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Thorn polynomial computing strategies. 
A survey 

Laszlo M. Feher and Richard Rimanyi 

Abstract. 

Thorn polynomials compute the cohomology classes of degen­
eracy loci. In this paper we use a simple example to review the 
core ideas in different-mostly recently found-methods of comput­
ing Thorn polynomials. Our goal is to show the underlying topol­
ogy I geometry I algebra without involving combinatorics. 

§1. Introduction 

Global topology can force singularities to occur. That is, in a family 
of objects (where the 'object' can be a linear map, a map germ, a differ­
ential form, a diagram of maps, a variety, a stable bundle over a variety, 
etc) some has to be singular because of the topology of the family. This 
global aspect of singularities is encoded by their Thorn polynomials. 

Let G be a group acting on a vector space V, and let 17 be a G­
invariant subvariety. Then the Poincare dual of 17 in equivariant coho­
mology is called the Thorn polynomial of 17, denoted by Tp17 E H(;(V) = 
H(;(point) = H*(BG). Sometimes 17 is an open subset of a G-invariant 
subvariety. Then we define Tp17 := Tp'ii. Tracing back this definition 
one finds the following topological statement: whenever a fiber bundle 
E --> X with fiber V and structure group G is given, the cohomology 
class represented by the preimage S of the 17-points under a generic sec­
tion is equal to the Thom polynomial of the bundle. That is, if V is 
the collection of 'objects', G is a natural equivalence on them, 17 is the 
collection of 'singular objects' then the mentioned sections are the 'fam­
ilies of objects' over the parameter space X, and Sis the locus of points 
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where the object is singular. Hence the knowledge of Thorn polynomial 
tells us the (cohomology class of the) locus ofthe singular points. 

The determination of concrete Thorn polynomials is often difficult. 
What makes the case even worse is that Thorn polynomial problems 
come in natural infinite series, and the combinatorial organization of 
calculating the infinitely many Thorn polynomials at the same time often 
conceals the actual topological method used. The goal of this paper is to 
survey some Thorn polynomial calculational methods without involving 
combinatorics. Hence we will deal with just one concrete (quite trivial) 
example, and show the calculation in five different ways. 

Let G = G L3 (C) x G L3 (C) act on the vector space of 3 x 3 ma­
trices V =Hom(C3 ,C3 ), by (A,B) · M := BMA-1. Let ~2 denote 
the invariant set of matrices whose corank is 2, i.e. whose rank is 
1. We will calculate the Thorn polynomial of (the closure of) ~2 • 
Hence Tp = Tpr;2 is a degree 4 polynomial in H*(BGL2 x BGL2) = 
Z[At,A2,A3,B1,B2,B3] (degree of the Chern class Xi is i), or what 
is the same, a degree 4 polynomial in Z[at, a 2, a3, bt, b2, b3] (degree of 
the Chern root Xi is 1), symmetric in a1, a2, a3 and in b1, b2, b3. Here 
a1 + a2 + a3 =At, a1a2 + a1a3 + a2a3 = A2, a1a2a3 = A3 and the same 
for the B's. 

Theorem 1.1. Tpr;2 is 

(1) 

where ci is the i 'th Taylor coefficient of 

that is Tpr;2 = 

1 + B1t + B2t2 + B3t3 

1 + A1t + A2t2 + A3t3' 

B~ - B2A1B1 + B2A~ - 2B2A2 - A1B1A2 +A~ - B1B3+ 

(2) 

or in Chern roots, it is 

In Sections 2-6 we will give 5 proofs. Before that we make two 
preliminary remarks. One is that the geometric counterpart of giving 
the Thorn polynomial in Chern roots is that we restrict the group action 
to the maximal torus. Because of the splitting lemma, this does not mean 
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any loss of information about Tp17 • The other remark is that when rt 
happens to be smooth in V (e.g. it is a coordinate subspace), then Tp17 

is the Euler class of the representation normal to rt in 0. This follows 
from the definition. Some of the proofs below reduce the computation 
to this special case. 

