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Vector bundles on curves and theta functions 

Arnaud Beauville 

Abstract. 

This is a survey lecture on the "theta map" from the moduli space of 
SLr-bundles on a curve C to the projective space of r-th order theta functions 
on JC. Some recent results and a few open problems about that map are 
discussed. 

Introduction 

These notes survey the relation between the moduli spaces of vector 
bundles on a curve C and the spaces of (classical) theta functions on the 
Jacobian J of C. The connection appears when one tries to describe 
the moduli space Mr of rank r vector bundles with trivial determinant 
as a projective variety in an explicit way (as opposed to the somewhat 
non-constructive way provided by GIT). The Picard group of the moduli 
space is infinite cyclic, generated by the determinant line bundle £ ; thus 
the natural maps from Mr to projective spaces are those defined by the 
linear systems l£kl, and in the first instance the map r.p_c: Mr --+ 1£1*· 
The key point is that this map can be identified with the theta map 

e : Mr --+ lr81 

which associates to a general bundle E E Mr its theta divisor e E, an 
element of the linear system lr81 on J- we will recall the precise defi
nitions below. This description turns out to be sufficiently manageable 
to get some information on the behaviour of this map, at least when r 
or g are small. 

We will describe the results which have been obtained so far- most 
of them fairly recently. Thus these notes can be viewed as a sequel to 
[B2], though with a more precise focus on the theta map. For the con
venience of the reader we have made this paper independent of [B2], by 
recalling in §1 the necessary definitions. Then we discuss the indetermi
nacy locus of 8 (§2), the case r = 2 (§3), the case g = 2 (§4), and the 
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higher rank case (§5). Finally, as in [B2] we will propose a small list of 
questions and conjectures related to the topic (§6). 

§1. The moduli space Mr and the theta map 

(1.1) Throughout this paper C will be a complex curve of genus 
g 2:: 2. We denote by J its Jacobian variety, and by Jk the variety 
(isomorphic to J = J 0 ) parametrizing line bundles of degree k on C. 

For r 2:: 2, we denote by Mr the moduli space of semi-stable vector 
bundles of rank r and trivial determinant on C. It is a normal, projec
tive, unirational variety, of dimension (r2 -l)(g -1). The points of Mr 
correspond to isomorphism classes of vector bundles with trivial deter
minant which are direct sums of stable vector bundles of degree zero. 
The singular locus consists precisely of those bundles which are decom
posable (with the exception of M 2 in genus 2, which is smooth). The 
corresponding singularities are rational Gorenstein - that is, reasonably 
mild. 

(1.2) The Picard group of Mr has been thoroughly studied in 
[D-N]; let us recall the main results. Fix some L E JY- 1, and consider 
the reduced subvariety 

ilL:= {E E Mr I H 0 (C,EQ9L) =F 0}. 

Then ilL is a Cartier divisor in Mr; the line bundle£:= OMr(ilL), 
called the determinant bundle, is independent of the choice of L and 
generates Pic(Mr)· The canonical bundle of Mr is c-2r. 

(1.3) To study the rational map <pc : Mr --+ 1£1* associated to 
the determinant line bundle, the following construction is crucial. For a 
vector bundle E E Mr, consider the locus 

Since x(E Q9 L) = 0 for L in JY-1, it is readily seen that eE is in a 
natural way a divisor in JY- 1 - unless it is equal to JY- 1 • The latter 
case (which may occur only for special bundles) is a serious source of 
trouble- see §2 below. In the former case we say that E admits a theta 
divisor; this divisor belongs to the linear system lr81, where e is the 
canonical Theta divisor in JY- 1. In this way we get a rational map 

(} : Mr --+ lr81 . 

Proposition 1.4. [BNR] There is a canonical isomorphism 1£1* ~ lr81 
which identifies <p £ to (}. 
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As a consequence, the base locus of 1£1 is the locus of bundles E 
in Mr such that H 0 ( C, E ® L) =/= 0 for all L E J9- 1 . This is also the 
indeterminacy locus of e (because 1£1 cannot have a fixed component). 

(1.5) The r-torsion subgroup J[r] of J acts on Mr by tensor prod
uct; it also acts on lr81 by translation, and the map 0 is equivariant with 
respect to these actions. In particular, the image of 0 is J[r]-invariant. 

