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Finite Dehn surgery along A'Campo's divide knots 

Yuichi Yamada 

Abstract. 

We give two geometric methods of constructing plane curves giv­
ing cable knots of torus knots via A'Campo's divide knot theory, re­
lated to both singularity theory and knot theory. We point out a 
relationship between "area" of the plane curves and the coefficients of 
finite Dehn surgery, which is Dehn surgery yielding three-dimensional 
manifolds with finite fundamental group. 

§1. Introduction 

The divide is a relative, generic immersion of a finite number of 
copies of an arc and a circle in the unit disk D in R 2 . N. A'Campo 
formulated the following definition to associate to each divide P a link 
L(P) in the 3-dimensional sphere S 3 ([1, 2, 3, 4]): 

L(P) = {(u,v) ED x TuDiu E P, v E TuP, lul 2 + lvl 2 = 1} C S 3 , 

where TuP is the subset consisting of vectors tangent toP in the tangent 
space TuD of D at u. The number of components of L(P) is ~arc+ 
2~circle, where ~arc (and ~circle, respectively) is the number of immersed 
components of arcs (and circles) in P. In this paper, we will study the 
case where P consists of one immersed arc, thus L(P) is a knot, and we 
say "a curve P gives a link L" if L(P) = L. 

The class of links of divides properly contains the class of the links 
arising from isolated singularities of complex plane curves, for example, 
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each torus link T(a, b) of type (a, b) with a, b > 0 appears as the link 
of the singularity of the curve za - wb = 0 in C 2 at the origin. In 
particular, if a and bare coprime, then T(a, b) is a torus knot. A cable 
knot of a (non-trivial) knot K is a knot in the boundary TK of a regular 
neighborhood of K. A cable knot is called (p, q)-cable of K and denoted 
by C(K;p,q) if it is homologous to plK + qmK in TK, where {mK,lK} 
is a meridian-longitude system on TK. For the torus knot T(a, b), if the 
pair (p, q) of coefficients satisfies the inequarity q > abp then the cable 
knot C(T(a, b); p, q) also appears as the link of the singularity in C 2 , see 
[11, p.51]. Note that it is well-known that the link of a singularity is a 
torus knot, a cable knot or a knot obtained by iteration of cablings of 
them, called an "iterated torus knot". 

In this paper, we give two geometric methods of constructing di­
vides that give some cable knots of torus knots. They are different from 
A'Campo's original method [4]. The first method, in the next section, 
is a generalization of [14], in which the author and co-authors showed 
that a billiard curve in a rectangle ax b gives a torus knot T(a, b) from 
the view point of knot theory. The second one, in Section 3, is a modifi­
cation of A'Campo's, but we will use fold-maps of rectangles instead of 
immersions. In Section 4, we point out a relationship between such di­
vide representation of knots and finite Dehn surgery, i.e., Dehn surgery 
yielding a 3-manifold whose fundamental group is finite. The reason why 
we show such alternative methods is that ours seems more convenient 
in 3-dimensional topology. 

The author would like to thank Professor Tadashi Ashikaga and 
Professor Masaharu Ishikawa [15, 16] for introducing to him A'Campo's 
theory. The author would like to thank Professor Mikami Hirasawa, 
who checked some examples of theorems in this paper by more knot­
theoretical and visualized method in [18]. The author would like to 
express sincere gratitude to the referee for reading the manuscript care­
fully and giving him valuable advice. 

§2. Method 1. Billiard curve 

Let X be the infinite 45° lattice defined by 

X:= {(x, y) E R 2 1 COS7rX = COS7ry} 

in the real xy-plane. For a pair (a, b) of positive integers and (m, n) E Z2 , 

by R(a x b)(m,n) we denote the rectangle at (m, n) of size ax bin the 
following sense: 

R(a x b)(m,n) := {(x, y) E R 2 1 m ~ x ~ m +a and n ~ y ~ n + b}. 
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Fig. 1. P(2, 3; 2, 13), P(3, 4; 3, 37) and P(3, 4; 3, 35) 

Fig. 2. B(2,3)(B6(2)) and B(3,4)(B6'(3)) 

For such a rectangle or a union R of such rectangles, we regard X n R 
as a piecewise linear curve (shortly, a PL curve), where we regard each 
point in X n 8R as a break point if it is on the edges of R, or a endpoint 
if it is on a corner of 8R. From such a PL curve, we get a divide by 
rounding the break points smoothly and setting it in the unit disk in R 2 
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by an isotopy. By X n R, we also denote such a smooth divide derived 
from the PL curve. 

