
Advanced Studies in Pure Mathematics 43, 2006 
Singularity Theory and Its Applications 
pp. 137-177 

Quasi-convex decomposition in o-minimal 
structures. Application to the gradient conjecture 

Krzysztof Kurdyka and Adam Parusinski 

Abstract. 

We show that every subset of JRn definable in an o-minimal struc
ture can be decomposed into a finite number of definable sets that 
are quasi-convex i.e. have comparable, up to a constant, the intrinsic 
distance and the distance induced from the embedding. We apply 
this result to study the limits of secants of the trajectories of gradi
ent vector field "il f of a C 1 definable function f defined in an open 
subset of JRn. We show that if the o-minimal structure is polynomi
ally bounded then the limit of such secants exists, that is an analog 
of the gradient conjecture of R. Thorn holds. Moreover we prove that 
for n = 2 the result is true in any o-minimal structure. 

§ 0. Introduction 

Let f be a real analytic function on an open set U C JRn and let \7 f 
be its gradient in the Euclidean metric. Let x(t) be a trajectory of \7 f. 
Then, after Lojasiewicz [16], if x(t) has a limit point x0 E U, then the 
length of x(t) is finite and x(t) --+ x0 as t --+ oo. Moreover, then the 
trajectory cannot spiral, that is the limit of secants 

1. x(t) - xo 
lffi 

t--+oo lx(t)- xol 

exists. The last result, known as the gradient conjecture of R. Thorn, 
has been proven recently in [14]. The main purpose of this paper is to 
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study this conjecture in the a-minimal set-up, that is for f that is C 1 

and definable in an a-minimal structure. 
Recall that the a-minimal structures are natural generalizations 

of the semi-algebraic or the subanalytic geometry satisfying important 
finiteness properties. The reader that is not familiar with this notion 
may refer to various introductory references as for instance [4], [5]. An 
a-minimal structure is called polynomially bounded if for each continu
ous function cp: (!R,O)---> (JR,O), cp- 1 (0) = 0, definable in the structure, 
there is a constant N > 0 such that lcp(r)l 2': lriN· In a-minimal poly
nomially bounded structures the classical Lojasiewicz Inequalities (with 
exponents) hold. On the other hand the a-minimal structures that are 
not polynomially bounded contain the exponential function, cf. [17], 
and hence many flat functions. In what follows we suppose that we have 
fixed an a-minimal structure and the functions we consider are definable 
in this structure. 

The trajectories of the gradient vector field of definable functions 
have been studied in [9], where an analog of Lojasiewicz's result of finite
ness of length was proven. Thus we may place ourselves in the following 
set-up. We suppose that j : U ---> 1R is a C 1 definable function defined 
in an open bounded definable U C ~R.n. We consider a trajectory x(s) 

of V' f parameterized by the arc-length s. Since its length is finite the 
trajectory x(s) has a unique limit point x 0 , that is x(s) ---> xo ass---> s0 , 

and either xo E U, and then V' f(x0 ) = 0, or x 0 E U \ U. In both cases 
we shall study the limits of secants 

l . x(s)-xo 
liD ,.......:'--"-..-....::...,. 

s-+so lx(s)- x0 1 

Even in the subanalytic case this set-up is more general than the classical 
analytic one but of course the main difficulty to extend the gradient 
conjecture to this case is the presence of flat functions. In this paper, 
we were able to extend most of the properties of the trajectories of the 
gradient established in [14], but we came short of proving the conjecture 
in general. Our main results are the following 

(1) The length of the trajectory has the same asymptotic as the 
distance to the limit point 

lx(s)- xol 
I I ---> 1 as s---> so. 
s- so 
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(2) The gradient conjecture holds for n = 2. More precisely, in 
this case the trajectory is definable in an o-minimal structure, 
maybe bigger than the one that contains f. 

(3) The gradient conjecture holds for polynomially bounded o-minimal 
structures. 

Moreover, similarly to [14], we were able to "capture" the trajectories 
arriving to a fixed limit point x 0 E U into a finite number of sets. 
First of all only finitely many limiting values of J, lims-+so f(x(s)), are 
allowed along the trajectories of \7 f that tend to xo, see remark 6.2. 
Furthermore, if we suppose IV' /I ~ 1, that we can do by section 3, then 
we can describe the asymptotic behavior off at the limit point more 
precisely. There exists a finite number of definable functions { <p(r)} of 
one real variable r, where r stands for radius r = lx- xol, such that on 
each trajectory that tends to xo, f(x(s)) ,...., <p(lx(s) - xol) for exactly 
one such function <p. We shall call these functions the characteristic 
functions associated to fat xo. A more precise result on the asymptotic 
behavior of f along the trajectory is given in section 7. 

Some parts of our argument are similar to that of [14]. Let us 
stress here the main differences. The characteristic exponents of [14] 
characterizing the possible asymptotic behavior of f along trajectories 
are replaced by characteristic functions. In order to show their existence 
we cannot use the argument of finitude of exponents as in [14] since it 
does not make sense in general. Instead we use a geometric argument on 
the structure of definable sets. Namely we show that each definable set 
can be decomposed into a finite union of quasi-convex cells, as explained 
in section 1 below. In a polynomially bounded case if <p : (JR., 0) ~ (JR., 0) 
is definable continuous then <pjr is locally integrable. This is not the 
case in general. We have to carefully distinguish those <p for which <pjr is 
integrable, we call them small, and the other ones, that we call unit-like. 
Many our arguments, in particular the proof of conjecture for n = 2, 
relies on the properties of small functions. We stopped short of carrying 
out the proof of the gradient conjecture foro-minimal structure because 
of the existence of small functions with unit-like square root. 

The paper is organized as follows. In section 1 we show that each 
definable set can be decomposed in a finite union of quasi-convex cells, 
that is such cells in JR.n for which the induced Euclidean distance is 
comparable, up to a constant, with the intrinsic one (i.e. along the 
cell). This part is quite technical. The reader interested mainly in the 
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properties of the trajectories of gradient can go directly to section 2. 
In this section we study the germs of continuous definable functions 
'P : (IR, 0) --+ (IR, 0) and the question of integrability of 'P / r. In section 
3 we show analogs of Lojasiewicz and Bochnak-Lojasiewicz Inequalities 
for gradient in the o-minimal set-up. The characteristic functions are 
introduced in section 4. We show that there are finitely many such 
functions and that each trajectory x( s) of \7 f with the origin as the limit 
point has to finally end-up in one of finitely many sets U'P = { xlccp(x) < 
IJ(x)l < Ccp(x)}, C, c > 0, 'P being a characteristic function. This 
holds under the assumption IV' fl 2: 1, that can be always achieved by 
replacing f by \]! o f without affecting the trajectories of the gradient. 
Subsequently the function F(x) = ~i~\ is used as a control function 
in the sense of Thorn. The estimates along trajectories are carried out 
in sections 5 and 7. It is convenient, for each characteristic function, 
to make another change of target coordinate , that is to replace f by 
a function of the from <I> o f, so that the corresponding characteristic 
function 'P becomes equivalent to the distance to the origin r. This 
simplifies many formulae. After such a change we show not only that 
F = ~ is bounded from zero and infinity on the trajectory but also 
that it approaches a fixed value and only finitely many such values are 
allowed. These values, called asymptotic critical values, are studied in 
section 6. As application we show in section 8 the o-minimal gradient 
conjecture for n = 2 and in section 9 for the polynomially bounded 
structures. 

The result of the first section has been obtained independently by 
W. Pawlucki [21]. During the redaction of this paper we also learned 
that some other of the results proven is this paper were obtained during 
a workshop at the Fields Institute (Toronto) by M. Aschenbrenner, S. 
Kuhlmann, C. Miller, D. Novikov, P.Speisseger, and S. Starchenko. In 
particular, we were informed that the gradient conjecture holds in the 
polynomially bounded o-minimal structures. The case n = 2 was stated 
as an open problem at this meeting. 

Notation and convention. 

We often write r instead of lxl which is the Euclidean norm of x. 
We use the standard notation 'P = o('¢) or 'P = 0('¢) to compare the 
asymptotic behavior of 'P and '¢, usually when we approach the origin. 
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Sometimes we write VJ « 'ljJ instead of VJ = o( 'ljJ). We write 'P ,...., 'ljJ if 
VJ = 0('1/J) and 'ljJ = O(VJ), and VJ ':::' 'ljJ if~ tends to 1. 

Erratum to [14]: 

The formula on the line -6 on page 783 should be replaced by: 

§1. L-regular cells 

Consider JRn equipped with the canonical scalar product. We say 
that A C JRn verifies the Whitney property with constant M > 0, if any 
two points x, y E A can be joined in A by a piecewise smooth arc of 
length :::; Mix- Yi· Following M. Gromov [6] one could also say that 
A is quasi-convex, or more precisely that A is M -quasi-convex. Any 
bounded semianalytic set can be covered by a finite number of quasi
convex (and semianalytic) sets as proven by the second named author 
[19] using the regular projections ofT. Mostowski [18]. The construction 
proposed in [19] (extended in [20] to subanalytic sets) does not allow to 
estimate the constant M. Next the first named author [10] proved, 
by a different argument, that any bounded subanalytic subset can be 
decomposed (more precisely stratify) into a finite union of M-quasi
convex (and subanalytic) sets, with the constant M depending only on 
n - the dimension of the ambient space. This result was improved in 
[12], where it is shown that for any M > 1 such a finite decomposition 
into M -quasi-convex sets exists. 

The construction from [10] can be adapted foro-minimal structures 
and actually can be done with parameters (which we need in the sequel). 
We shall explain it in this section. 