(1.6) The case when 0 is a morphism is much easier to analyze: 
we know then that it is finite (since 1£1 is ample, 0 cannot contract any 
curve), we know its degree by the Verlinde formula, etc. Unfortunately 
there are few cases where this is known to happen: 

Proposition 1.6. The base locus of 1£1 is empty in the following cases: 
a) r = 2 ; 
b) r = 3, g = 2 or 3 ; 
c) r = 3, C is generic. 

All these results except the case r = g = 3 are due to Raynaud 
[R]. While a) and the first part of b) are easy, c) and the second part of 
b) are much more involved. We will discuss the latter in §5 below. The 
proof of c) is reduced, through a degeneration argument, to an analogous 
statement for torsion-free sheaves on a rational curve with g nodes. 

§2. Base locus 

(2.1) Recall that the slope of a vector bundle E of rank r and degree 
dis the rational number p, = djr. It is convenient to extend the definition 
of the theta divisor to vector bundles E with integral slope p,, by putting 
8 E := { L E J9_ 1 _~-' I H 0 ( C, E ® L) =/= 0}. If t5 is a line bundle such that 
t5°r ~ det E, the vector bundle Eo := E ® J- 1 has trivial determinant 
and 8 Eo C ]9- 1 is the translate by t5 of 8 E C 1 9 _ 1_ f.!. 

(2.2) We have the following relations between stability and exis
tence of the theta divisor: 

(2.2 a) If E admits a theta divisor, it is semi-stable; 
(2.2 b) If moreover 8E is a prime divisor, E is stable. 

Indeed let F be a proper sub bundle of E. If p,(F) > p,(E), the Riemann
Roch theorem implies H 0 (C, F®L) =/= 0, and therefore H 0 (C, E®L) =/= 0, 
for all Lin ] 9 - 1-f.!. If p,(F) = p,(E), one has 8E = 8F + 8EjF, so that 
8 E is not prime. 

(2.3) The converse of these assertions do not hold. We will see in 
(2.6) examples of stable bundles with a reducible theta divisor. The first 
examples of stable bundles with no theta divisor are due to Raynaud [R]. 
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They are restrictions of projectively flat vector bundles on J. Choose a 
theta divisor 8 on J. The line bundle OJ(n8) is invariant under the 
n-torsion subgroup J[n] of J. The action of J[n] does not lift to 0 J(n8), 
but it does lift to the vector bundle H 0 (J, 0 J ( n8)) * ®c 0 J ( n8). Thus 
this vector bundle is the pull back under the multiplication nJ : J--+ J 
of a vector bundle En on J. Restricting En to the curve C embedded in 
J by an Abel-Jacobi mapping gives the Raynaud bundle Rn. It is well 
defined up to a twist by an element of J, has rank nY and slope ; . It 
has the property that H 0 ( C, Rn Q9 a) -=/:- 0 for all a E J. Thus if n I g 
Rn has integral slope and no theta divisor. More generally, Schneider 
has shown that a general vector bundle on C of rank nY, slope g - 1 and 
containing Rn is still stable [S2]. This gives a very large dimension for 
the base locus of 1-CI, approximately (1- ~) dimMr if r = n9 • Some 
related results are discussed in [A]. 

(2.4) Another series of examples have been constructed by Popa 
[P]. Let L be a line bundle on C spanned by its global sections. The 
evaluation bundle EL is defined by the exact sequence 

0--+ E£ ----+ H 0 (L) ®c Oc ~ L--+ 0 ; 

it has the same degree as L and rank h 0 ( L) -1. In particular, if we choose 
deg L = g + r with r 2:: g + 2, EL has rank rand slope 11 = 1 + ~- Then, 
for all p such that 2 ::; p ::; r - 2 and P/1 E Z, the vector bundle AP EL 
does not admit a theta divisor (see [S1]). For instance, when r = 2g, 
A2EL gives a base point of 1£1 in Mg(2g-1)· 

(2.5) An interesting limit case of this construction is when 11 = 2; 
this occurs when L = Kc, orr= g. The first case has been studied in 
[FMP]. It turns out that the vector bundle AP EK has a theta divisor, 
equal to Cg-p-1 - Cp (here Ck denotes the locus of effective divisor 
classes in Jk). While the proof is elementary for p = 1, it is extremely 
involved for the higher exterior powers: it requires going to the moduli 
space of curves and computing various divisor classes in the Picard group 
of this moduli space. It remains a challenge to find a direct proof. 

(2.6) The case degL = 2g is treated in [B4], building on the results 
of [FMP]. Here again AP EL admits a theta divisor, at least if Lis general 
enough; it has two components, namely Cg-p- 1 -Cp and the translate of 
Cg-p -Cp-1 by the class [K ®L - 1]. These are the first examples defined 
on a general curve of stable bundles with a reducible theta divisor. 