In [14], the author and co-authors proved the following proposition 
and found a nice diagram ofT( a, b) and Murasugi-sum structure of their 
fiber surfaces from the view point of knot theory. (Proposition 2.1 itself 
has been shown in [17], [5], or can be shown by more recent works [10], 
[18].) 

Proposition 2.1. ( [14]) Let (a, b) be a pair of positive integers and 
(m, n) any pair of integers. Then a divide XnR(a x b)(m,n) gives a torus 
link T(a, b). 

Now, for a pair (a, b) of positive coprime integers and a positive 
integer p, we define a region R( a, b; p, pab + 1) in R 2 and a divide 
P(a,b;p,pab+ 1) as: 

( +) R(a, b;p,pab + 1) ·- R(pa x pb)(o,o) U R(1 x P)(-1,0)• 

P(a,b;p,pab+1) ·- Xn(R(a,b;p,pab+1)+J), 

and also define a region R( a, b; p, pab-1) in R 2 and a divide P( a, b; p, pab-
1) as: 

(-) R(a, b;p,pab- 1) ·- cl (R(pa x pb)(o,o) \R(1 x (p- 1))(o,o)), 

P(a, b;p,pab- 1) .- X n (R(a, b;p,pab- 1) + J), 

where cl means the closure ofthe region, J' = (J1, J2) E Z2 with J1 +J2 := 

p + 1 mod 2 and +J means the parallel transformation by l in R 2 , see 
Figure 1. 

Theorem 2.2. For a pair (a, b) of positive coprime integers and a 
positive integer p, the divide P( a, b; p, pab ± 1) gives a (p, pab ± 1 )-cable 
of the torus knot T(a, b), i.e., 

L(P(a, b;p,pab ± 1)) = C(T(a, b);p,pab ± 1). 

Proof First, from the pair (ao, bo) := (a, b), we construct a word 
w1 w2 · · · Wn of two letters L (left) and R (right) by Euclidean algorithm, 
see Figure 3: 

If ai > bi, then Wi+l := L and (ai+l, bi+l) := (ai- bi, bi)· 
If ai < bi, then Wi+l :=Rand (ai+l, bi+l) := (ai, bi- ai)· 

By coprime-ness of (a, b), after some n steps, the pair (an, bn) becomes 
( 1, 1). Then this step is over. 

Second, we regard the word as a rule of constructing the a x b rec­
tangle. In fact, R(a, b)(o,o) is obtained from R(1 x 1)(o,o) ruled by the 
word in inversed order as follows (j = 1, 2, ... , n) (see also [19]): 
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(3,5) 

T(3,5) ~ 

(3,2) (1, 2) (1, 1) 
R L R 

~ 
oo~oo~cg; 

Fig. 3. Euclidean Algorithm 

If Wn+1-j = L, then we add a square from the right. 
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If Wn+ 1-j = R, then we add a square from the top, see Figure 3. 
This process corresponds to a blowing-up sequence of the singularity 
za- wb = 0, thus also to a twisting sequence of torus knots. According to 
growing up of the rectangle from R(1 x 1) to R(a x b), the corresponding 
knot K changes from the unknot Ko := T(1, 1) to Kn := T(a, b) by 
Proposition 2.1. 

Finally, we starting with the region R((p + 1) x p)(- 1,o) + l or 

cl (R(p x P)(o,o) \R(1 x (p -1))(o,o))+J according to the sign at±, which 
gives C(T(1, 1);p,p ± 1) = T(p ± 1,p) regarded as a curve in TKo· We 
add p x p extended squares to the starting rectangle from the right or 
the top according to the word Wn+l-j is Lor R (j = 1, 2, ... , n) as same 
as in the last step. Then we have R( a, b; p, pab ± 1) and the divide 
P(a, b;p,pab ± 1). 

Generally, if a knot K' is obtained from K by a positive twisting 
along a disk d, the homology class mK in TK becomes to mK' in TK' 
and the class lK in TK becomes to lK' + lk(K, 8d) 2mK' in TK', where 
lk(K, 8d) is the linking number of K and the boundary of d, see [20, 
p.ll]. In the divide theory, the intersection number between two divides 
equals to the linking number of the corresponding components of the 
link. 

In our j-th process in the case of Wn+l-j = R, the boundary of 
the disk dj corresponds to the right edge whose length is bn+1-j, which 
equals to the linking number lk(Kj_ 1, 8dj)· 
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p(lKj + b~+l-jmKj) + (pan+l-jbn+l-j ± 1)mKj 

= plKj + {p(an+l-j + bn+l-j)bn+l-j ± 1}mKj 

= plKj + (pan-jbn-j ± 1)mKj· 

The case of Wn+l-J =Lis similar (a and bare changed). After the final 
n-th step, we have the cable knot C(T(a, b);p,pab ± 1). The proof is 
completed. Q.E.D. 