§2. The restriction equations 

In this method, when computing the Thorn polynomial of ry, one 
needs to work with the simpler orbits (ones not contained in the clo­
sure of rt). For such a ( we pick a representative and find its stabilizer 
subgroup Gt:; C G. This inclusion induces a map BGt:; --> BG between 
the classifying spaces, and in turn a homomorphism /( : H*(BG) --> 

H*(BGt::). 

Theorem 2.1. [14, Th. 2.4], [5, Th. 3.2] Let ( not be contained 
in the closure of 'rf· Then the Thom polynomial of rt vanishes at ft::· 
Moreover, if the representation satisfies a technical condition {see [5, 
3.4-3.5]}, then in the expected degree, only integer multiples of the Thom 
polynomial of rt satisfy all these vanishing conditions. 

In our situation E0 and E 1 play the role of(, with representatives 
the identity matrix and diag(1, 1,0), respectively. Now Gr,o and Gr,1 
could be determined explicitly, but we will only compute their maximal 
tori-this is enough, since H*(BG) injects into H*(BT) in general. Thus 
we will take 

Gr,o = { ( diag(x, y, z ), diag(x, y, z)) : x, y, z E C* }, 

Gr,1 = {(diag(x,y,u),diag(x,y,v)): x,y,u,v E C*}. 

From these the induced map can be read, as follows: 

maps both Ai and Bi to the i'th elementary symmetric polynomial of 
x,y,z. The map 

maps Ai to the i'th elementary symmetric polynomial of x, y, u, while 
maps Bi to the i'th elementary symmetric polynomial of x, y, v. 

We need the intersection of the kernels of these two homomorphisms. 
In fact, one factors through the other, so we only need ker fr.1, which 
turns out (Macaulay2) to be an ideal generated by polynomials in degrees 
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4, 5 and 6. The degree 4 generator, A~-A1A3-A1A2B1 +A3B1 + ... thus 
has to be ± the Thorn polynomial of "E2 . The sign can be determined 
by the so-called principal equation of [5, Th. 3.5], which states that the 
f 17 image of the Thorn polynomial of 'I] is the equivariant Euler class of 
ry. In our case 

GE2 = {(diag(x,u,v),diag(x,w,z)): x,u,v,w,z E C*}, 

and fE2 is analogous to the above. The normal slice to "E 2 at diag(1, 0, 0) 
is the space of matrices whose 1 'st row and column is 0. Therefore the 
equivariant Euler class is (w- u)(w- v)(z - u)(z- v). Computation 
shows that this is the image of the above polynomial at h.2 , so the above 
polynomial is the sought Thorn polynomial. 

Remark 2.2. For a reference of this method as well as many ap­
plications see [5], [14], [10]. The restriction method is very effective if 
the representation has finitely many orbits. When dealing with natu­
ral infinite series, a connection with various resultant formulas can be 
established, see [3]. 

§3. Resolution and integral 

In the following method it is assumed that 'I] is a cone in V, and, 
instead of 'I] C V, we consider the projectivization Pry C PV. The 
starting point is looking for an equivariant resolution of Pry considered 
as a map cp : R--+ PV. 

Theorem 3.1. [6, Th. 3.1] Let ai E H*(BT) be the weights of the 
representation of G on V. Denote by q the polynomial 

X 

in the equivariant cohomology ring 

H(;(PV) = H*(BG)[x]_ 
IJ(x + ai) 

Then the Thom polynomial of 'I] is 

l cp*(q). 

