covering of \mathcal{F}_{g}.

Notations and convention. Algebraic varieties and vector bundles are considered over the complex number field \mathbf{C}. The dual of a vector bundle (or a vector space) E is denoted by E^{\vee}. Its Euler-Poincarè characteristic $\sum_{i}(-)^{i} h^{i}(E)$ is denoted by $\chi(E)$. The vector bundles of traceless endomorphisms of E is denoted by $\operatorname{sl}(E)$. For a vector space $V, G(V, r)$ is the Grassmannian of r-dimensional quotient spaces of V and $G(r, V)$ that of r-dimensional subspaces. The isomorphism class of $G(V, r)$ with $\operatorname{dim} V=n$ is denoted by $G(n, r)$. The projective spaces $G(V, 1)$ and $G(1, V)$ are denoted by $\mathbf{P}^{*}(V)$ and $\mathbf{P}_{*}(V)$, respectively. $\mathcal{O}_{G}(1)$ is the pull-back of the tautological line bundle by the Plücker embedding $G(V, r) \hookrightarrow \mathbf{P}^{*}\left(\bigwedge^{r} V\right)$.

§1. Vanishing

We prepare the vanishing of cohomology groups of homogeneous vector bundles on the Grassmannian $G(n, r)$, which is the quotient of $S L(n)$ by a parabolic subgroup P. The reductive part $P_{\text {red }}$ of P is the intersection of $G L(r) \times G L(n-r)$ and $S L(n)$ in $G L(n)$. We take $\left\{\left(a_{1}, \cdots, a_{r} ; a_{r+1}, \ldots, a_{n}\right) \mid \sum_{1}^{n} a_{i}=0\right\} \subset \mathbf{Z}^{n}$ as root lattice and $\mathbf{Z}^{n} / \mathbf{Z}(1,1, \ldots, 1)$ as the common weight lattice of $S L(n)$ and $P_{\text {red }}$. We take $\left\{e_{i}-e_{i+1} \mid 1 \leq i \leq n-1\right\}$ as standard root basis. The half of the sum of all positive roots is equal to

$$
\delta=(n-1, n-3, n-5, \ldots,-n+3,-n+1) / 2
$$

Let ρ be an irreducible representation of $P_{\text {red }}$ and
$w \in \mathbf{Z}^{n} / \mathbf{Z}(1,1, \ldots, 1)$ its highest weight. We denote the homogeneous vector bundle on $G(n, r)$ induced from ρ by E_{w}. w is singular if a number appears more than once in $w+\delta$. If w is not singular and $w+\delta=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then there is a unique (Grassmann) permutation $\alpha=\alpha_{w}$ such that $a_{\alpha(1)}>a_{\alpha(2)}>\cdots>a_{\alpha(n)}$. We denote the length of α_{w}, that is, the cardinality of the set $\left\{(i, j) \mid 1 \leq i<j \leq n, a_{i}<a_{j}\right\}$, by $l(w)$.

Theorem 3 (Borel-Hirzebruch[2]). (a) If w is singular, then all the cohomology groups $H^{i}\left(G(n, r), \mathcal{E}_{w}\right)$ vanish.
(b) If w is not, then all the cohomology groups $H^{i}\left(G(n, r), \mathcal{E}_{w}\right)$ vanish except for one $i:=l(w)$. Moreover, $H^{l(w)}\left(G(n, r), \mathcal{E}_{\rho}\right)$ is an irreducible representation of $S L(n)$ with highest weight

$$
\left(a_{\alpha(1)}, a_{\alpha(2)}, \ldots, a_{\alpha(n)}\right)-\delta
$$

The dimension of this unique nonzero cohomology group is equal to $\prod_{1 \leq i<j \leq n}\left|a_{i}-a_{j}\right| /(j-i)$.
$l(w)$ is called the index of the homogeneous vector bundle E_{w}.