We define, by induction on n, a class of subsets of JRn. For any 
x E JRn let us write x = (x', Xn) E JRn- 1 x R We say that A C JRn is 
a standard L-regular cell in JRn with constant C, if A = {0} for n = 0, 
and for n > 0 the set A is of one of the following forms: 

(graph) A= {(x', Xn) E lRn- 1 X lR; Xn = h(x'), x' E A'} 
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(we write often h instead of A), or 
(band) 

A= {(x',xn) E lRn- 1 X lR; f(x') < Xn < g(x'), x' E A'}= (!,g) 

where A' is a standard 1-regular cell in JRn- 1 with constant C, J, g, h : 
A'-+ lR are C 1 functions such that f(x') < g(x') for x' E A'. Moreover 
we require that 

(1.1) lldf(x')ll :::; C, lldg(x')ll :::; C, lldh(x')ll :::; C 

for all x' E A'. We call A' the base of the cell A, and in the case of band 
the graphs of f and g the horizontal part of the boundary of A. 

By induction, we obtain that A is a C 1 submanifold of lRn (not 
closed in general). So it make sense to define df, dg, dh and also their 
norms (with respect to the norm induced on tangent space to A' at x'). 
If in the above we drop the condition (1.1), but we still assume that the 
functions j, g, h are C 1 we say that the set A is a standard C 1 cell in 
JRn. If the functions J, g, h are only continuous we shall say that A is a 
standard cell in JRn. 

Finally we say that B C JRn is an L-regular cell in JRn with constant 

C, if there exists an orthogonal change of variables 'P : JRn -+ JRn such 
that c.p(B) is a standard 1-regular cell (with constant C) in JRn. By 
convention the empty set is an 1-regular set (with any constant), also it 
will be convenient not to distinguish between function and its graph. 

It is easily seen by induction that 

Lemma 1.1. Any L-regular cell in JRn with constant C is M -quasi

convex, where M = (C + 1)n- 1 . Moreover A is also M -quasi-convex. 

As a piece of terminology we recall that by a decomposition we al
ways understand a disjoint union. We say that a decomposition JRN = 
UiEJ Bi is compatible with a collection Ak C JRN, k E K, if Bin Ak = 0 
or Bi c Ak for any i E I, k E K. We also say that a decomposi
tion ]RN .:.._ uiEJ Bi is a stratification if each Bi is a C 1 submanifold 

and dim(Bi \ Bi) < dim Bi, and moreover that this decomposition is 
compatible with the collection Bi, i E I. 

Notation. ForB C JRn x JRP and t E JRP we write Bt = {x E JRn : 
(x, t) E B}. 

Now we state the main result on a decomposition of a definable set 
into a finite number of quasi-convex sets. 
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Theorem 1.2. There exists M = M(n) > 0 such that any set 
A C JR.n x JRP definable in an a-minimal structure can be decomposed into 
a finite (and disjoint) union A = uiEJ Bi, such that for each t E JRP, 
every set Bi has the Whitney property with constant M (i.e. isM -quasi

convex). So, in particular, At = U B: for each t E JRP. 
iEJ 

Corollary 1.3. Let A C JR.n x JRP be a family of definable sets such 
that each At, t E T C JR.P, is connected. Then there is a constant C > 0 

such that for every t E T and x, x' E At there is a definable continuous 
curve ~ joining x and x' in At such that 

length(~) :::; C diam(At), 

where diam(At) stands for the diameter of At. 

What we actually prove below is more precise than theorem 1.2, 
namely we have: 

Proposition 1.4. Let A k C JR.n x JRP, k E K, be a finite collection 
of definable sets in an a-minimal structure. Then there exists finitely 
many disjoint definable sets Bi C JR.n x JRP, i E I, and linear orthogonal 
mappings r.pi : JR.n ___, JR.n, i E I, such that: 

a) for every t E JRP, each r.pi ( Bf) is a standard L-regular cell in 
JR.n with constant C. The constant C = Cn depends only on n. 

b) For every t E JRP, the family Bl C JR.n, i E I, is a stratification 
of ]Rn. 

c) For any k E K there exists Ik C I such that A~ = U B:, for 
iEh 

every t E JRP. 

Remark 1.5. Clearly, for a fixed t E JRP some of B't may be empty. 

Proposition 1.4 will be proved at the end of this section. Before we 
give some preliminaries on the distances between linear subspaces and 
we recall some basic facts on cell decompositions in a-minimal structures. 
We establish also the definability of tangent mapping (with parameters). 

1.1. Distances between linear subspaces 

In this subsection by a line or a hypersurface in JR.n we mean a 
linear subspace of dimension 1 and n - 1 respectively. First we recall 
the definition of the angle (or the distance) between linear subspaces. If 
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P, S are (vector) lines we denote by 8 ( P, S) the sine of the angle between 
P and S, in other words 8(P, S) = Jl- (p, s) 2 , where IPI = lsi = 1, 
pEP and s E S. 

Let X be a linear subspace in R.n, let P be a line in R.n. We define 
the angle between P and X as 

8(P, X)= inf{8(P, S); Sis a line in X} 

Finally, if Y is a linear subspace in R.n we put 

8(Y, X) = sup{8(P, X); Pis a line in Y} 

Let us denote by Gd,n the grassmanian of all d-dimensionallinear sub
spaces of R.n equipped with the natural structure of real algebraic variety. 
Then, it is easily seen by the Tarski-Seidenberg theorem that: 

Lemma 1.6. The function Gd,n x Ge,n 3 (Y, X) 1----7 8(Y, X) E JR. is 
continuous and semialgebraic. Moreover, if d = e, then 8 is a distance 
on Gd,n, compatible with the standard topology on Gd,n· 

Remark 1.7. Let X be a linear subspace and P a line in R.n. De
note by pl. the orthogonal complement of P and by 1r the orthogonal 
projection on pl.. Let c > 0. Assume that 8(P, X) > c, then X is the 
graph of a linear mapping 

~:pl. nrr(X)-+ P 

satisfying 11~11 ~ C < +oo, where C = V1;c2
• 

Given a finite system X 1, ... Xr of hyperplanes of R.n. Then we may 
find, in a uniform way, a line P transverse ot each Xi. More precisely 
we have the following fact of metric-combinatorial nature that will be 
crucial in the proof of proposition 1.4. 

Lemma 1.8. For any two positive integers r, n there exist constants 
T = r(r, n) > 0 and c = c(r, n) > 0 such that for given Xt, ... Xr hyper
planes in R.n, there exists a line P such that, ifYt, ... , Yr are hyperplanes 

verifying 8(Yi, Xi) < r, i = 1, ... r, then 

(1.2) 8(P, Yi) > c for each i = 1, ... , r. 

Proof. We fix n, and consider the metric don the sphere sn- 1 

induced by 8 i.e. d(p, q) = 8(R.p, R.q) for p, q E sn-1• Let us denote 
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X[ = {p E sn- 1 : dist(p, Xinsn- 1 ) < 7 }, where as usually dist(p, Z) = 
inf{d(p, q): q E Z}. Note that c5(Yi, Xi)< 7 means that }insn- 1 c X[ 
and c5(P, Yi) > c means that B(p, c) n}insn- 1 = 0, where p E Pnsn- 1 . 

Claim 1.9. For any r EN, there exists 7r > 0 and Cr > 0 such that 
the complement of u~=1 X[ in sn- 1 contains a ball of radius Cr (in the 
metric d). 

The claim implies lemma 1.8. Indeed, the line passing by the center 
of the ball has the property desired in (1.2). We show the claim by 
induction on r. The case r = 1 is obvious. Let us denote 7r and Cr 

corresponding constants in the claim for r hyperplanes. Let B(p, Cr) 

be a ball in sn- 1 which is disjoint with each X[", i = 1, ... r. Put 

7r+I = Cr+1 = min{ 7r, Cr} /3, then the set B(p, Cr) \ X;.'f-i1 Contains a 
ball of radius Cr+l· Q.E.D. 

1.2. Cell decompositions in families 

Recall that a finite decomposition JRN = uiEI Bi is called a cell 
decomposition (resp. a C 1 cell decomposition) if each Bi is a standard 
(resp. a C 1 standard) cell in JRN, and the collection n(Bi), i E I, is a 
cell decomposition of JRN - 1 , where 1r : JRN ___, JRN - 1 is the projection 

parallel to the XN-axis. We say that a decomposition is definable if all 
its members are definable (in some fixed o-minimal structure). We have 
the following fundamental result in the theory of o-minimal structures 
due to Steinhorn, Pillay and Knight [22],[8] ( see also [4], [3]): 

Theorem 1.10 (Cell decomposition). For any finite collection Ak, 

k E K, of definable sets in JRN there exists a definable C 1 cell decompo
sition JRN = uiEI Bi compatible with the collection A k' k E K. 

Remark 1.11. The basic result (proved in [22], [8]) is the existence of a 
cell decomposition (without any smoothness assumption). The existence 
of C 1 decomposition is due to van den Dries and is valid in the Ck class 
for any finite k (cf. [4]). Moreover this decomposition can be refined to 
a stratification (loc.cit.). 

What we need in the sequel is a decomposition with parameters (we 
rather say in a family). We say that that a definable set A C R.n x JRP is 
a definable family of standard cells in R.n if: each At is either empty or 
is a standard cell in JRn and the type of At does not depend on t E JRP. 
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(We say that two cells A~, A 2 C JR_n are of the same type if they are both 
graphs or both bands over their bases which are of the same type.) 