In our case P"E2 = P 2 x P 2 is already smooth, hence cp : R = P 2 x 
P 2 --+ P 8 is the Segre embedding. The ring H(;(P2 xP2) is H*(BG)[y, z] 
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modulo the two relations r1 := fl~=l (y - ai) and r2 := fl~=l (z + bi)· 
Since rp*(x) = y + z (x, y, z are the classes of hyperplane sections of 
P 8 and the two copies of P 2 's, respectively) we have that the Thorn 
polynomial of E2 is 

r fl~=l n;=l (y + z - ai + bj) - fl~=l n;=l ( -ai + bj) 
}p2xP2 Y + z 

Integration means taking the top coefficient, i.e. the coefficient of yz. 
Hence the procedure is to consider the integrand above, use the relations 
r 1 , r2 to reduce its (y, z)-degree to (1, 1), and take the coefficient of 
yz. Note that taking the minimal degree representative in a factor ring 
is automatically done in computer algebra packages, which makes this 
method very easy to code. 

Remark 3.2. For a reference of this method, see [6]. It is most 
effective if we can find a resolution with simple cohomology ring. In these 
cases the integration part is often encoded as an interpolation problem, 
so the combinatorics of divided differences enters the calculations. 

§4. Resolution and integral via localization 

The method presented in this section is not really a new method, 
it's rather an improvement of that of Section 3. The novelty is that 
we compute the integral JR rp*(q), which is the Thorn polynomial, by 
localization techniques. This is a vital help when R is more complicated 
than a projective space or Grassmannian. 

We will use the Atiyah-Bott localization formula [1], as follows. Let 
a torus T act on a manifold with fixed point set the disjoint union of some 
F/s. Then the integral of an equivariant cohomology class a E Hf(M) 
can be 'localized': 1 1 j*a a-L: -•-

M - i F; e(lli)' 

where ji : Fi C M is the embedding and lli is its normal bundle. When 
the fixed point set is discrete we can integrate by just "counting": 

(4) 

In our case R is P 2 x P 2 , with 9 fixed points H,1 := ( (1 : 0 : 0), (1 : 
0 : 0)), P1,2 := ((1 : 0 : 0), (0 : 1 : 0)), etc. It will be convenient to 
use a different form of q E H(;(P8 ), namely q = - TITI~a;+b;) (recall 
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that H(;(PV) = H*(BG)[x]/ fi IJ(x- ai + b1)). Then the term in (4) 
corresponding to e.g. P1,1 is 

The Thorn polynomial is then the sum of 9 similar terms, or 

Remark 4.1. See [7] for a general reference. This method is most 
effective if we can simplify the resulting sum using algebra (e.g. La­
grange interpolation). In cases like ours, when the resolution is trivial, 
the localized integral formula coincides with the Dusitermaat-Heckman 
formula. 

§5. Grabner degeneration 

The goal of this method is to "perturb" 1::2 in Hom(C3 , C 3 ) without 
changing its Thorn polynomial, and eventually degenerate it to another 
set, whose Thorn polynomial is trivial to compute. The first obstacle 
is that 1::2 can not be perturbed at all to another G-invariant subset. 
However, we can restrict the group action to the maximal torus T with­
out losing any Thorn polynomial information, and there are lots ofT­
invariant perturbations. 

Let us consider the following example. The torus GL1(C) x GL1(C) 
acts on C 3 = C{x,y,z} by (o:,j3).(x,y,z) = (o: 2 x,j32 y,o:j3z). Then the 
cone xy- z2 is invariant. But so is xy- t · z 2 for every t E R. In the t = 0 
limit case we get xy = 0, which is the union of two planes: x = 0 with 
Thorn polynomial (2b)(a+b), andy= 0 with Thorn polynomial (2a)(a+ 
b) (see the last paragraph of the Introduction). It is easy to believe that 
the perturbation did not change the Thorn polynomial, hence the Thorn 
polynomial of the cone is (2a)(a +b)+ (2b)(a +b). 

What are the "legal" perturbation (where the Thorn polynomial 
does not change), and how to imitate this process when the variety has 
higher codimension? The theory of Gri:ibner basis gives an answer (for 
a general reference for Gri:ibner basis theory see e.g. [4, Ch. 15]). 