Example. In the following table, - means that the weight w is singular and we put $s=n-r$.

weight w	homogeneous bundle \mathcal{E}_{w}	$l(w)$	$H^{l(w)}$
$(1,0,0, \ldots, 0,0 ; 0, \ldots, 0,0)$	\mathcal{E}, universal quotient	0	\mathbf{C}^{n}
	bundle		
$(0,0,0, \ldots,-1,0 ; 0, \ldots, 0,0)$	\mathcal{E}^{\vee}	-	
$(1,1,0, \ldots, 0,0 ; 0, \ldots, 0,0)$	$\bigwedge^{2} \mathcal{E}$	0	$\bigwedge^{2} \mathbf{C}^{n}$
$(1,1,1, \ldots, 1,1 ; 0, \ldots, 0,0)$	$\mathcal{O}_{G}(1)=\operatorname{det} \mathcal{E}=\operatorname{det} \mathcal{F}$	0	$\bigwedge^{r} \mathbf{C}^{n}$
$(0,0,0, \ldots, 0,0 ;-1, \ldots,-1)$			
$(0,0,0, \ldots, 0,0 ; 1, \ldots, 0,0)$	\mathcal{F}^{\vee}, universal subbundle	-	
$(0,0,0, \ldots, 0,0 ; 0, \ldots, 0,-1)$	\mathcal{F}	0	$\mathbf{C}^{n, \vee}$
$(1,0,0, \ldots, 0,0 ; 0, \ldots, 0,-1)$	$T_{G(n, r)}$, tangent bundle	0	$s l\left(\mathbf{C}^{n}\right)$
$(0,0,0, \ldots,-1 ; 1,0, \ldots, 0,0)$	$\Omega_{G(n, r)}$, cotangent bundle	1	\mathbf{C}
$(-s,-s, \ldots,-s ; r, r, \ldots, r)$	$\mathcal{O}_{G}(-n)$, canonical bundle	$r s$	\mathbf{C}

We apply the theorem to the 12-dimensional Grassmannian $G(7,3)$.
Lemma 4. (a) All cohomology groups of the homogeneous vector bundle $\bigwedge^{p}(2 \mathcal{E}(-1)) \otimes \bigwedge^{q}(\mathcal{F}(-1))$ on $G(7,3)$ vanish except for the following:
i) $p=q=0, \quad h^{0}\left(\mathcal{O}_{G}\right)=1$, and
ii) $p=6, q=4, \quad h^{12}\left(\mathcal{O}_{G}(-7)\right)=1$.
(b) All cohomology groups of $\mathcal{O}_{G}(1) \otimes \bigwedge^{p}(2 \mathcal{E}(-1)) \otimes \bigwedge^{q}(\mathcal{F}(-1))$ vanish except for the following:
i) $p=q=0, \quad h^{0}\left(\mathcal{O}_{G}(1)\right)=35$,
ii) $p=1, q=0, \quad h^{0}(2 \mathcal{E})=2 \cdot 7=14$, and iii) $p=0, q=1, \quad h^{0}(\mathcal{F})=7$.
(c) All cohomology groups of $\mathcal{E} \otimes \bigwedge^{p}(2 \mathcal{E}(-1)) \otimes \bigwedge^{q}(\mathcal{F}(-1))$ vanish except for $h^{0}(\mathcal{E})=7$ with $p=q=0$.
(d) All cohomology groups of $\mathcal{F} \otimes \bigwedge^{p}(2 \mathcal{E}(-1)) \otimes \bigwedge^{q}(\mathcal{F}(-1))$ vanish except for $h^{0}(\mathcal{F})=7$ with $p=q=0$.
(e) All cohomology groups of $\bigwedge^{2} \mathcal{E} \otimes \bigwedge^{p}(2 \mathcal{E}(-1)) \otimes \bigwedge^{q}(\mathcal{F}(-1))$ vanish except for the following:
i) $p=q=0, \quad h^{0}\left(\bigwedge^{2} \mathcal{E}\right)=21$, and
ii) $p=1, q=0, \quad h^{0}\left(\bigwedge^{2} \mathcal{E} \otimes(2 \mathcal{E}(-1))\right)=2$.
(f) All cohomology groups of $\bigwedge^{3} \mathcal{F} \otimes \bigwedge^{p}(2 \mathcal{E}(-1)) \otimes \bigwedge^{q}(\mathcal{F}(-1))$ vanish except for the following:
i) $p=q=0, \quad h^{0}\left(\bigwedge^{3} \mathcal{F}\right)=35$,
ii) $p=0, q=1, \quad h^{0}\left(\bigwedge^{3} \mathcal{F} \otimes \mathcal{F}(-1)\right)=1$, and
iii) $p=2, q=0, \quad h^{1}\left(\bigwedge^{3} \mathcal{F} \otimes \bigwedge^{2}(2 \mathcal{E}(-1))\right)=3 h^{1}\left(\bigwedge^{3} \mathcal{F} \otimes\right.$ $\left.\bigwedge^{2} \mathcal{E}^{\vee}\right)=3$.
(g) All cohomology groups of $\operatorname{sl}(\mathcal{E}) \otimes \bigwedge^{p}(2 \mathcal{E}(-1)) \otimes \bigwedge^{q}(\mathcal{F}(-1))$ vanish except for $h^{6}=2$ with $p=3, q=2$.