§3. Method 2. Fold-immersion 

Let P be a PL curve obtained by cutting out X n 'R from the lattice 
X as in the last section. 

Definition 3.1. For such a PL curve P, by b we denote the number 
of break points of P on the edges of 'R. We say that a map f: [0, 1]2----+ 
R 2 is a fold-immersion of [0, 1 ]2 along P if it satisfies the following 
condition: 

(1) f([O, 1] X H}) = P, 
(2) There exists a sequence 0 < t 1 < t 2 < · · · < tb < 1 such that 

(i) f is an immersion over ([0, 1]\{h, t2, · · ·, tb}) x [0, 1] and 
(ii) Near each {ti} x [0, 1], f is locally given as shown in 

Figure 4. For example, in the case of Figure 4, f near 
{ti} x [0, 1] is determined by the map 

'P: (ti- E,ti +E) X [0, 1] ---+ R 2 

(t, s) r--+ (t+ s, ltl). 
If the break point is not on the bottom edge, then f is 
locally given by the 1r /2, 1r or 37r /2 rotation of Figure 4 or 
its reflection. 

Fig. 4. Fold-map 

We remark that triangle moves on divides shown in Figure 5 do not 
change the ambient isotopy type of the links of the divides. Let Bt (p) 
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Fig. 5. Triangle move 

and B(a, b) be the billiard curves defined by 

Bt(P) 

Bo(P) 
B(a, b) 

.- X n R((p + 1) X P)(o,-p)' 

·- X n cl (R(p x p)(o,-p) \R(1 x (p- 1))(o,-p)) and 

·- X n R(a x b)(o,o)· 
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By scaling smaller, we regard B(i=(p) in the rectangle as a curve in 
[0, 1] 2 . Then, the image of B(i=(p) under a (generic) fold-immersion along 
B(a, b) is well-defined up to triangle moves. We denote such a curve by 
B(a, b)(B(i=(p)), see Figure 2, placed near Figure 1 for convenience. 

Theorem 3.2. For a pair (a, b) of positive coprime integers and a 
positive integer p, the divide B(a, b)(B(i=(p)) gives a (p,pab ±I)-cable of 
T(a, b), i.e., 

L(B(a, b)(B(i=(p))) = C(T(a, b);p,pab ± 1). 

Proof It is easy to see that, for a nice choice of fold-immersion, 
or in other words, by some triangle moves, the curve B(a, b)(B(i=(p)) is 
isotopic to P(a, b;p,pab ± 1). Q.E.D. 

We remark that A'Campo constructed in [3] the divide B(2, 3)(Bri(2)) 
in ~ur notation as the image of B(2, 9) under an immersion along B(2, 3) 
and denoted by P2,9 * P 2,3 , see Figure 6. 

Fig. 6. Comparison 
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§4. Area of divide and Dehn surgery 

Let K be a knot in S3 and nan integer. By M(K, n) we denote the 
3-manifold obtained by Dehn surgery along K with coefficient n, i.e., 
removing a solid torus VK along K and regluing it back such that the 
meridian comes to a curve homologous to lK + nmK, where {mK, lK} 
is a meridian-longitude system on the boundary of VK. Here we are 
concerned with M(K, n) whose fundamental group nt(M(K, n)) is finite. 
Such research is called "finite Dehn surgery" ([6, 9, 13]). Note that 
H1(M(K,n);Z) ~ ZjnZ. 

What we would like to point out in this section is that in some 
examples of integral finite surgery M(K, n), the knot K is given by a 
plane curve as X n R via A'Campo's divide theory, and that in such a 
case the coefficient n is near to the area A(R) of the region R in the 
plane. 

The links which can be obtained from the billiard curves by the 
method in section 2 and 3 are only cable knots of torus knots. In [13] 
and [6], it is proved that an iterated torus knot other than a torus 
knot or a cable knot of a torus knot has no finite surgery. The cable 
knots of torus knots with finite surgery, completely listed in [6], can be 
obtained as the knots of billiard curves except for the following four 
cases: C(T(2, 3); p, q) with (p, q) = (2, 9), (2, 15), (3, 16) and (3, 20). We 
can state the following: 

Theorem 4.1. 

(i) Let R be a rectangle R(a x b)(m,n) with a pair (a, b) of any 
coprime integers, K the knot of the billiard curve obtained 
from R, and n a coefficient of finite surgery of S 3 along K. 
Then the inequality In- A(R)I ~ 1 holds. 

(ii) Let R be a region defined by ( + ), K the knot of the billiard 
curve obtained from R, and n a coefficient of finite surgery of 
S3 along K. Then the inequality In- A(R)I ~ 1 holds. 