Let I be the ideal of the torus-invariant variety X. Fix a term-order, 
and consider in(!), the ideal generated by the initial terms of polyno­
mials in I. Then the variety (scheme) corresponding to in(!) is a fiat 
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deformation of X, hence their Thorn polynomials are the same. (Well, 
one has to be a little careful about the multiplicities of the irreducible 
components of in(I).) 

Note that if we have a Grabner basis fi of I, then the leading terms 
of the fi's generate in(I). In our case 

(the 9 2 x 2 minors) is given by a Grabner basis with respect to e.g. 
the "graded reverse lexicographic" term order generated by au > a 12 > 
a13 > a21 > .... Thus 

(the 'antidiagonals' of the 9 2 x 2 minors). A computer algebra package 
(e.g. Macaulay2 "primary Decomposition in(I)") can be used to find the 
primary decomposition of in( I) which is: 

They all describe linear spaces, .whose Thorn. polynomials are obtained 
by the last remark of the Introduction, hence the Thorn polynomial of 
E 2 is the sum of the following polynomials 

which turns out to be (3). 

Remark 5.1. The theory behind this method is worked out in [11], 
see also [12]. An advantage is that the Thorn polynomial is obtained 
as a sum with positive coefficients, which is sometimes important in 
enumerative geometry. When working with natural infinite series one 
meets subtle combinatorics (e.g. the "pipe dreams" of [12]). 
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§6. Porteous' method of embedded resolution 

As a preparation we study Gysin maps associated with Grassmann 
bundles. Let E 3 --+ X be a bundle of rank 3 and 1r : Gr2 ( E 3 ) --+ X 
its associated Grassmann-2 bundle (ie. we replace the fiber over e E E 
from Ee to Gr2 (Ee).) The goal is to understand the Gysin map 7r! 
on some naturally defined cohomology classes of Gr2 (E3)-namely the 
Chern monomials of the tautological 2-bundle Son Gr2 (E3). We claim 
that 7r!(c.A,,.A2 )(-S) = C.A,-l,.A2 -I(-E). Here Cu,v is the determinant of 

the matrix ( Cu Cu+l). Moreover, ifF is any other bundle on X, and 
Cv-1 Cv 

we denote its pullback to Gr2 (E3) also by F, then 7r1(c.A,,.AJ(F- S) = 
c.A,,.A2(F- E), for a recent reference see [8, p.43]. 

With this knowledge we can calculate Tp~2 as follows. Consider 
two 3-bundles E and F over X, and a generic homomorphism h be­
tween them. We want to resolve the closure of '2'.2 (h) C X. Let 
1r : Gr2 (E) --+ X be as above and consider the bundles S, E, F over 
Gr2 (E). Let h : S--+ F be the composition of the natural map S--+ E 
with the pullback of h. The 0-points of h can also be considered as '2'. 2 (h). 
Now one fact [Port] is that the genericity of h implies that his transver­
sal to the 0-section of Hom(S, F), so we know the cohomology class 
['2'. 2 (h)] = e(Hom(S, F)). The other fact [Port] is that 1r restricted to 
'2'. 2 (h) is a resolution of '2'. 2 (h), thus 1r!['2'.2 (h)] = ['2'. 2 (h)], what we want to 
compute. In the light of the above description of 7r! we only need to write 
e(Hom(S, F)) as a linear combinations of c.A,,.A2 (F -S)'s. The Euler class 
e(Hom( S, F)) is the product of differences of Chern roots of F and S, 
which is the same as c3,3(F- S). Hence 7r!(e(Hom(S, F))= c2 ,2 (F- E), 
which is (1), what we wanted to prove. 

Remark 6.1. This method was historically the first, applied in 
many different situations, see [13], [15], [9] (singularities), works of Pra­
gacz, Fulton, Harris-Th, Buch and others (algebraic geometry, see [8] 
for references and e.g. [2] for a recent application). The effective us­
age of this method requires the handling of the combinatorics of Gysin 
homomorphisms, Schur and Schubert polynomials, Young tableaux, etc. 
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