Proof. The following table describes the decomposition of $\bigwedge^{p}(2 \mathcal{E}(-1))$ into indecomposable homogeneous vector bundles.

p	decomposition	weight w^{\prime}	$w^{\prime}+\delta^{\prime}$
0	\mathcal{O}_{G}	$(0,0,0)$	$(3,2,1)$
1	$2 \mathcal{E}(-1)$	$2(0,-1,-1)$	$(3,1,0)$
2	$3\left(\bigwedge^{2} \mathcal{E}\right)(-2)$	$3(-1,-1,-2)$	$(2,1,-1)$,
	$\oplus S^{2} \mathcal{E}(-2)$	$\oplus(0,-2,-2)$	$(3,0,-1)$
3	$4 \mathcal{O}_{G}(-2)$	$4(-2,-2,-2)$	$(1,0,-1)$,
	$\oplus 2 \operatorname{sl}(\mathcal{E})(-2)$	$\oplus 2(-1,-2,-3)$	$(2,0,-2)$
4	$3 \mathcal{E}(-3)$	$3(-2,-3,-3)$	$(1,-1,-2)$,
	$\oplus\left(S^{2} \bigwedge^{2} \mathcal{E}\right)(-4)$	$\oplus(-2,-2,-4)$	$(1,0,-3)$
5	$2\left(\bigwedge^{2} \mathcal{E}\right)(-4)$	$2(-3,-3,-4)$	$(0,-1,-3)$
6	$\mathcal{O}_{G}(-4)$	$(-4,-4,-4)$	$(-1,-2,-3)$

Here $\delta^{\prime}=(3,2,1)$ is the head of $\delta=(3,2,1 ; 0,-1,-2,-3)$.
$\bigwedge^{q}(\mathcal{F}(-1))$ is indecomposable. The following lists its weight $w^{\prime \prime}$ and $w^{\prime \prime}+\delta^{\prime \prime}$, where $\delta^{\prime \prime}=(0,-1,-2,-3)$ is the tail of δ.

q	bundle	weight $w^{\prime \prime}$	$w^{\prime \prime}+\delta^{\prime \prime}$
0	\mathcal{O}_{G}	$(0,0,0,0)$	$(0,-1,-2,-3)$
1	$\mathcal{F}(-1)$	$(1,1,1,0)$	$(1,0,-1,-3)$
2	$\left(\bigwedge^{2} \mathcal{F}\right)(-2)$	$(2,2,1,1)$	$(2,1,-1,-2)$
3	$\left(\bigwedge^{3} \mathcal{F}\right)(-3)$	$(3,2,2,2)$	$(3,1,0,-1)$
4	$\mathcal{O}_{G}(-3)$	$(3,3,3,3)$	$(3,2,1,0)$

We prove (a), (f) and (g) applying Theorem 3. The other cases are similar.
(a) Take w^{\prime} and $w^{\prime \prime}$ from the tables (2) and (3), respectively, and combine into $w=\left(w^{\prime} ; w^{\prime \prime}\right)$. Then w is singular except for the two cases

$$
w+\delta=(3,2,1 ; 0,-1,-2,-3) \quad \text { with } \quad p=q=0
$$

and

$$
w+\delta=(-1,-2,-3 ; 3,2,1,0) \quad \text { with } \quad p=6, q=4
$$

The indices $l(w)$ are equal to 0 and 12 , respectively.
(f) The homogeneous vector bundle $\bigwedge^{3} \mathcal{F} \otimes \bigwedge^{q}(\mathcal{F}(-1))$ decomposes in the following way:

q	weight $w^{\prime \prime}$	$w^{\prime \prime}+\delta^{\prime \prime}$
0	$(0,-1,-1,-1)$	$(0,-2,-3,-4)$
1	$(1,0,0,-1) \oplus(0,0,0,0)$	$(1,-1,-2,-4),(0,-1,-2,-3)$
2	$(2,1,0,0) \oplus(1,1,1,0)$	$(2,0,-2,-3),(1,0,-1,-3)$
3	$(3,1,1,1) \oplus(2,2,1,1)$	$(3,0,-1,-2),(2,1,-1,-2)$
4	$(3,2,2,2)$	$(3,1,0,-1)$