(2. 7) Since 1£1 has usually a large base locus, it is natural to look at 
the systems l£k I to improve the situation. There has been much progress 
on this question in the recent years: 
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Proposition 2.7. (i) [P-R]I.Ckl is basepoint free onMr fork 2: [r;]. 
(ii) [E-P] Fork 2: r 2 +r, the linear system I.Ckl defines an injective 

morphism of Mr into I.Ck I*, which is an embedding on the stable locus. 

On the other hand Popa [P] has observed that one should not be 
too optimistic, at least if one believes in the strange duality conjecture 
(see [B2]): this conjecture implies that for n I g the Raynaud bundle 
Rn, twisted by an appropriate line bundle, is a base point of I.Ckl when 
k::=;n(1-~). 

§3. Rank 2 

(3.1) In rank 2 the situation is now well understood. As pointed 
out in (1.6), () : M2 ~ 1281 is a finite morphism. In genus 2, ()is actually 
an isomorphism onto IP'3 [N-R1]. If C is hyperelliptic of genus g 2: 3, 
it follows from [D-R] and [B1] that ()factors through the involution ~* 
induced by the hyperelliptic involution and embeds M 2 / (~*) into 1281; 
moreover the image admits an explicit geometric description [D-R]. 

(3.2) In the non-hyperelliptic case, after much effort we have now a 
complete answer, which is certainly one of the highlights of the subject: 

Theorem 3.2. lfC is not hyperelliptic, (): M2 '--> 1281 is an embedding. 

The fact that () embeds the stable locus of M2 is proved in [B-V1], 
and the remaining part in [vG-I]. Both parts are highly nontrivial, and 
involve some beautiful geometric constructions. 

(3.3) Thus we can identify M2 with a subvariety of 1281 ~ IP'2._ 1 , 

canonically associated to C, of dimension 3g- 3 (1.1). This variety is 
invariant under the natural action of J[2] on 1281 (1.5). Its degree can 
be computed from the Verlinde formula (see e.g. [Z], Thm. 1(iii)): 

deg M2 = (3g- 3)! 29 (211') 2- 2Y((2g- 2) , 

which gives deg M2 = 1 for g = 2, 4 for g = 3, 96 for g = 4, etc. 
The singular locus Sing M 2 is the locus of decomposable bundles in 

M 2 (1.1), which are of the form aEBa-1 , for a E J; the map a f--> aEBa- 1 

identifies Sing M 2 to the Kummer variety JC of J- that is, the quotient of 
J by the involution a f--> a- 1 . The restriction of() to JC =Sing M 2 is the 
classical embedding of/( in 1281, deduced from the map a f--> eo+ e_O! . 
from J to 1281. 

(3.4) The case g = 3, which had been treated previously in [N
R2], is particularly interesting: we obtain a hypersurface in 1281, of 
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degree 4, which is J[2]-invariant and singular along the Kummer variety. 
Now Coble shows in [C2] that there is a unique such quartic (the J[2]
invariance is actually superfluous, see [B5]). Thus in genus 3, the theta 
map identifies M 2 with the Coble quartic hypersurface. 

Coble gives an explicit equation for this hypersurface, which we 
now express in modern terms. Recall that Mumford's theory of the 
Heisenberg group allows us to find canonical coordinates (Xv)vEV in the 
projective space 1281, where V is a 3-dimensional vector space over IF2. 
Then Coble equation reads: 

Q L X~ + L ad(£) X~ x; + L Qd(P)XtXuXvXw = 0 
uEV f={u,v} P={t,u,v,w} 

where the second sum (resp. the third) is taken over the set of affine 
lines (resp. planes) in V, and d(£) E lP'(V) (resp. d(P) E lP'(V*)) denotes 
the direction of the line£ (resp. of the plane P). 

In many ways the Coble quartic Q C lP'7 can be seen as an analogue 
of the Kummer quartic surface in 1P'3 . Pauly has proved that Q shares 
a famous property of the Kummer surface, the self-duality : the dual 
hypersurface Q* C (1P'7)* is isomorphic to Q [Pa]. The proof is geometric, 
and includes several beautiful geometric constructions along the way. 

(3.5) In genus 4, M 2 is a variety of dimension 9 and degree 96 in 
lP'15 . Ox bury and Pauly have observed that there exists a unique J[2]
invariant quartic hypersurface singular along M 2 [0-P]. A geometric 
interpretation of this quartic is not known. 