Clearly if A C JR.n+p is a standard cell in JR_n+p = JR.P X JR_n then A is 

a definable family of standard cells in JR.n (cf. eg. [4] chap 3 ). Hence all 
claims of existence of decomposition into a definable family of standard 
cells (or C 1 cells) in JR.n follows from theorem 1.10. 

We shall often use the following construction of cell decomposition 
in an o-minimal structure. 

The CD (cell decomposition) construction: 
Let Ak c JR_n+l x JR.P, k E K, be a finite collection of disjoint defin

able sets. Denote by 1r : JR_n+l ~ JR_n the projection which forgets the 
coordinate Xn+l· Suppose that for each t E JR.P every A~ (if nonempty) 
is a C 1 submanifold of JR_n+l of dimension d and moreover that 1r re
stricted to A~ is an immersion. Each n- 1(x) n A~ is discrete, so it must 
be finite, by o-minimality. Now, for every r E N and k E K the set 

E~ = {(x,t) E JR.n x JR.P; n- 1(x) nA~ has r elements} 

is definable, moreover E~ = 0 for r larger than some ro. This is due 
to the fundamental property of o-minimal structures; if the fibers of a 
definable mapping have only isolated points, then there exists a uniform 
bound for the number of points in each fiber (cf. eg. [4],[3]). 

Let B 1 C JR_n x JR.P, l E L, be a finite collection of definable families 
of standard C 1 cells in JR_n compatible with the family E~; r ~ r 0 , k E 

K, and such that, for each t E JR.P, the collection B~; l E L, is a cell 
decomposition of JR.n. Fix l E L such that B! is non-empty and hence is 
a C 1 submanifold of JR.n. We claim that all connected components of 

are the graphs of C 1 functions J/ : B~ ~ JR., 1 ~ j ~ r. Indeed, 
r = n-1 (BD n A~ is a C 1 submanifold of JR_n+l and the projection 

nlr : r ~ B~ is a local diffeomorphism. Since B~ c E~ for some r EN, 
the number of points in the fiber is constant, and it follows that nlr 
is a finite (r-sheeted) covering. Moreover, it is a diffeomorphism on 
each connected component of r, because B~ is simply connected (in fact 
homeomorphic to a ball). So the family 

l:S;j:S;r O:S;j:S;r 
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form a (standard) C 1 cell decomposition of 1r-1 (BD. We shall call 
this collection subordinate to the collection A k, k E K. (Recall that 
(f/,J/+1) = {(x,xn+l) E !Rn x !R; J/(x) < Xn+1 < j1+1(x), x E Bn.) 
The functions are ordered in the way that J/ < J/+1 and f? = -oo, gH 
= +oo. Moreover each function (or rather its graph) J/, 1::; j::; r, is 

contained in some Af, where k may depend on t. Subdividing, if neces
sary, the set B 1, we may assume that J1 C Af, where k = k(j) does not 
depend on t E JRP. Of course for some t the set Af may be empty and 
then by convention we set J1 = 0, 1 ::; j ::; r. 

Remark 1.12. Note that by construction the horizontal parts of 
boundaries of cells are also cells. 

1.3. Controlling tangents 

First let us observe that each C 1 cell has a definable tubular neigh
borhood. More precisely 

Lemma 1.13 (Definable tubular neighborhoods). Let A c !Rn x JRP 
be a definable family of standard C 1 cells of dimension d. Then there is 
a definable family of submersions 

such that f!t C !Rn is an open neighborhood of At and each Pt is the 
identity on At. 

Proof. We sketch the construction only in the case without pa-
rameters. The reader may easily check that it works also with parame
ters. Let A c !Rn be a standard C 1 cell of dimension d < n. We proceed 
by induction on n. Let p' : Q' --t A' be a definable tubular neighborhood 
(in JRn- 1) of the base A' of cell A. In the case A is a band 

A= {(x', Xn) E !Rn-1 X !R; f(x') < Xn < g(x'), x' E A'} 

we put p(x',xn) = (p'(x'),xn) for x' E f!',xn E !R, and Q = p-1(A). 
In the case of graph 

A = {(x'' Xn) E !Rn-1 X !R; Xn = h(x'), x' E A'} 

we set p(x',xn) = (p'(x'),h(p'(x))) for x' E f!',xn E !R, and f! = 
p- 1 (A) = n' x R Q.E.D. 
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Lemma 1.14 (Definability of the tangent map). Let A C ~n x ~P 
be a definable family of standard C 1 cells of dimension d. Then the 

mapping 

a : A 3 (x, t) 1-t TxAt E Gd,n 

is definable, where TxAt stands for the tangent space to At at x. 

Proof. We proceed by induction on n. We may suppose that 
n > 0 and d < n. We construct (by induction) a definable family of 
mappings 

'Pt : Ot ----* ~n-d, t E ~P 

such that Ot is an open neighborhood of At, r.p;- 1 (0) = At and I.{Jt is 
submersive on Ot. 

The case of graph; each non empty At is the graph of a C 1 function 
ht : A~ ----* IR, where A' = U A~ C !Rn-1 x JRP is a definable family 
of C 1 cells (of dimension d) in !Rn-1 . By lemma 1.13 each ht can be 
extended to -G1 function in an open neighborhood n~ of A~, moreover 
this can be done in a definable family. By induction we have family 
r.p~ : n~ ----* !Rn-d- 1, t E JRP, corresponding to A' . Clearly we may 
suppose that r.p~ and ht are defined on the same n~. We put 

'Pt(x',xn) = (r.pt(x'),xn- ht(x')) 

for (x',xn) E 0~ x lR = Ot. 
The case of band is similar and is left to the reader. 
The derivative of 'Pt i.e. the mapping 

r.p(1): (x, t) 1-t dr.pt(x) E L*(!Rn,!Rn-d) 

is definable (cf. eg. [4] Chap 7.). (Here by L*(!Rn,!Rn-d) we mean 
the space of linear epimorphisms from !Rn to !Rn-d.) The mapping 
L * (!Rn, !Rn-d) 3 ¢ 1-t ker ¢ E Gd,n is semialgebraic, hence definable 
in any o-minimal structure. So our a is definable as a composition of 
definable maps. Q.E.D. 

Our next goal is to control the variation of tangent spaces to cells. 
Recall that we have the metric 8 on the grasmannian Gd,n· Let c > 0, 
we say that r, ad-dimensional C 1 submanifold of !Rn, is c-ftat if for any 
x,y E f we have 
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For each c: > 0 we fix a finite covering Gd,n = U 8~, where each 
8~ is an open ball of diameter (with respect to 15) less then c:. Let At 

be a definable C 1 submanifold in !Rn, of dimension d and let cr : At -+ 

Gd,n denote the tangent mapping. Then each nonempty cr- 1 (8~) is c:
ftat. Moreover, by lemma 1.14, it is a definable set. Indeed each 8~ 
is semialgebraic (cf. lemma 1.6) and the inverse image of a definable 
set, by a definable map, is definable. Having this observation it is now 
routine to prove the following: 

Proposition 1.15. Given c: > 0, and let Ak C IRn x JRP, k E K, 

be a finite collection of definable sets. Then there exists finitely many 

disjoint definable sets Bi C IRn x R.P, i E I, such that: 

a) for each i E I, (B:) is a definable family of c:-flat standard 

C 1 cells of dimension d. More precisely; for every i E I there 

exists vi such that 

TxB: E 8~i, (x, t) E Bi; 

b) For every t E JRP the collection Bi C IRn, i E I', is a stratifica
tion of!Rn; 

c) For any k E K there exists h C I such that A~ = U B;, for 
iEh 

every t E JRP. 

1.4. Proof of Proposition 1.4 

We proceed by induction on n. The case n = 0 is trivial. Suppose 
that Proposition 1.4 holds for n- 1. We argue now by induction on d = 

max{ dim An. For the sake of clarity we prove only the decomposition 
part, i.e. statements a) and c). The refinement to a stratification is 
routine ( cf. [ 4]). At first we deal with the non-open cells, that is d < n, 
then we decompose the open ones. 

Case of non-open cells. 

Fix an c: < 1/2 and assume that we are given Ak C Rn x JRP, k E K, 

a finite collection of definable sets. Let Bi be one of the sets given by 
proposition 1.15, let d < n be the dimension of nonempty Bi. We shall 
prove that: 

Lemma 1.16. There exists a finite collection of definable families 

of cells D 1 C Rn-l x JRP, l E A, and linear orthogonal mappings cp1 : 
]Rn- 1 -+ Rn- 1 , l E A, such that: 
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(1) for every l E >. each (nonempty) rp"(DD is a standard L-regular 
cell in ~n- 1 ; 

(2) For eve~y i E I there is Ai C A such that Bf = U 1r- 1 (D;), 
-\EA, 

for every t E ~P. 

(Here 1r : ~n --+ ~n- 1 denotes the projection on the first n -1 variables. 

) 

Proof. Since all tangent spaces to Bi are in a ball of diameter less 
thanE< 1/2 there exists a line P and c = c(E) > 0 such that 

Let rpi : ~n --+ ~n be an orthogonal mapping which sends P to Xn-axis 
and Pj_ to ~n- 1 (the first n - 1 coordinates). According to remark 
1.7, the set rpi(Bi) is locally the graph of a C 1 function defined on a 
sub manifold in ~n- 1 . Moreover, there exists C < oo (depending only 

on c) such that the norm of the differential of this function is bounded 
by C. Now it is enough to apply the induction hypothesis and the CD 
construction to obtain lemma 1.16. Q.E.D. 

Case of open cells. 