Take w^{\prime} and $w^{\prime \prime}$ from the table (2) and this table, respectively, and consider $w=\left(w^{\prime} ; w^{\prime \prime}\right)$. Then w is singular except for the following three cases.
i) $p=q=0, w+\delta=(3,2,1 ; 0,-2,-3,-4), l(w)=0$,
ii) $p=0, q=1, w+\delta=(3,2,1 ; 0,-1,-2,-3), l(w)=0$, and
iii) $p=2, q=0, w+\delta=(2,1,-1 ; 0,-2,-3,-4), l(w)=1$.
(g) The following table shows the indecomposable components of $\operatorname{sl}(\mathcal{E}) \otimes \bigwedge^{p}(2 \mathcal{E}(-1))$ which do not appear in that of $\bigwedge^{p}(2 \mathcal{E}(-1))$.

p	weight w^{\prime} other than Table (2)	$w^{\prime}+\delta^{\prime}$
0	$(1,0,-1)$	$(4,2,0)$
1	$2(1,-1,-2) \oplus 2(0,0,-2)$	$(4,1,-1),(3,2,-1)$
2	$4(0,-1,-3) \oplus(1,-2,-3)$	$(3,1,-2),(4,0,-2)$
3	$2(0,-2,-4) \oplus 2(-1,-1,-4)$	$(3,0,-3),(2,1,-3)$
	$\oplus 2(0,-3,-3)$	$(3,-1,-2)$
4	$(-1,-2,-5) \oplus 4(-1,-3,-4)$	$(2,0,-4),(2,-1,-3)$
5	$2(-2,-3,-5) \oplus 2(-2,-4,-4)$	$(1,-1,-4),(1,-2,-3)$
6	$(-3,-4,-5)$	$(0,-2,-4)$

Take w^{\prime} and $w^{\prime \prime}$ from the table (2) and this table, respectively, and consider $w=\left(w^{\prime} ; w^{\prime \prime}\right)$. Then w is singular except for the case $w+\delta=$ $(3,0,-3 ; 2,1,-1,-2)$ with $p=3$ and $q=2$. The index is equal to 6.
Q.E.D.

Let $S \subset G(7,3)$ be a complete intersection with respect to $\mathcal{V}=$ $2 \bigwedge^{2} \mathcal{E} \oplus \bigwedge^{3} \mathcal{F}$. The Koszul complex

$$
\mathbf{K}: \mathcal{O}_{G} \longleftarrow \mathcal{V}^{\vee} \longleftarrow \bigwedge^{2} \mathcal{V}^{\vee} \longleftarrow \cdots \longleftarrow \bigwedge^{9} \mathcal{V}^{\vee} \longleftarrow \bigwedge^{10} \mathcal{V}^{\vee} \longleftarrow 0
$$

gives a resolution of the structure sheaf $\mathcal{O}_{S} . \bigwedge^{n} \mathcal{V}^{\vee}$ is isomorphic to $\bigoplus_{p+q=n} \bigwedge^{p}(2 \mathcal{E}(-1)) \otimes \bigwedge^{q}(\mathcal{F}(-1))$.