(3.6) In arbitrary genus, the quartic hypersurfaces in 1281 contain
ing M 2 have been studied in [vG] and [vG-P]. Here is one sample of 
their results: 

Proposition 3.6. Assume that C has no vanishing thetanull. A J[2]
invariant quartic form F on 1281 vanishes on M2 if and only if the 
hypersurface F = 0 is singular along JC. 

(Note that though the action of J[2] on 1281 does not come from a 
linear action, it does lift to the space of quartic forms on 1281. Requiring 
the invariance of F is stronger than the invariance of the corresponding 
hypersurface.) 

Van Geemen and Previato also describe the quartics containing 
M2 in terms of the Prym varieties associated to C - this is related to 
the Schottky-Jung configuration studied by Mumford. 
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§4. Genus 2 

( 4.1) Going to higher rank, it is natural to look first at the genus 
2 case. There a curious numerical coincidence occurs, namely 

dimMr =dim lr81 = r 2 -1. 

Recall that () is a finite morphism for r = 2, 3 (1.6). However 
already for r = 4 it is only a rational map: the Raynaud bundle R 2 has 
rank 4 and slope 1 (2.3), so once twisted by appropriate line bundles of 
degree -1 it provides finitely many (actually 16) base points of I.C 1-

We have seen that () is an isomorphism in rank 2. In rank 3 there 
is again a beautiful story, surprisingly analogous to the rank 2, genus 3 
case. Indeed the Coble quartic has a companion, the Coble cubic : this 
is the unique cubic hypersurface C C 1381* singular along J 1 embedded 
in 1381* by the linear system 1381 (this is implicit in Coble [C1]; see [B5] 
for a modern explanation). 

Theorem 4.2. The map () : M 3 -+ 1381 is a double covering; the 
corresponding involution of M3 is E f--+ [* E*, where [ is the hyperelliptic 
involution. The branch locus S C 1381 of() is a sextic hypersurface, 
which is the dual of the Coble cubic C C 138 I*. 

This is fairly straightforward (see [0]) except for the duality state
ment, which was conjectured by Dolgachev and proved in [OJ (a different 
proof appears in [N]). 

( 4.3) Like for the Coble quartic we get an explicit equation for C by 
choosing a level 3 structure on C, which provides canonical coordinates 
(Xv)vEV on 1381*, where V is a 2-dimensional vector space over lF3. 
Then from [C1] we get the following equation for C: 

O:o L x; + 6 L 0:d(C)XuXvXw = 0 ' 
vEV f={u,v,w} 

where the second sum is taken over the set of affine lines in V, and 
d(£) E !P(V) is the direction of the line£. The 5 coefficients (o:i) satisfy 
the Burkhardt equation 

a6 - ao L: a~ + 3 IT O:p = o 
pEll'(V) pEll'(V) 

(see [H], 5.3). 

( 4.4) In rank r 2 4 we start getting base points, and this causes a 
lot of trouble - since () is only rational, we cannot compute its degree 
using intersection theory. However we still have: 
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Proposition 4.5. [B6] The rational map e: Mr --+ lr81 is generically 
finite (or, equivalently, dominant). 

The idea is to prove the finiteness of e- 1 (8 + ,6.), where ,6. is a 
general element of l(r- 1)81. Any decomposable bundle in that fibre 
must be of the form OcffiF for some FE Mr-1 with 8p = ,6.; reasoning 
by induction on r we can assume that there are finitely many such F. 
Thus the whole point is to control the stable bundles E with 8 E = 8+,6.. 
Now the condition 8 E :J 8 means by definition H 0 ( C, E (p)) =1- 0 for 
all p E C, or equivalently H 0 (C, E'( -p)) =1- 0 for all p E C, where 
E' := E* Q9 K(/ is the Serre dual of E. Since h0 (E') = r by stability 
of E, this implies that the global sections of E' generate a subbundle 
of rank < r. A precise analysis of this situation allows us to prove that 
there are only finitely many such bundles E with 8 E = 8 + ,6.. 

( 4.6) The map e is no longer finite in rank r 2: 4, in fact it admits 
some fibres of dimension 2: m - 1 [B6]. When r is even, this is seen by 
restricting e to the moduli space of symplectic bundles: the correspond
ing moduli space has dimension ~r(r + 1), but its image under e lands 
in the subspace lr81+ of lr81 corresponding to even theta functions of 

2 
order r, which has dimension r2 + 1. For r odd one considers bundles 
of the form Oc ffi F with F symplectic. 