The main difficulty is to decompose an open cell into finitely many 
L-regular cells. This will be done in two steps: in the first one, using 
proposition 1.15, we construct a decomposition into C 1 cells such that 
the boundary of each open cell is contained in a union of at most 2n 
E-flat submanifolds of dimension n - 1. Then, in the second step, we 
apply to each such cell lemma 1.8. If E::; T(2n, n) then there exists a line 
P that makes angle with any tangent space to the boundary of the cell 
larger than some c > 0. After changing the coordinates in the way that 
P becomes the Xn-axis we apply the CD construction. This will give us 
C 1 cells with the horizontal parts of the boundary that are graphs of 
C 1 functions with differential of norm smaller than C < oo ( cf. remark 
1. 7). Now by induction we may subdivide (in ~n- 1 ) the base of each 
above cell into L-regular cells. Hence the proof will be achieved. Now 
we explain the details. 

Step 1. Let us fixE = T(2n, n) of lemma 1.8. Let Ak c ~n x ~P, 

k E K, be a finite collection of definable sets. By proposition 1.15, 
theorem 1.10, and the CD construction there exists a finite collection 
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of disjoint definable families B 1 C JR.n x JRP, l E A, with properties we 
explain below. 

Fix l E A such that each (nonempty) cell B = B~ is open (we skip 
l, t for a moment to simplify the notation), that is of the form: 
(1.3) 

B = Bn = {(x', Xn) E JR.n- 1 X JR.; fn(x') < Xn < gn(x'), x' E Bn-d 

and by induction: 

(1.4) Bi = {(x~,xi) E JR.i- 1 X JR.; fi(x~) <Xi< gi(x~), X~ E Bi-I}, 

i = 1, ... , n-1. We may assume that each Bi, i = 1, ... , n-1, is open in 
JR.i and every fi, gi, i = 1, ... , n- 1, is a C 1 function such that its graph 
(in JR.i) is E-flat. More precisely; independently oft E JRP' there exist e{' 
er two open balls, of diameter E, in the grasmannian Gi-1,i, such that 
the tangent spaces to the graph of J; (resp. gi) belong to e{ (resp. en. 
Note that if X, Y E Gi-1,i and X= X x JR.n-i, Y = Y x JR.n-i, then 

(1.5) t5(X, Y) = t5(X, Y), 

since JR.i x 0 and 0 x JR.n-i are orthogonal. This implies that there exist 

e{, er two open balls of diameter E, in the grasmannian Gn-1,n such 
that independently of t E JRP we have 
(1.6) 

{ X =X X JR.n-i. X E ef} c ef {X =X X JR.n-i. X E 89 } c 8 9 
' 1, t ' ' t 1, • 

Denote by aB the boundary of B. Then clearly, by (1.3) and (1.4), 

n n 

(1. 7) aB C u fi X JR.n-i U u gi X JR.n-i 
i=1 i=1 

Hence the tangent spaces to aB belong to the union of balls 8{, i = 
1, ... , n, and 8f, i = 1, ... , n. Indeed we can take the decomposition 
(1.7) of the boundary of B. 

So we have proved the following: 

Lemma 1.17. For every l E A such that Bi is open there exist 2n 

balls of diameter E in the grassmanian Gn-1,n such that for each t E JRP 
any tangent space to the boundary of Bi belongs to one of these balls. 

Step 2. Recall E :=; T(2n, n) of lemma 1.8 and we work with a fixed 
definable family B 1 such that for each t E JRP the set B~ is open (possibly 
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empty) in !Rn, and B~ satisfies lemma 1.17. By lemma 1.8 there exist 
a line P and c > 0 such that if Y E Gn-1,n is a tangent space .to the 
boundary of B~, then 6(P, Y) >c. After a linear orthogonal change of 
variables in !Rn we may assume that Pis the Xn-axis. Applying the CD 
construction to 8BL decomposed as in (1.7), we obtain finitely many 
disjoint definable families D8 C !Rn-1 x JRP, s E S, and such that BL 
t E JRP, is a union of the sets of the form 

(!,g)= {(x',xn) E !Rn-1 X IR; f(x') < Xn < g(x'), x' ED%} 

and 
h = {(x',xn) E !Rn-1 X IR; Xn = h(x'), x' ED%}, 

with C 1 functions j, g, h : D't ->JR. By remark 1.7 the norm of differ
ential of each f, g, h is bounded by a constant C which depends only 
on n. On the other hand we may assume by induction, that after an 
orthogonal change of coordinates in JRn-1 (independent oft E JRP), each 
D't is an L-regular cell in JRn- 1, with constant C. So h and (!,g) are 
standard L-regular cells in !Rn, with constant C. 

This ends the proof of proposition 1.4. 

§2. Definable Functions of One Variable 

First we shall recall some elementary properties of germs at 0 of 
definable functions. We denote IR2o = {r E IR; r 2:: 0} and the variable 
in IR2o will be usually denoted by r. 

Lemma 2.1. Let cp(r) and '1/J(r) be two continuous definable func
tions (IR2o, 0) -> (IR2o, 0), not identically equal to 0. Suppose '1/J 2:: cp. 
Fix c > 1. Then for r sufficiently small 

(2.1) '1/J'(r) 2:: cp'(r) 
cp'(r) '1/J'(r) 
c-->--. 

cp(r) - '1/J(r) 
(2.2) 

Proof Since '1/J- <p 2:: 0 and ('lj;- cp)(O) = 0, '1/J- cp is increasing 
for small r and the first inequality follows. Similarly, p(r) = <";}()r is 
non-negative and p(r) -> 0 as r-> 0. Hence p has to be increasing and 

O < p' = Cipc-1cp''l/J _ cpc'l/J' = ipc (ccp' _ '1/J') 
- '1j;2 '1/J ip '1/J. ' 
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as claimed. Q.E.D. 

Remark 2.2. If, moreover, r.p(r)/'lj;(r) ____, 1 as r ____, 0, then r.p(r)/'lj;(r) 
is decreasing and 

Definition 1. Let r.p(r) be the germ at 0 of a continuous definable 
function (lR;:::o, 0) ____, (JR, 0). We shall say that r.p is small if there is a 
continuous definable function 'lj; : (1R;:::0 , 0) ____, (lR;:::o, 0), such that 

(2.3) 

In particular, if r.p is small then ; is integrable and r.p(r) ____, 0 as r ____, 0. 
We shall say that r.p is unitlike if there is a continuous function 

'lj; : (lR>o, 0) ____, (lR>o, 0), C 1 for r > 0, such that 
- -

(2.4) 
r'lj;' 

r.p = --:;j;. 

Clearly in a polynomially bounded o-minimal structure all continu
ous definable r.p : (lR>o, 0) ____, (JR, 0) are small. This is not the case for 
the other o-minimal structures, see example 1 below. 

Lemma 2.3. Let 'lj; : (lR>o, 0) ____, (lR>o, 0) be continuous definable. 

Then r$' is bigger than any ~all functi;;n. 
Let 'Pl ( r) and 'P2 ( r) be two continuous definable functions (lR;:::o, 0) ____, 

(JR, 0), not identically equal to 0. Suppose r.p2(r) 2': r. Then the function 

(2.5) 'P~'P2 
'Pl'P; 

is bigger than any small function. 

Proof Let 'lj;: (lR>o, 0) ____, (lR>o, 0) be definable. Then (log 'lj;)' = 
'%- is not integrable and hence r$' is-bigger than any small function. By 

lemma 2.1, cp; < 2 -!, and hence cp) cp~ is bigger than any small function. 
'P2 - r 'Pl cp 2 

Q.E.D. 

We have a more precise result that, however, we do not use in this 
paper. 



154 K. Kurdyka and A. Parusinski 

Proposition 2.4. Each continuous definable cp : (lR;:::o, 0) -> (lR;:::o, 0) 
is either small or unitlike. Moreover, cp is small iff; is integrable and 
then there is 'ljJ : (lR;:::o, 0) -> (lR;:::o, 0) such that 

(2.6) '£ = '1/J'. 
r 

The functions 'ljJ of (2.6) and (2.4) belong to the Pfaffian closure of the 
a-minimal structure containing cp. 

Proof Let cp : (lR;:::o, 0) -> (lR;:::o, 0). Fix a > 0 small and consider 

(2.7) f(r) = 1r cp(t) dt. 
a t 

By [23], f is definable in the Pfaffi.an closure of the a-minimal structure 
containing cp. If f(r) is bounded then cp is small and we may take in 
(2.3), '1/J(r) = f(r)- f(O). 

Suppose f(r) is not bounded that is f(r) -> -oo as r -> 0. Then 
the structure is not polynomially bounded and hence contains the ex
ponential and the logarithmic functions, see [17]. Then we may take in 
(2.4), 'ljJ = ef. Q.E.D. 

Example 1. Let o:(r) = ( -ln r)- 1 for r > 0 and o:(O) = 0. Then, 
o:( r) satisfies 

(2.8) 

In particular, o:2 is small and o: = r~' is unitlike. 

§3. Lojasiewicz Inequalities in o-minimal Structures 

We recall the main result of [9]. 

Theorem 3.1. Let f : U-> lR be a differentiable definable function 
defined in an open bounded U C JRn. Then there exist c > 0, p > 0, and 
a continuous definable change of target coordinate \II : (JR, 0) -> (JR, 0) 
such that 

(3.1) IV'(\11 o f)(x)l ::=: c, 

for x E U and f(x) E ( -p, p). 
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Let us recall briefly after [9] the construction of W. We suppose for 

simplicity that f ::::: 0. Choose a definable curve r(t) : (llh0 , 0) --+ U, 
such that r(t) E U fort> 0, f(r(t)) = t, and that 

(3.2) IV'f(r(t))l::::: 2inf{IV'f(x)l;f(x) = t}, 

in U. Such a curve exists by the a-minimal version of the curve selec
tion lemma and the fact that the right hand side of (3.2) is a definable 
function strictly bigger than 0 for t > 0 and sufficiently small, see [9]. 
Change the parameter by r(s) = r(s(t)) so that I~; (O)I = 1 and r(s) is 
definable of class C 1 (for instance we may use the distance to r(O) as the 
parameter). Then we define W as the inverse function of s --+ f(r(s)) 

that is 
w(f(r(s))) = s. 