Proposition 5. (a) $H^{0}\left(S, \mathcal{O}_{S}\right)=\mathbf{C}, H^{1}\left(S, \mathcal{O}_{S}\right)=0$.
(b) The restriction map $H^{0}\left(G(7,3), \mathcal{O}_{G}(1)\right) \longrightarrow H^{0}\left(S, \mathcal{O}_{S}(1)\right)$ is surjective, $H^{0}\left(S, \mathcal{O}_{S}(1)\right)$ is of dimension 14 and $H^{1}\left(S, \mathcal{O}_{S}(1)\right)$ $=H^{2}\left(S, \mathcal{O}_{S}(1)\right)=0$.
(c) The restriction map $H^{0}(G(7,3), \mathcal{E}) \longrightarrow H^{0}(S, E)$ is an isomorphism and $H^{1}(S, E)=H^{2}(S, E)=0$.
(d) The restriction map $H^{0}(G(7,3), \mathcal{F}) \longrightarrow H^{0}(S, F)$ is an isomorphism.
(e) $\quad H^{0}\left(G(7,3), \bigwedge^{2} \mathcal{E}\right) \longrightarrow H^{0}\left(S, \bigwedge^{2} E\right)$ is surjective and the kernel is of dimension 2.
(f) $\quad H^{0}\left(G(7,3), \bigwedge^{3} \mathcal{F}\right) \longrightarrow H^{0}\left(S, \bigwedge^{3} F\right)$ is surjective and the kernel is of dimension 4.
(g) E is simple and semi-rigid, that is, $H^{0}(s l(E))=0$ and $h^{1}(s l(E))=2$.
Proof. We prove (a) and (f) as sample. Other cases are similar.
(a) The restriction map $H^{0}\left(G(7,3), \mathcal{O}_{G}\right) \longrightarrow H^{0}\left(S, \mathcal{O}_{S}\right)$ is surjective by the vanishing $H^{1}\left(\mathcal{V}^{\vee}\right)=H^{2}\left(\bigwedge^{2} \mathcal{V}^{\vee}\right)=\cdots=H^{10}\left(\bigwedge^{10} \mathcal{V}^{\vee}\right)=0$ and the exact sequence $0 \longleftarrow \mathcal{O}_{S} \longleftarrow \mathbf{K} . H^{1}\left(S, \mathcal{O}_{S}\right)$ vanishes since $H^{1}\left(\mathcal{O}_{G}\right)$ $=H^{2}\left(\mathcal{V}^{\vee}\right)=\cdots=H^{11}\left(\bigwedge^{10} \mathcal{V}^{\vee}\right)=0$.
(f) The restriction map is surjective by the vanishing $H^{n}\left(\bigwedge^{3} \mathcal{F} \otimes\right.$ $\left.\bigwedge^{n} \mathcal{V}^{\vee}\right)$ for $n=1, \ldots, 10$ and the exact sequence

$$
0 \longleftarrow \bigwedge^{3} F \longleftarrow \bigwedge^{3} \mathcal{F} \otimes \mathbf{K} .
$$

The dimension of the kernel is equal to

$$
h^{0}\left(\bigwedge^{3} \mathcal{F} \otimes \mathcal{V}^{\vee}\right)+h^{1}\left(\bigwedge^{3} \mathcal{F} \otimes \bigwedge^{2} \mathcal{V}^{\vee}\right)=1+3=4
$$

since $H^{n-1}\left(\bigwedge^{3} \mathcal{F} \otimes \bigwedge^{n} \mathcal{V}^{\vee}\right)=0$ for $n=3, \ldots, 10$.
Q.E.D.

§2. Proof of Theorems 1 and 2

Let S be the zero locus $(s)_{0}$ of a general global section s of the homogeneous vector bundle $\mathcal{V}=\bigwedge^{2} \mathcal{E} \oplus \bigwedge^{2} \mathcal{E} \oplus \bigwedge^{3} \mathcal{F}$ on the Grassmannian $G(7,3)$. Since \mathcal{V} is generated by global sections, S is smooth by [6 , Theorem 1.10], the Bertini type theorem for vector bundles. Since $r(\mathcal{V})=3+3+4=\operatorname{dim} G(7,3)-2$ and

$$
\operatorname{det} \mathcal{V} \simeq \mathcal{O}_{G}(2) \otimes \mathcal{O}_{G}(2) \otimes \mathcal{O}_{G}(3) \simeq \operatorname{det} T_{G(7,3)}
$$

S is of dimension two and the canonical line bundle is trivial. By (a) of Proposition 5, S is connected and regular. Hence S is a K3 surface. We denote the class of hyperplane section by h. Then, by (b) of

Proposition 5, we have $\chi\left(\mathcal{O}_{S}(h)\right)=14$, which implies $\left(h^{2}\right)=24$ by the Riemann-Roch theorem. Hence we obtain the rational map

$$
\Psi: \mathbf{P}_{*} H^{0}(G(7,3), \mathcal{V}) \cdots \rightarrow \mathcal{F}_{13}^{\prime} \quad s \mapsto\left((s)_{0}, h\right)
$$

to the moduli space $\mathcal{F}_{13}^{\prime}$ of polarized K3 surfaces which are not necessarily primitive.