( 4. 7) It would be interesting to find the degree of e, which is un
known already in genus 4. For trivial reasons it has to grow exponentially 
with g (see [B6], 2.3). Brivio and Verra have found a nice geometric in
terpretation of the generic fibre of e which might lead at least to a good 
estimate for deg e [B-V2]. 

§5. Higher rank and genus 

Not much is known here. We already mentioned the following result 
proved in [B6]: 

Proposition 5.1. In genus 3 the map e : M 3 -+ 1381 is a finite 
morphism. 

The proof is rather roundabout, and gives actually a more inter
esting result: the complete list of stable vector bundles E of rank 3 and 
degree 0 such that 8 E :J 8. It turns out that each bundle in this list 
admits a theta divisor. Since 8e = J implies 8e :J 8, Proposition 5.1 
follows. 

(5.2) The idea for establishing that list is to translate the problem 
into a classical question of projective geometry. Similarly to the genus 2 
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case, the condition 8 E ::::> 8 means H 0 (E(p + q)) =/=- 0 for all p, q in C, or 
equivalently H 0 (E'( -p-q)) =/=- 0, where E' := E*0K(/ is the Serre dual 
of E. One checks that stability implies h0 (E') = 6 and h0 (E'( -p)) = 3 
for p general in C. This gives a family of 2-planes in lP'(H0 (E')) ~ !P'5 , 

parametrized by C, such that any two planes of the family intersect. 
It turns out that the maximal such families have been classified in a 
beautiful paper by Morin [M]: there are three families given by linear 
algebra (like the 2-planes contained in a given hyperplane), and three 
coming from geometry: the 2-planes contained in a smooth quadric, the 
tangent planes to the Veronese surface, and the planes intersecting the 
Veronese surface along a conic. Translating back this result in terms of 
vector bundles gives the list we were looking for. 

(5.3) This list also shows that e- 1(8 + 8p) = {Oc EB F} for F 
general in M 2 . This might indicate that e has degree one; it would 
follow if we could prove the injectivity of its tangent map at Oc EB E for 
some E in M 2 , perhaps in the spirit of [vG-I]. 

§6. Questions and conjectures 

The list of results ends at this point, but let me finish with a (small) 
list of open problems. About the general behaviour of the theta map, 
the most optimistic statement would be: 

Speculation 6.1. For g 2: 3, e is generically injective if C is not hyper
elliptic, and generically two-to-one onto its image if C is hyperelliptic. 

Note that in the hyperelliptic case e factors as in thm. 4.2 through 
the non-trivial involution E ~--* ~* E*. Admittedly the evidence for 6.1 is 
very weak: the only case where it is known is in rank 2. 

As for base points, Proposition 1.6 leads naturally to: 

Conjecture 6.2. Every bundle E E M3 has a theta divisor. 

(6.3) There exists an integer r( C) such that e is a morphism for 
r < r( C) but only a rational map for r 2: r( C) (observe that if E E Mr 
has no theta divisor, so does E EB F for any Fin M 8 , s 2: 1). We know 
very little about this integer: we have r( C) = 4 for g = 2, 4 :::; r( C) :::; 8 
for g = 3, and r(C) :::; ~(g + 1)(g + 2) [A]. 

Questions 6.4. a) Does r( C) depend only on g? 
b) Put r(g) := minr(C) for all curves C of genus g. Is r(g) an 

increasing function of g? 
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The n-ext question does not involve directly the theta map, but it 
is related to several questions about the existence of theta divisors. 

Conjecture 6.5. Let 7r : C' --+ C be a finite morphism between smooth 
projective curves of genus~ 2. The direct image n*L of a general vector 
bundle L on C' is stable. 

One reduces readily to the case when L is a line bundle. The 
problem depends in a crucial way on the degree of L: one can prove for 

. 2 

instance that n*L is stable (for L generic) if lx(L)I < g + !f, where r is 
the degree of 7r and g the genus of C (see [B3]). 

One of the relations between this conjecture and the existence of 
theta divisors is the following: the conjecture for a general line bundle L 
of degree d is implied by the existence of a vector bundle E of rank r and 
degree g( C') - 1 - d such that n* E admits a prime theta divisor. Indeed 

we have 8n.L®E = (n*)- 1 (8L®n•E); if 8n•E is prime, SO is 8n.L®E for 
general L, and as in (2.2) this implies that n*L is stable. 
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