Hence for arbitrary x E U, t = f(x) close to 0, and s = s(t), 
(3.3) 
IV'(w o f)(x)l ::::: ~IV'(w o f)(r(t))l ::::: 1/4(V'(Il! o f)(r(s)), r'(s)) = 1/4, 

as required. 

Corollary 3.2. {[9], Theorem 2) Let f: U--+ lR be a C 1-definable 
function defined in an open bounded U C JRn. Then there exists a con
stant A such that all the trajectories of \7 f have length bounded by A. 
In particular, each trajectory x(t) has a unique limit point x 0 E U, that 

is there is t0 E lR U { oo} such that 

lim x(t) = xo 
t---+to 

and \7 f(xo) = 0 if xo E U. 

We have as well an a-minimal version of Bochnak-Lojasiewicz In

equality [2]. 

Proposition 3.3. Let f : U--+ lR be a differentiable definable func
tion defined in an open U C JRn. Suppose 0 E [J and f(x) --+ 0 as 

x --+ 0. Then there exists a continuous definable change of target coor
dinate <I> : (JR, 0) --+ (JR, 0) and constants C<J> > 0, p > 0, such that 

(3.4) lxiiV'(<I> 0 f) I 2:: C<t>I<I> 0 fl, 

for x E U, close to the origin, and f(x) E ( -p, p). 
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Proof. Again we suppose f ~ 0 leaving the general case to the 
reader. Define cpo(r) = suplxl=r f(x). Let <P be the inverse function of 
cpo. Then 

(3.5) (<Po f)(x) ~ r. 

Let 'Y be a definable curve going to the origin and parameterized by r. 
Then I'Y'(r)l -+ 1 as r-+ 0. By the choice of parameterization and (3.5), 
(<Po f)('Y(r)) ~ r. Denote 1/J(r) = (<Po f)('Y(r)). By Lemma 2.1, for any 
c > 1, 

(3.6) 
1/J' ( r) 1 

c 1/J(r) ~ -;:· 

On the other hand 

(3.7) 1/J' (r) = (\7( <P of), "(1 (r)) ~ 21\7( <P of) I· 

The proposition follows from (3.6) and (3.7) by the curve selection 
lemma. Q.E.D. 

The actual constants in both (3.1) and (3.4) can be made arbitrarily 
small. For instance for (3.4) it suffices to replace <P of by its power 
(<Pof)a. 

Remark 3.4. Unlike in the analytic case, in general, it is not pos
sible to find a definable change of target coordinate which gives both 
Lojasiewicz type inequalities. We may take as example f : (!R2 , 0) -+ 

(IR, 0) given in polar coordinates by 

f(r, 0) = a(r) sin(), 

where a is the function of example 1. Indeed, suppose <P : (IR, 0) -+ (IR, 0) 
is the change of target coordinate such that <P o f satisfies both inequal
ities. In what follows we suppose <P increasing and restrict ourselves to 
the set ( <P o f) ~ 0. Then 

IV'( <P of) I ( <P' of) I (a' (r) sin(), r- 1a(r) cos 0) I 
= ( <P' o f)r- 1 1 ( a 2 (r) sin(), a(r) cos 0) I· 

For sin() = 1, cos() = 0, the Bochnak-Lojasiewicz Inequality gives 

riV'(<P of) I= (<P' o f)a2 = r(<P o a)'(r) ~ c(<P o a)(r) 
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that is 
(<Poa)' c -'--::---'-- > - . 
<Poa - r 

and by integration (or Lemma 2.1) 

(3.8) rc 2': ( <P o a) ( r) , 

for c < c. Since c > 0 may choose c > 0 as well. 
On the other hand, consider the set { B < r}. Then sin B ---. 0 and 

cosB---. 1 as r---. 0. By Lojasiewicz Inequality (3.1) 

(3.9) r-1a(r)<P'(a(r)sinB) 2': c. 

Define 1'(r, B) by a(r) sin B = a('Y(r, B)). Then (3.9) is equivalent to 

a(r)(<P o a)'(l'(r, B)) 2': c1m 1(1'(r, B)), 

that gives by (3.8) 

Equivalently 

ca(r)/r 2': c1a'(1'(r, B))/(/'(r, BW-1 

that is impossible since the right hand side a'(l'(r, B))/(l'(r, B))c-1 

a 2 (1'(r, B))/(/'(r, BW tends to 00 as B ____. 0 and r is fixed and the left 
hand side does not depend on B. 

Remark 3.5. Suppose that there is a positive exponent a and a con
stant c > 0 such that ra 2': IJ(x)l 2': cr. Then f itself, without any 
change of target coordinate , satisfies both inequalities. Indeed, by con
struction, it suffices to check these inequalities on a definable curve and 
in this case they are obvious. 

§4. Characteristic Functions 

In this section we suppose that f : U ---. IRis a differentiable definable 
function defined in an open U c IRn, 0 E U. We shall assume f bounded. 
The gradient \7 f of f splits into its radial component %f %r and the 

spherical one \7' f = \7 f - %f %r. Fix c; > 0 and consider 

VE = {0:::; lxl:::; ro; f(x) -1- 0, lf(x)l 2': c:rl\7' f(x)l}, 
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where r 0 > 0 is small. By the local conical structure of definable sets we 
may suppose that, for ro > 0 sufficiently small, vc- 3 x --+ lxl E (0, ro] 
is a topologically trivial fibration. In particular for 0 < r ~ ro, the 
inclusion S(r) n vc- c vc-, where S(r) = {x; lxl = r}, is a homotopy 
equivalence. Let V be a connected component of vc-. Denote 

(4.1) 'P(r) = 'Pv(r) = inf{lf(x)l; X E v n S(r)}. 

Proposition 4.1. There exists C > 0 such that 

(4.2) for x E V. 

In particular 'P(r) > 0 for r > 0. 

Proof By corollary 1.3 there exists a constant M > 0 such that 

for every x, x' E V, that satisfy lxl = lx'l = r, there is a continuous 
definable curve ~(t) joining x and x' in V n S(r) and of length ~ Mr. 
Then, by the definition of vc-, 

Hence 
d c-- 1 

I dt ln lf(~(t))ll ~ ~le(t)l. 

Finally, by integration of both sides along curve ~ ( t), lln If ( x) 1-ln If ( x') II 
~ M' = Mc-- 1 , which gives 

The proposition follows by the curve selection lemma. Q.E.D. 

We shall call the (finite) set of functions 'PV defined by (4.1), where 
V goes over the connected components of vc-, the characteristic functions 
off . They depend on the choice of c though it may be shown that the 
number of connected components of vc- at the origin stabilizes as c --+ 0. 
Each of these connected components give rise to a family of characteristic 
functions 'Pc-,V· It can be shown that they can be compared as follows: 
if c-' < c then there exists C = C(c-',c-) such that 'Pc-',V ~ 'Pc-,V ~ 
C(c-', c)'f?c-',V· In what follows shall consider c fixed and small and we 
will be interested mostly in those connected components V of vc- such 
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that rpv(r) ~ 0 as r ~ 0. Let V be such a component and let 1(t), t 2:: 0 
be a definable curve such that 1(t) ~ 0 as t ~ 0 and 1(t) E V fort=/= 0. 
In order to simplify the notation we reparametrize '/ by the distance to 
the origin, that is to say l'l(t(r))l = r. Write in spherical coordinates 
'J(r) = re(r), le(r)l = 1. Then rle'(r)l ~ 0 as r ~ 0. Moreover, rje'(r)l 
is small in sense of definition 1. Denote '1/J(r) = IJ('J(r))l. Then 

df(~;r)) = l~l r~' 2:: cl'l'flr~' » rle'(r)ll'l'/1, 

since, by lemma 2.3, ~ is much bigger than rle'(r)i. In particular, 

( 4.3) 

We shall consider as well 

W" = {x; f(x) =/= 0, l8rfl 2:: cl'l' /I}. 

Unlike V", the sets W" do not change if we replace f by 'l! o J, for any 
definable change of target coordinate 'l! at 0 E R 

Proposition 4.2. 

(4.4) W" n {x; lf(x)l 2:: lxl} c V"' n {x; lf(x)l 2:: lxl} if E1 <E. 

Let W be a connected component of W" n {x, lf(x)i 2:: lxl} and define 
rp(r) = inf{lf(x)l;x E Wn S(r)}. There exists C > 0 such that 

(4.5) rp(lxl) :::; lf(x)l :::; Crp(lxl), for x E W. 

Proof. It suffices to check ( 4.4) on definable curves. Fix a defin-
able curve 'J(r) in W"n{xiif(x) 2:: lxl} parameterized by the distance to 
the origin. Denote '1/J(r) = lf('J(r))l. Suppose first '1/J(r) ~ 0 as r ~ 0. 
Then '1/J 2:: r and hence by lemma 2.1, '1/J 2:: cr'ljJ', where we may take 

1 > c > .sf. Then, by (4.3), 

'1/J 2:: cr'l/J' 2:: c'ri'l' /I, 

as claimed. The proof for the curves on which lf('J(r))l ~ co > 0 is 
similar since (4.3) holds for the curves in W". 