By (g) of Proposition 5, the vector bundle $E=\left.\mathcal{E}\right|_{S}$ is simple. Let $\left(S^{\prime}, h^{\prime}\right)$ be a small deformation of (S, h). Then there is a vector bundle E^{\prime} on S^{\prime} which is a deformation of E by Proposition 4.1 of [6]. E^{\prime} enjoys many properties satisfied by $E: E^{\prime}$ is simple, generated by global sections, $h^{0}\left(E^{\prime}\right)=7, \bigwedge^{3} H^{0}\left(E^{\prime}\right) \longrightarrow H^{0}\left(\bigwedge^{3} E^{\prime}\right)$ is surjective, etc. Therefore, E^{\prime} embeds S^{\prime} into $G(7,3)$ and S^{\prime} is also a complete intersection with respect to \mathcal{V}. Hence the rational map Ψ is dominant onto an irreducible component of $\mathcal{F}_{13}^{\prime}$ and Theorem 1 follows from the following:

Proposition 6. The polarization h of (S, h), a complete intersection with respect to \mathcal{V} in $G(7,3)$, is primitive.

In the local deformation space of (S, h), the deformations $\left(S^{\prime}, h^{\prime}\right)$'s with Picard number one form a dense subset. More precisely, it is the complement of an infinite but countable union of divisors. Hence we have

Lemma 7. There exists a smooth complete intersection S with respect to \mathcal{V} whose Picard number is equal to one.

Proof of Proposition 6. Since the assertion is topological it suffices to show it for one such (S, h). We take (S, h) as in this lemma. Assume that h is not primitive. Since $\left(h^{2}\right)=24, h$ is linearly equivalent to $2 l$ for a divisor class l with $\left(l^{2}\right)=6$. The Picard group Pic S is generated by l. By the Riemann-Roch theorem and the (Kodaira) vanishing, we have $h^{0}\left(\mathcal{O}_{S}(n l)\right)=3 n^{2}+2$ for $n \geq 1$.

Claim 1. $h^{0}(E(-l))=0$.
Assume the contrary. Then E contains a subsheaf isomorphic to $\mathcal{O}_{S}(n l)$ with $n \geq 1$. Since $h^{0}\left(\mathcal{O}_{S}(n l)\right) \leq h^{0}(E)=7$, we have $n=1$ and the quotient sheaf $Q=E / \mathcal{O}_{S}(l)$ is torsion free. Since $5=h^{0}\left(\mathcal{O}_{S}(l)\right)<$ $h^{0}(E)=7$, we have $H^{0}(Q) \neq 0$. Since Q is of rank two and $\operatorname{det} Q \simeq$ $\mathcal{O}_{S}(l)$, we have $\operatorname{Hom}\left(Q, \mathcal{O}_{S}(l)\right) \neq 0$, which contradicts (g) of Proposition 5.

Now we consider the vector bundle $M=\left(\bigwedge^{2} E\right)(-l) . \quad$ By the claim and the Serre duality, we have $h^{2}(M)=\operatorname{dim} \operatorname{Hom}\left(M, \mathcal{O}_{S}\right)=$ $h^{0}(E(-l))=0$. Hence we have $h^{0}(M) \geq \chi(M)=4$. Take 4 linearly
independent global sections of M and we consider the homomorphism $\varphi: 4 \mathcal{O}_{S} \longrightarrow M$.

Claim 2. φ is surjective outside a finite set of points on S.
Let r be the rank of the image of φ. Since $\operatorname{Hom}\left(\mathcal{O}_{S}(l), M\right)=$ $\left.H^{0}\left(\bigwedge^{2} E\right)(-h)\right)=H^{0}\left(E^{\vee}\right)=H^{2}(E)^{\vee}=0$ by (c) of Proposition 5, we have $r \geq 2$. Since $\operatorname{Hom}\left(M, \mathcal{O}_{S}\right)=0, r=2$ is impossible. Hence we have $r=3$. Since the image and M have the same determinant line bundle $\left(\simeq \mathcal{O}_{S}(l)\right)$, the cokernel of φ is supported by a finite set of points.