(iii) Let R be a region defined by (- ), K the knot of the billiard 
curve obtained from R, and n a coefficient of finite surgery of 
S3 along K. Then the inequality In- A(R)I ~ 2 holds. 

Proof We start with families of finite surgery along torus knots and 
cable knots of torus knots. 

Example 4.2. Each of the followings is finite surgery: 
(1) ([21]) M(T(a,b),n) withn=ab±l. 
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(2) ([8, 13]) M( C(T(a, b); 2, 2ab ± 1), n) with n = 4ab ± 1, 
(3) ([13]) M( C(T(2, b); 3, 6b ± 1), n) with n = 18b ± 2. 
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In (1) and (2) (or (3), respectively), resulting 3-manifolds are lens 
spaces (or prism manifolds). The case (i) in the theorem is shown by (1) 
above: K is the torus knot T(a, b) by Proposition 2.1 and the area of 
R(axb)(m,n) is ab. For (2) and (3), we have that A(R) = p2ab+p for R = 
R(a, b;p,pab+1) and that A(R) = p2ab-p+1 for R = R(a, b;p,pab-1). 
Thus, in these examples, the inequality In - A(R) I :0::::: 1 holds. 

Next, we recall more "exceptional" examples from the list in [6]. 
In the left-hand side of Table 1, we picked up all examples of integral 
finite surgery along knots of type C(T(a,b);p,pab± 1) from Table 1 in 
[6], which is the complete list of 37 examples by [13]. Four examples 
marked by * are included in Example 4.2 (3). In the right-hand side, 
we represent each knot by a divide of type B(a,b)(B~(p)) (Method 2), 
which can be deformed as X n R (Method 1) and write its area A(R). 

( +) C(T(a, b);p,pab + 1) n B(a,b)(B{j(p)) A(R) 
C(T(2, 3); 2, 13) 27 B(2, 3) (B(j (2)) 26 
C(T(2, 3); 3, 19) 56 * B(2, 3) (B{j (3)) 57 
C(T(2, 3); 4, 25) 99 B(2, 3)(B{j(4)) 100 
C(T(2, 3); 4, 25) 101 B(2, 3) (B{j ( 4)) 100 
C(T(2, 3); 5, 31) 154 B(2, 3)(B{j (5)) 155 
C(T(2, 3); 6, 37) 221 B(2, 3)(B{j (6)) 222 
C(T(2, 5); 2, 21) 43 B(2, 5) (B[j (2)) 42 
C(T(2, 5); 3, 31) 92 * B(2, 5) (B{j (3)) 93 
C(T(2, 5); 4, 41) 163 B(2,5)(B{j(4)) 164 
C(T(3, 4); 3, 37) 110 B(3,4)(B[j(3)) 111 
C(T(3, 5); 3, 46) 137 B(3, 5)(B[j (3)) 138 

(-) C(T(a,b);p,pab- 1) n B(a, b)(B0 (p)) A(R) 
C(T(2, 3); 2, 11) 21 B(2,3)(B0 (2)) 23 
C(T(2, 3); 3, 17) 50 B(2, 3) (B0 (3)) 52 
C(T(2, 3); 3, 17) 52 * B(2, 3)(B0 (3)) 52 
C(T(2, 3); 4, 23) 91 B(2, 3) (B0 ( 4)) 93 
C(T(2, 3); 4, 23) 93 B(2, 3) (B0 ( 4)) 93 
C(T(2, 3); 5, 29) 146 B(2, 3)(B0 (5)) 146 
C(T(2, 3); 6, 35) 211 B(2, 3) (B0 ( 6)) 211 
C(T(2, 5); 2, 19) 37 B(2, 5)(B0 (2)) 39 
C(T(2, 5); 3, 29) 88 * B(2, 5)(B0 (3)) 88 
C(T(2, 5); 4, 39) 157 B(2,5)(B0 (4)) 157 
C(T(3, 4); 3, 35) 106 B(3, 4) (B0 (3)) 106 
C(T(3, 5); 3, 44) 133 B(3, 5)(B0 (3)) 133 

Table 1: Integral finite surgeries along cables 
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We have the theorem. Q.E.D. 

Recent researchers' interest seems to be the finite surgery along hy­
perbolic knots. In the recent work [22], the author pointed out that 
every knot in a certain subfamily of Berge's knots ([7]) yielding lens 
spaces (It contains 19-surgery along the Pretzel knot of type ( -2, 3, 7), 
which was discovered in [12]), is a divide knot and given by a divide of 
X n R type. For them, it holds that n = A(R). 
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