The last claim of the proposition follows from ( 4.4) and proposition 
4.1. Q.E.D. 
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§5. Estimates on a trajectory. I 

Let f : U --+ ~ be a C 1 definable function defined in an open and 
bounded U c ~n and let x( t) be a trajectory of V' f with limit point 
x0 E U, cf. corollary 3.2. We shall suppose, for simplicity of notation, 
that x0 = 0 and usually we parameterize x(t) by its arc-lengths, starting 
from point Po= x(O). Then 

. dx V'f 
x = ds = IV' fl. 

By corollary 3.2 the length of x(s) is finite. Denote it by so. Then 

x(s) --+ 0 ass--+ so. 

Our purpose is to study the geometric behavior of x(s) as it approaches 
its limit point. We shall also assume that 

f(x(s))--+ 0 ass--+ so. 

Note that it means in particular, as being increasing, that f has negative 
along the trajectory. 

By theorem 3.1 we may assume that IV' /I ~ 1 that we shall do. 
Then 

(5.1) lf(x(s))l ~ length{x(s'); s ~ s' <so}~ lx(s)l. 

Fix a definable cp(r): (~;:::,0)--+ (~;:::,0) and consider F = icrr· 
Then 

(5.2) dF(x(s)) =(V'f Y''f (8rf _cp'f)a) 
ds IV' /I' cp + cp cp2 r 

= IV' ~lcp (IV'' /1 2 + l8rfl 2 - artcpJ) 

= IY'~Icp (IY''/1 2 + l8rfl 2(1- ~:f)) 

Lemma 5.1. Let cp(r) ~ r and let F = Ar). Suppose c < 1. Then 

in the complement of vc = { x; If I ~ criY'' /I} 

(5.3) _dF_(;_x..:.....(s:..:...)) > 1 _1V'_fl 
ds - 2 cp. 
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Proof By (5.2), it is sufficient to show that 

I 

/V'f/ 2 ?. 2f8rfif_ 
'P 

on the complement of V". Since 'P?. r we have by lemma 2.1 

'P' 1 
c- < -. 

'P - r 
(5.4) 

Consequently, since we are away of V", 

as required. Q.E.D. 

Corollary 5.2. The trajectory x(s) passes through V" in any neigh
borhood of the origin. 

Proof Let q > 0 and consider t.p(r) = rl+q. Then r~ = 1+q (5.4) 
is satisfied for c < (1 + q)- 1 . Consequently the statement of lemma 5.1 
holds for F = &· Suppose, contrary to our claim, that x(s) stays away 

of V". Then, by lemma 5.1, F = rl~q is increasing on the trajectory. 
Hence it is bounded (recall f(x(s)) is negative). That is there exists a 
constant C > 0 such that 

which contradicts (5.1). Q.E.D. 

Fix c < 1. By Proposition 4.1 there is a finite family of functions of 
one variable { 'P( r)} such that 

(5.5) V" = Uv" "'' 
so that v; c Ucp = {x/ct.p < If/ < Ct.p}. We regroup together the t.p's 
with the same asymptotic behavior at 0, that .is in the same equivalence 
classe ofrelation 'PI(r) "''P2(r). Thus we may actually assume that the 
Ucp's are mutually disjoint and so is the union in (5.5). 

Fix one of such 'P satisfying t.p(r) ?. r and consider F = &· Recall 
that F is negative on the trajectory. Define 

a-u"'= {x;F(x) = -C}, a+u"' = {x; F(x) = -c}. 
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Then, by lemma 5.1, F(x(s)) is strictly increasing on a-u"' u a+u"'. 
That is to say, the trajectory may enter U"' only through a-U"' and 
leave it only through a+u'P. If the latter happens then the trajectory 
leaves U'P definitely and never enters it again. Hence, by corollary 5.2, 

Corollary 5.3. The trajectory x(s) has to end up in one of U"' = 
{xlciP < lfl < Cip}. 

Note that ip(r) 2: r by (5.1). We shall fix such ip. Now we have the 
following strenghtened versions of lemma 5.1 and corollary 5.2. 

Lemma 5.4. Let F = ~. Then for any c > 0 there is c' > 0 such 

that in the complement of W" in U"' 

(5.6) dF(x(s)) > c'IV'fl > ~-
ds - IP - IP 

Proof. Fix c > 0. By (5.2), it is sufficient to show that there is 
c > 1 such that 

(5.7) 

on U 'P \ W". This we show on an arbitrary definable curve -y(r) in 
U'P \ W". Again we denote '1/J(r) = IJ('Y(r))l and write in the spherical 
coordinates -y(r) = rB(r). Then, 

(5.8) '1/J'(r) = 18rf + (V'' f, rB'(r))l ::::; IBrfl +IV'' fllrB'(r)l, 

where rB'(r) --> 0. 

Suppose first that IBrfl » IV'' fllrB'(r)l as r--> 0. Then, since we 
are away of W", 

for any i > c. An even stronger bound holds if IBrfl » IV'' fllrB'(r)l 
fails. Indeed, then l8rfl « IV'' !I and IV' !1 2 -::::: IV'' !1 2 » IBrfl'l/J'. 

On the other hand, by lemma 2.1, for any c > 1 and on U"' 

I 

c'l/J' 2: '1/! '£._. 
ip 

This and (5.9) show (5.7). The proof is complete. Q.E.D. 
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Corollary 5.5. The trajectory x( s) passes through W"' in any neigh
borhood of the origin. 

Proof. Suppose, contrary to our claim, that x( s) stays away of 
W"'. Let cp( r) be such that x( s) stays in U 'P for s close to s0 . Then, 
there exists a constant c > 0, such that 

dF(x(s)) > c' IV' !I > cdf 1!1-1 = cd( -In 1!1). 
~ - 'P - ~ ~ 

But this is impossible since F is bounded and -In IJI is not on x(s). 
Q.E.D. 

Let W be the union of those connected components of W"' such 
that the trajectory x( s) passes through them in any neighborhood of 
the origin. W is non-empty by corollary 5.5. Denote 

cp(r) = inf lf(x)l. 
WnS(r) 

Let <I> be the inverse function of 'P and consider 

(5.10) f(x) = -<I>(- f(x)). 

Then, by the definition of cp, 

(5.11) lf(x)l ~ lxl, for x E W. 

Proposition 5.6. There is a C > 0 such that on the trajectory x(s) 
and for x( s) sufficiently close to the origin 

(5.12) -Cr ~ f(x(s)) ~ -r. 

Proof. By definition of cp, F = ~ ~ -1 .on W and by lemma 5.4, 
F(x(s)) is strictly increasing in the complement of W. If F(x(s)) > -1 
for one s then it rests bigger than -1 which contradicts the fact that 
the trajectory crosses W in any neighborhood of the origin. Thus, on 
the trajectory, 

IJ(x(s))l ~ 'P(Ix(s)l). 
This implies r ~ lf(x(s))l. 

By proposition 4.2 applied to W and f, lfl ~ Cr on W. Now 
the second inequality of (5.12) follows from (5.11) and the fact that 
F(x(s)) = ~ is increasing in the complement of W. Q.E.D. 
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§6. Asymptotic critical values 

Let F be a C 1 definable function F defined on an open definable set 
U such that 0 E U. We say that a E lR is an asymptotic critical value of 
F at the origin if there exists a sequence x ~ 0, x E U, such that 

(a) JxiJV'F(x)J ~ 0, 
(b) F(x) ~a. 

Proposition 6.1. (see also [1]) 
The set of asymptotic critical values is finite. 

Proof Let X= {(x, t); F(x) -t = 0} be the graph of F. Consider 
X and T = { 0} x lR as a pair of strata in JRn x R Then the ( w )-condition 
of Kuo-Verdier at (0, a) E T reads 

1 = J8j8t(F(x)- t)J::; GJxll8/8x(F(x)- t)J = CrJV'FJ. 

In particular, a E lR is an asymptotic critical value if and only if the 
condition (w) fails at (0, a). The set of such a's is finite by the genericity 
of (w) condition, see [15] or [1]. Q.E.D. 

Remark 6.2. Suppose x(s) is a trajectory of V' f and let a= 
lim8 __, 80 f ( x( s)). Then a is an asymptotic critical value of f. Indeed, 
suppose contrary to our claim that rJV' f(x)l 2': c > 0 for f(x) close to 
a and we may assume a= 0. By corollary 5.5, x(s) passes through we: 
in any neighborhood of the origin. Let '"Y(r) be a definable curve in we: 
such that f('"Y(r)) ~ 0 as r ~ 0. Denote, as before, 1/J(r) = f('"Y(r)). 
Then, by ( 4.3) and since we are in we:, 

rJ'l/J'(r)J ~ rJ8rfl 2': c-'rJV'fl 2': c-'c > 0 

that is impossible since the left-hand side is small. 
In particular, only finitely many values of f are allowed as limits 

along the trajectories of the gradient. 

One may ask whether we have an analogue of Lojasiewicz Inequal
ity (3.1) for asymptotic critical values. More precisely, whether for an 
asymptotic critical value a there exists a continuous definable change of 
target coordinate W : (JR, a) ~ (JR, 0) such that 

(6.1) rJV'(w oF) I 2': c > 0, 
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at least if F(x) is close to a. This is not the case in general, but it holds 
if we approach the singularity "sufficiently slowly". 