The kernel of φ is a line bundle by the claim. It is isomorphic to $\mathcal{O}_{S}(-l)$. Hence we have the exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}(-l) \longrightarrow 4 \mathcal{O}_{S} \xrightarrow{\varphi} M
$$

Since $\chi(\operatorname{Coker} \varphi)=3<\chi(M), \varphi$ is not surjective. In fact, the cokernel is a skyscraper sheaf supported at a point. Tensoring $\mathcal{O}_{S}(l)$, we have the exact sequence

$$
0 \longrightarrow \mathcal{O}_{S} \longrightarrow 4 \mathcal{O}_{S}(l) \xrightarrow{\varphi(l)} \bigwedge^{2} E \longrightarrow \mathbf{C}(p) \longrightarrow 0
$$

$H^{0}(\varphi(l))$ is surjective since $h^{0}\left(4 \mathcal{O}_{S}(l)\right)=20$ and $h^{0}\left(\bigwedge^{2} E\right)=19$. But this contradicts (e) of Proposition 5.

Proof of Theorem 2. Let $P=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ be a general 2-dimensional subspace of $\Lambda^{2} \mathbf{C}^{7}$ and $X^{6} \subset G(7,3)$ the common zero locus of the two global sections of $\bigwedge^{2} \mathcal{E}$ corresponding to σ_{1} and σ_{2}. A point q of $\mathbf{P}_{*}\left(\bigwedge^{3} \mathbf{C}^{7, \vee} / \overline{P \wedge P}\right)$ determines a global section of $\left.\Lambda^{3} \mathcal{F}\right|_{X}$. We denote the zero locus by $S_{q} \subset X^{6}$.

The restriction of \mathcal{E} to S_{q} is semi-rigid by (g) of Proposition 5. Let $\Xi^{31} \subset \mathbf{P}_{*}\left(\bigwedge^{3} \mathbf{C}^{7, \vee} / \overline{P \wedge P}\right)$ be the open subset consisting of points q such that S_{q} is a K3 surface and the restriction $\left.\mathcal{E}\right|_{S_{q}}$ is stable with respect to h.

Lemma 8. Ξ^{31} is not empty.
Proof. Let (S, h) be as in Lemma 7 and put $E=\left.\mathcal{E}\right|_{S}$. Then, by Proposition 6, Pic S is generated by h. Since $h^{0}\left(\mathcal{O}_{S}(h)\right)=14>h^{0}(E)=$ 7 , we have $\operatorname{Hom}\left(\mathcal{O}_{S}(n h), E\right)=0$ for every integer $n \geq 1 / 3$. Since
$c_{1}(E)=h$ and since $\operatorname{Hom}\left(E, \mathcal{O}_{S}(n h)\right)=0$ for every integer $n \leq 1 / 3, E$ is stable.
Q.E.D.

The correspondence $\left.q \mapsto \mathcal{E}\right|_{S_{q}}$ induces a morphism from a general fiber of $\Xi^{31} / G \cdots \rightarrow \mathcal{F}_{13}$ at $\left[S_{q}\right]$ to the moduli space $M_{S}(3, h, 4)$ of semirigid bundles. Conversely there exists a morphism from a non-empty open subset of $M_{S}(3, h, 4)$ to the fiber since a small deformation E^{\prime} of $\left.\mathcal{E}\right|_{S_{q}}$ gives an embedding of S_{q} into $G(7,3)$ such that the image is a complete intersection with respect to \mathcal{V}.

Remark 3. By (f) of Proposition $5, H^{0}\left(X^{6},\left.\bigwedge^{3} \mathcal{F}\right|_{X}\right)$ is isomorphic to $\wedge^{3} \mathbf{C}^{7, \vee} / \overline{P \wedge P}$. Hence the rational map ψ in (1) coincides with $\mathbf{P}_{*}\left(H^{0}\left(X^{6},\left.\bigwedge^{3} \mathcal{F}\right|_{X}\right)\right) / G \cdots \rightarrow \mathcal{F}_{13}$ induced by $s \mapsto(s)_{0}$.

§3. K3 surface of genus seven and twelve

We describe two cases $g=7$ and 12 closely related with Theorems 1 and 2. The proofs are quite similar to the cases $g=13$ and 18 , respectively, and we omit them.