Proposition 6.3. Let F be as above and let a E JR. Let 1J(r) be 
small in sense of definition 1. Then there exists a continuous definable 
change of pammeter IJ1 : (IR, a) -+ (IR, 0) and a constant Ca > 0 such that 
(6.1) holds on {x E U; l8rFI ~ 1J(r)IY'' Fl, IF(x)- ai ~ ca}· 

Proof The proof follows the main ideas of the proof of Lojasiewicz 
Inequality (3.1). We may assume that a is an asymptotic critical value 
of F. Choose first Ca > 0 so that there is no other asymptotic critical 
value in { t E IR; It- al ~ ca}· For simplicity of notation we suppose also 
a= 0, Ca =co. We may also suppose F 2:: 0, otherwise we replace F by 
p2, 

Denote Uo = {x E U; l8rFI ~ 1J(r)IY'' Fl, IF(x)- ai ~ ca}· Choose 
a definable curve -y(t) ¢. 0 such that F('y(t)) = t, and 

riY'F('y(t))l ~ 2min{riY'F(x)I;F(x) = t}, 

in U0 . Such a curve exists by the a-minimal version of curve selection 
lemma. 

Let xo = limt--+O -y(t). Suppose first that xo I 0. By [9] there exists 
IJ1 such that V'(IJT oF) 2:: 1. Therefore, by the choice of -y, 

(6.2) riY'(IJT o F)(x)l 2:: !ri'V(IJT o F)('y(F(x))l 2:: clxol > 0. 

So suppose x0 = 0. In this case we may user as the parameter on -y, 
-y(r) = -y(t(r)), and write as before -y(r) = rO(r) in spherical coordinates. 
Define 'l/J(r) = F('y(r)). Then 

(6.3) 1'1/J'(r)l = l8rF + (V'' F, rO')I ~ ij(r)IY'' Fl, 

where ij = 1J +riO' I is small. In particular there exists a germ of contin
uous definable function h: (IR, 0) -+ (IR, 0) such that 

(6.4) ij(r) ~ rlh'(r)l. 

Then IJ1 := h o '¢-1 satisfies the statement. Indeed, by (6.3) and (6.4), 

h'(r) 
riY'(IJT o F)('y(r)l = r 'l/J'(r) IY'F('y(r))l 2:: 1. 
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Hence for x close to the origin, t = f ( x), 

riV'('l' o F)(x)l ;::: ~riV'('l' o F)('r(t)i ;::: ~' 

as required. 

Consider F of the form F = -irrJ. Then 

(6.5) V''F = V''f. 
cp(r) 

Q.E.D. 

Proposition 6.4. Suppose that there is an exponent N > 0 such 
that rN :::; cp(r) :::; r 11N. Then a I= 0 is an asymptotic critical value of 
F = -irrJ if and only if there exists a sequence x -+ 0, x I= 0, such that 

( '') IV'' f(x)l 0 
a IB,.f(x)l -+ ' 

(b') F(x)-+ a 

Proof. The proof is similar to that of Proposition 5.3 of [14] and 
is left to the reader. Q.E.D. 

§7. Estimates on a trajectory. II 

Let x( s) be a trajectory and let W the union of connected compo
nents of WE (for any fixed E > 0) such that x(s) passes through them in 
any neighborhood of the origin. Restricting ourselves to a smaller neigh
borhood of the origin, if necessary, we may suppose that the trajectory 
stays away of WE\ W. Recall after proposition 5.6 that we may assume 
that 

(7.1) x(s) E Uc = {x; -Ccp(r):::; ](x):::; -ccp(r)}, 

0 < c < C < oo and cp(r) ,...., r, and ](x) is given by (5.10). (Ac
tually by propostion 5.6 we may assume c = 1 and cp(r) = r but we 
do not need it.) In particular jon Uc satisfies both Lojasiewicz and 
Bochnak-Lojasiewicz Inequalities, see remark 3.5. In order to simplify 

the notation we shall write f for j. Define 

(7.2) F(x) = f(x) 
cp( r) ' 
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Then 

dF(x(s)) = 1 (I'V'/12 + lar/12(1- f'P' )) 
ds tp(r)l\7 !I tp(r)arf 

By lemma 5.4 

(7.3) _dF--'-( x----'(----'s )-'--) > c'-1 'V_f_l > c" ~ on U c \ W. 
ds - tp(r) - r 

Lemma 7.1. There exists a continuous definable function w, w(r) ----+ 

0 as r ----+ 0, such that 

(7.4) 11- :;~I ~ ~w(r) on W. 

Moreover, w may be chosen small in sense of definition 1. 

Proof. Let 'Y(r) be a definable curve such that I (1- 'P~~'f) ( "f(r) I ~ 
~ SUPwnS(r) 1(1- j;{~ )I. Denote 1/J(r) = f('Y(r)). Then, by (4.3) 

(7.5) 1/J'(r) = arf+ < 'V'f,rB'(r) >, 

and riB'(r)l is small. Consequently, since recall IV'' fl ~ C 1 larfl on W, 

(7.6) (1 _ f'P' ) = 'Part- 'P 1 f = 'P'I/J'- 'P''I/J + T(r) 
'Par f 'Part 'P'I/J' ' 

and 

(7. 7) 

is small. Note that 1/J' ( r) '"" 1. Hence 

(7.8) 

is small. This ends the proof of lemma. Q.E.D. 

We list below some other properties of f on W which follows from 
(4.3). By (4.3), we get arf c::: tp1 '"" 1 on any definable curve in W. Thus, 
by the curve selection lemma, for any constant c1 < 1, and some positive 
constants C', c' 
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In particular, Or f is negative on W. 
We shall show in the proposition below that F(x(s)) has a limit 

as s ----> 0. For this we use an auxiliary function g = F- a(r) where 
a: (lFb0 ,0)----> (lR>o,O) satisfies w:::; C'- 1 ~.pa'. Such an a exists since w 

- -

is small. 

Proposition 7.2. Let a : (lR>o, 0) ----> (lR>o, 0) be a continuous 
definable function and suppose w:::; C'- 1 ~.pa'. Th~n the function g(x) = 

F(x)- a(r) is strictly increasing on the trajectory x(s). In particular 

F(x(s)) has a nonzero limit 

(7.10) F(x(s))----> ao < 0, ass----> so. 

Furthermore, ao has to be an asymptotic critical value ofF at the origin. 

Proof First we show that g(x(s)) is increasing for x(s) E Uc \ W. 

Recall that on Uc \ W, lor! I < clv" !I and (7.3) holds. On the other 
hand 

(7.11) 

Consequently, in this case, 

~~ (x(s)) 2 c'r- 1 . 

This shows that g is increasing on Uc \ W as claimed. 
In general we have 

Now we consider x(s) E W. By (7.9) and by the choice of a 

a'(r) lorfl > C',n-1-lorfl > _1_ (lo fl2(1 _ f'P' )) 
l\7 !I - ..- w l\7 II - 'PI\7 II r ~.porf ' 

and hence the right-hand side expression in (7.12) is positive (recall orf 
is negative on W). 

Thus, since g(x( s)) is increasing, negative, and bounded from zero 
on Uc, it has a limit ao < 0. We shall show that a0 is an asymptotic 
critical value of F. 
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Suppose, by contradiction, that F(x(s)) ---+a and a is not an asymp
totic critical value of F at the origin. Then, by Proposition 6.4, there is 
c > 0 such that 

IV'f(x(s))l ~ cl8rf(x(s))l, 

for s close to so. Hence on W 

(7.13) 
dF IV' fl 2 l8rfl 2 fcp' ,1 
ds = cpiVfl + cpiVfl (1 - cp8rf) ~ c -;:-· 

A similar bound holds on Uc \ W by (7.3). 
But (7.13) is not possible since I~: I :::; 1. Indeed, (7.13) implies 

~~ ~ c~ with the right-hand side not integrable which contradicts the 
fact that F is bounded on the trajectory. This ends the proof. Q.E.D. 

Corollary 7 .3. Let a( s) denote the length of the trajectory between 
x(s) and the origin. Then 

a(s) 
lx(s)l ---+ 1 ass---+ so. 

Proof. The proof follows from Proposition 7.2 and is similar to 
the one of Corollary 6.5 of [14]. Q.E.D. 

§8. Gradient Conjecture on the Plane 

In this section we show the following finiteness result. 

Theorem 8.1. Let f : U---+ lR be a differentiable definable function, 
where U c JR2 is open definable and 0 E 0. Let x(t) be a trajectory of 
Vf such that x(t)---+ O,f(x(t))---+ 0 as t---+ o-. Given a definable curve 
r C U. Then, there is c > 0 such that the set {x(t); -c < t < 0} either 
lies entirely in r or does not intersect r at all. 

Proof. By a standard argument, see the proof of Proposition 2.1 
of [14], it suffices to show that the trajectory cannot spiral, that is the 
statement of theorem holds for at least one curve Y, 0 E Y. Indeed, 
consider an arbitrary definable curve r c U parameterized in polar 
coordinates (r, B) by 1'(r) = rB(r). Write 

f(r, B) = f(r cos B, r sin B). 
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Denote Bef = of ;ae. Then IBefl = ri'V' fl and Bef is positive if and 
only if V'' f is directed anti-clockwise. If r is not a trajectory itself, that 
is if V' f is not tangent to r' then, near the origin, the trajectories of 
V' f cross r only in one direction. Fix a point Xo = ')'(r) = re(r) and 

the orthonormal basis of JR2 with the first vector being 11~:11 = e(r). 
Comparing in this basis the tangent vector (1, r8'(r) to the curve r 
and the gradient (Brf, r- 1aef) off we see that the trajectories cross r 
anti-clockwise if and only if 

(8.1) 

Thus if the trajectory does not spiral and is not contained in r then, in a 
small neighborhood of the origin, it may cross r only once. In particular 
if U does not contain a punctured disc of the form { 0 < r < ro} then 
any trajectory going to the origin cannot spiral otherwise it would hit 
the boundary of U. Thus we may suppose that U contains a punctured 
disc centered at the origin. 