First a polarized K3 surface of genus 7 has the following description other than that in the orthogonal Grassmannian $O-G(5,10)$:

Theorem 9. A general polarized $K 3$ surface (S, h) of genus 7 is a complete intersection with respect to the rank four homogeneous vector bundle $2 \mathcal{O}_{G}(1) \oplus \mathcal{E}(1)$ in the 6 -dimensional Grassmannian $G(5,2)$.
S is the common zero locus of two hyperplane sections H_{1} and H_{2} of $G(5,2) \subset \mathbf{P}^{9}$ corresponding to $\sigma_{1}, \sigma_{2} \in \bigwedge^{2} \mathbf{C}^{5}$ and one global section s of $\mathcal{E}(1)$. The 2-dimensional subspace $P=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \subset \bigwedge^{2} \mathbf{C}^{5}$ is uniquely determined by S and $X^{4}=G(5,2) \cap H_{1} \cap H_{2}$ is a quintic del Pezzo fourfold. Let Q be the image of $\mathbf{C}^{5} \otimes P$ by the natural linear map $\mathbf{C}^{7} \otimes \bigwedge^{2} \mathbf{C}^{7} \longrightarrow H^{0}(\mathcal{E}(1))$. Then Q is of dimension 10 and we obtain the natural rational map

$$
\begin{equation*}
\mathbf{P}_{*}\left(H^{0}(\mathcal{E}(1)) / Q\right) / G^{8}=\mathbf{P}_{*}\left(H^{0}\left(\left.\mathcal{E}(1)\right|_{X}\right)\right) / G^{8} \cdots \rightarrow \mathcal{F}_{7} \tag{6}
\end{equation*}
$$

as in the case $g=13$, where G^{8} is the general stabilizer group of the action $P G L(5) \curvearrowright G\left(2, \bigwedge^{2} \mathbf{C}^{5}\right) . H^{0}(\mathcal{E}(1))$ is a 40-dimensional irreducible representation of $G L(5)$ by Theorem 3. The fiber of the map (6) at general (S, h) is a surface and birationally equivalent to the moduli K 3 surface $M_{S}(2, h, 3)$ of semi-rigid rank two vector bundles with $c_{1}=h$ and $\chi=2+3$.

Secondly, in the 12-dimensional Grassmannian $G(7,3)$, there is another type of K3 complete intersection other than Theorem 1.

Theorem 10. A general member $(S, h) \in \mathcal{F}_{12}$ is a complete intersection with respect to $\mathcal{V}_{10}=3 \bigwedge^{2} \mathcal{E} \oplus \mathcal{O}_{G}(1)$ in $G(7,3)$.
S is the common zero locus of the three global sections of $\bigwedge^{2} \mathcal{E}$ corresponding to general bivectors $\sigma_{1}, \sigma_{2}, \sigma_{3} \in \Lambda^{2} \mathbf{C}^{7}$. The 3-dimensional subspace $N=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle \subset \bigwedge^{2} \mathbf{C}^{7}$ is uniquely determined by S. The common zero locus X_{N} of the global sections of $\bigwedge^{2} \mathcal{E}$ corresponding to N is a Fano threefold and is embedded into \mathbf{P}^{13} anti-canonically. X_{N} 's are parameterized by an open set Ξ^{6} of the orbit space $G\left(3, \bigwedge^{2} \mathbf{C}^{7}\right) / P G L(7)$. See [5] for other descriptions of X_{N} 's and their moduli spaces. The moduli space \mathcal{F}_{12} is birationally equivalent to a \mathbf{P}^{13}-bundle over this Ξ^{6}.

References

[1] C. Borcea, Smooth global complete intersections in certain compact homogeneous complex manifolds, J. Reine Angew. Math., 344 (1983), 65-70.
[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math., 80 (1958), 458-538: II, ibid., 81 (1959), 315-382.
[3] S. Kondō, On the Kodaira dimension of the moduli space of K3 surfaces II, Compositio Math., 116 (1999), 111-117.
[4] S. Mukai, Curves, K3 surfaces and Fano 3-folds of genus ≤ 10, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi NAGATA, Kinokuniya, Tokyo, 1987, pp. 357-377.
[5] S. Mukai, Biregular classification of Fano threefolds and Fano manifolds of coindex 3, Proc. Nat'l. Acad. Sci. USA, 86 (1989), 3000-3002.
[6] S. Mukai, Polarized K3 surfaces of genus 18 and 20, Complex Projective Geometry, Cambridge University Press, 1992, pp. 264-276.
[7] S. Mukai, Curves and K3 surfaces of genus eleven, Moduli of Vector Bundles, Marcel Dekker, New York, 1996, pp. 189-197.
[8] S. Mukai, Duality of polarized K3 surfaces, New Trends in Algebraic Geometry, Cambridge University Press, 1999, pp. 311-326.
[9] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1-155.

Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606-8502
Japan
E-mail address: mukai@kurims.kyoto-u.ac.jp