Divide U into two pieces 

U + = {Be f 2:: 0}, U- = {Be f ::; 0}. 

Both of them are non-empty as germs at the origin since f(r, e) is pe
riodic for r fixed. On U _ the trajectory moves clockwise and on U + 
anti-clockwise. It is clear that the trajectory cannot spiral if each U ± 

contains a non-empty sector of the form { 81 < e < 82}. This is the case 
for f analytic, see [14]. But for f definable in an a-minimal structure or 
even for f subanalytic it may happen that one of U ± does not contain 
a sector, see the picture below. 

u 
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(One may construct such example easily by choosing two definable curves 
r = 1'1 (0), r = 'Yz(O) and definable f(r, 0), periodic in 0, and such that 
8of(r, 0) 2::: 0 exactly on 1'1(8)::; r::; 'Yz(O).) 

In what follows we shall assume that U _ contains a non-empty sector 
but U + not necessarily. If we show that U + contains a definable curve 
which x(t) crosses anti-clockwise then we are done. 

Lemma 8.2. Let r E U+ be a germ at the origin of a definable 
curile parameterized by 'Y(r). If 

lv" f('Y(r))l 
r ~ A,(r) = IEJrf('Y(r))l 

is not small then the trajectories of 'V f cross r anti-clockwise. 

Proof. Let 'Y(r) = rO(r). It suffices to show (8.1). By lemma 2.3 
A1 ( r) » rO' ( r) and hence we have 

as required. Q.E.D. 

Thus in what follows it suffices to suppose that 

(8.2) I'V'fl A(r) = sup --
xES(r)nU+ l8rfl 

is small. Then, in particular, A(r) ~ 0 as r ~ 0. Thus U+ c we: for 
any c > 0. 

Suppose, contrary to our claim, that there exists a trajectory x(t) 
of 'V f which spirals. By the previous sections we may suppose that 

F(x(t)) = f(x(t)) 
lx(t)l 

goes to -1 as t ~ 0. The trajectory x(t), since it spirals, has to cross 
infinitely many times any component of we:. Thus on we:, and hence 
on U+ c we:, f ~rand, by (7.9), 8rf ~ -:1. 

Denote 

(8.3) 

(8.4) 

'1/J(r) = min f(x) = min f(x) 
xES(r) xES(r)nU+ 

'P(r) = max f(x) = max f(x). 
xES(r) xES(r)nU+ 
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Lemma 8.3. Under the above assumptions cp(r)~,P(r) is small. 

Proof -1 on U+. Hence l8efl = riY''fl ~ r>.(r). By 
integration in u+, 

Therefore 
~(r) -1/J(r) ::; C>.(r), 

r 
and the right-hand side is small by assumption. Q.E.D. 

Lemma 8.4. Suppose cp(r)~,P(r) small and assume that U_ contains 

a non-empty sector { fh ::; 0 ::; 02}. Then the set 

{x E U_; l8efl::; 3(~~; ~ O~(r))} 

contains a non-empty sector. 

Proof Otherwise 

102 

lf(r, 01)- f(r, 02)l =- 8ef dO 2:: 2(~(r) -1/J(r)) 
e1 

that contradicts the definition of ~ and 1/J. Q.E.D. 

Let U0 be a sector satisfying the statement of lemma 8.4. On this 

sector IV'' !I is bounded by 3<~f;~=ts·)) that is small and hence IV'' !I --+ 0 
as r--+ 0. Therefore, by remark 3.5, IV' fl ~ l8rfl "' 1. This means that 
U0 is contained in W" for any c: > 0. Consider the part of the trajectory 
that is in U0 . Since the trajectory spirals we may find such a part in any 
neighborhood of the origin. Since Uo C W", 8rf < 0 and r is strictly 
decreasing on the trajectory. Parameterizing the trajectory by r 

dO = IV'' !I ~ l8efl < c~ ~(r) -1/J(r) 
dr rl8rfl r2 - r r 

and the right-hand side is integrable by lemma 8.3. This means that 
the trajectory cannot cross U0 if it remains in a small neighborhood of 
the origin {0 < r < ro}. Indeed, by integrability, on the part of the 
trajectory that is in U0 n {0 < r < r 0 } the difference of the maximum 
and the minimum of 0 goes to 0 as ro --+ 0. 

This ends the proof. Q.E.D. 



On the gradient conjecture in a-minimal structures 173 

Corollary 8.5. If f is defined in an a-minimal structure i then 
the trajectory x(t) is definable in the pfaffian closure of JR. 

Proof This follows directly from [23]. Indeed, it suffices to show 
that the image L of x(t) is a Rolle leaf. For this we fix U a definable 
"horn" neighborhood of that contains L \ 0, that is divided by L \ 0 into 
two connected components, and f is C 1 on U. The existence of such U 
follows from theorem 8.1. Clearly, L \ 0 is a Rolle leaf of 

w = 8f dx - a f dy 
By Bx 

by the Rolle-Khovanskii Lemma [7]. Q.E.D. 

§9. Gradient Conjecture for Polynomially Bounded o-minimal 
Structures 

In this section we place ourselves in the situation described in section 
7. We may suppose that r.p = r which we shall do just for simplicity of 
notation. We shall also make the following additional assumption: 

Assumption. There exists a continuous definable function w, small 
in sense of definition 1, such that 

(9.1) 

By lemma 7.1 such w exists for any polynomially bounded o-minimal 
structure. Indeed, in this case it suffices to take w = JW. On the other 
hand example 1 shows that, in an o-minimal structure which is not 
polynomially bounded, w small does not imply necessarily that v'W is 
small. 

Theorem 9.1. Let x(s) be a trajectory of 1 ~f 1 , x(s) -4 0 ass -4 so. 

Denote by x(s) the projection of x(s) onto the unit sphere, x(s) = ~~~:ll· 
Then x(s) is of finite length. 

Proof Let F = ~ be given by section 7. Then we may suppose 
that the trajectory is contained in Uc = {x; -C::::; F(x)::::; -1} and, by 
proposition 7.2, that (7.10) holds, and that lims--+so F(x(s)) -4 ao ::::; -1. 
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We use the arc-length parameterization s of x(s) given by 

(9.2) ds riY'fl 
ds IV'' !I' 

Reparametrize x(s) using s as parameter. Then 

dF 1 ( 1 2 2 ( f ) ) 1 8r f 
(9.3) ds = IV'' /I IV' /I + l8rfl 1- rBrf = rl\7 Fl + r8rF IV'' /I, 

where \7' F = s::..l. r . 

Lemma 9.2. There exists a continuous definable change of param
eter Ill : (JR, a0 ) --+ (JR, 0) and a constant c' > 0 such that 

(9.4) 
diJ!(F(x(s))- ao) , _....:...._..:..._:.__:_:_ _ _.:_ > c 

ds -

holds on {x E Uc; w :S 11 ~;n }. 
Proof. On the set {x E Uc; w:::; 11 ~;J11 }, by formulae (6.5), 

l8rFI = IBrf (1- __L)I :S w2IBrfl :S wiY''FI. 
r r8rf r 

By assumption w is small and we may use Proposition 6.3. Thus there 
is Ill such that ( 6.1) holds. We shall show that Ill satisfies the statement 
of lemma. 

First we suppose that we are also in W that is in the set { x E 

W;w:::; 11 ~;§ 11 }. Then, by (9.1) 

IBr/12 (1 _ _ !_) < .! 2l8rfl2 < .!IV'' !I 
IV'' !I r8rf - 2 w IV'' !I - 2 · 

Consequently 

dF > IV''/ I l8rfl 2 
( 1 J ) > 1 IV'' Fl 

ds - + IY''fl - r8rf - 2r ' 

and the lemma follows from (6.1). 
A similar argument works on Uc \ W since, by (7.3), 

dF 
ds 2: c'riY''FI = c'IY''fl 2: canst> 0. 

This ends the proof. Q.E.D. 
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Given a : (lR;:::o, 0) -+ (lR;:::o, 0) such that 

(9.5) 

where c will be specified later. Define Ci = \]i o a. We consider g = 
W(F- ao)- Ci(r) as a control function. Then 

(9.6) ~~ (x(s)) = W'l\7' !I + l~jl \]i' ( 8rf(1 - r~f) - ra'(r)). 

We may also suppose that \]i' ~ 1. 

Lemma 9.3. There is a constant c' > 0 such that 

(9.7) 
dg I - >c ds -

IV'' !I holds on {x E Uc; w::::; IB,fl }. 

Proof. On W, 8r f is negative and hence 

(9.8) 

Thus the statement follows from lemma 9.2. 

On Uc \ W 

da _, 8rf '( ) ( Ids I = lm (r) l\7' !II ::::; c:lrii r I = o 1) 

and the lemma follows again from lemma 9.2. Q.E.D. 

It remains to show that (9.7) holds on Uc \ {x E Uc; w ::::; 11 ~:J 11} 
that is contained in W. We denote it by W(w) that is W(w) = {x E 

W; w > 11 ~;n }. Firstly we note that on W(w) 

(9.9) _ da = _,( ) l8rfll > \]i,ra'(r) > -w' > _ 
ds m r I \7' f I - w - c - c. 

On the other hand 

(9.10) 

This shows that - ~~ = -~~~~ \]i'ra'(r) dominates in the second term 
of the right hand side of (9.6). Since the first part cannot be negative 

we get, by (9.9), (9.7) as required. 
This ends the proof of the theorem. Q.E.D. 
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