Advanced Studies in Pure Mathematics 42, 2004 Complex Analysis in Several Variables pp. 237–242

Meromorphic mappings and deficiencies

Seiki Mori

Abstract.

In this note, we shall discuss elimination theorems of defects of hypersurfaces or rational moving targets for a meromorphic mapping or a holomorphic curve into $\mathbf{P}^{n}(\mathbf{C})$ by its small deformation.

§1. Introduction.

Value distribution theory is to study how intersects the image of a mapping to divisors in a target space. Liouville theorem asserts that the image of a meromorphic function is dense in the projective space $\mathbf{P}^1(\mathbf{C})$, and also Picard theorem asserts that the image covers all points on $\mathbf{P}^1(\mathbf{C})$ except for at most two points. Nevanlinna theory is a quantitative refinement of Picard theorem. Nevanlinna deficiency $\delta_f(a)$ express that $\delta_f(a) = 1$ if the image $f(\mathbf{C})$ omits *a*-point and $\delta_f(a) > 0$ if *f* covers a point *a* relatively few times. For a meromorphic mapping of \mathbf{C}^m into $\mathbf{P}^n(\mathbf{C})$, Nevanlinna's defect relations or Crofton's formulae assert that Nevanlinna defects or Valiron defects of a mapping are very few.

We shall now discuss on defects for a family of mappings, that is, elimination theorems of defects of hyperplanes, hypersurfaces or rational moving targets for a meromorphic mapping or a holomorphic curve into $\mathbf{P}^{n}(\mathbf{C})$ by its small deformation. Here a samll deformation \tilde{f} of f means that the difference of order functions of \tilde{f} and f is relatively small.

$\S 2.$ Preliminaries.

Let $z = (z_1, ..., z_m)$ be the natural coordinate system in \mathbb{C}^m . Set

$$\langle z, \xi \rangle = \sum_{j=1}^{m} z_j \xi_j \text{ for } \xi = (\xi_1, ..., \xi_m), \|z\|^2 = \langle z, \overline{z} \rangle, \ B(r) = \Big\{ z \Big| \|z\| < r \Big\},$$

Received March 22, 2002.

The research was partially supported by Grant-in-Aid for Scientific Research (No.12640150), Ministry of Education, Culture, Sports, and Technology, Japan $\partial B(r) = \left\{ z \Big| \|z\| = r \right\}, \ \psi = dd^c \log \|z\|^2 \text{ and } \sigma = d^c \log \|z\|^2 \wedge \psi^{m-1},$ where $d^c = \frac{\sqrt{-1}}{4\pi} (\overline{\partial} - \partial)$ and $\psi^k = \psi \wedge \cdots \wedge \psi$ (k-times).

Let f be a nonconstant meromorphic mapping f of \mathbf{C}^m into $\mathbf{P}^n(\mathbf{C})$ and $\mathcal{L} = [\mathbf{H}^d]$ be the line bundle over $\mathbf{P}^n(\mathbf{C})$ which is determined by d-th tensor power of the hyperplane bundle [**H**]. A hypersurface D of degree d in $\mathbf{P}^n(\mathbf{C})$ is given by the divisor of a holomorphic section $s \in$ $H^0(\mathbf{P}^n(\mathbf{C}), \mathcal{O}(\mathcal{L}))$ which is determined by a homogeneous polynomial P(w) of degree d. A metric $a = \{a_\alpha\}$ on the line bundle \mathcal{L} is given by $a_\alpha = (\sum_{j=0}^n |w_j/w_\alpha|^2)^d$ in a neighborhood $U_\alpha = \{w \in \mathbf{P}^n(\mathbf{C}) | w_\alpha \neq 0\}$.

The Nevanlinna's order function $T_f(r, \mathcal{L})$ of f for the line bundle \mathcal{L} is given by:

$$T_f(r,\mathcal{L}) := \int_{r_0}^r \frac{dt}{t} \int_{B(t)} f^* \omega \wedge \psi^{m-1},$$

where $\omega = \{\omega_{\alpha}\} = dd^{c} \log(\sum_{j=0}^{n} |w_{j}/w_{\alpha}|^{2})^{d}$ in U_{α} . We say that f is transcendental if $\lim_{r \to +\infty} \frac{T_{f}(r, \mathcal{L})}{\log r} = +\infty$. The norm of a section s is given by

$$||s||^{2} := \frac{|s_{\alpha}|^{2}}{a_{\alpha}} = \frac{|P(w)|^{2}}{(\sum_{j=0}^{n} |w_{j}|^{2})^{d}}$$

The proximity function $m_f(r, D)$ of D is defined by

$$m_f(r,D) := \int_{\partial B} \log \frac{1}{\|s_f\|} \sigma = \int_{\partial B} \log \frac{\|f\|^d}{|P(f)|} \sigma.$$

The Nevanlinna deficiency $\delta_f(D)$ and the Valiron deficiency $\Delta_f(D)$ of D for f is defined by

$$\delta_f(D) := \liminf_{r \to \infty} rac{m_f(r,D)}{T_f(r,\mathcal{L})} ext{ and } \Delta_f(D) := \limsup_{r \to \infty} rac{m_f(r,D)}{T_f(r,\mathcal{L})}.$$

Using Stok's theorem, the Nevanlinna's order function $T_f(r) := T_f(r, [\mathbf{H}])$ of f for the hyperplane bundle $[\mathbf{H}]$ is written as:

$$T_f(r) = \int_{\partial B(r)} \log \left(\sum_{j=0}^n |f_j|^2 \right)^{1/2} \sigma + O(1) = \int_{\partial B(r)} \log \sum_{j=0}^n |f_j| \sigma + O(1).$$

Let f be a meromorphic mapping of \mathbf{C}^m into $\mathbf{P}^n(\mathbf{C})$, and ϕ be a meromorphic mapping of \mathbf{C}^m into the dual projective space $\mathbf{P}^n(\mathbf{C})^*$ which is called a moving target for f. Then the proximity function $m_f(r, \phi)$ of a moving target ϕ into $\mathbf{P}^n(\mathbf{C})^*$ is given by:

$$m_f(r,\phi) := \int_{\partial B} \log \frac{\|f\| \|\phi\|}{|\langle f,\phi\rangle|} \sigma.$$

The Nevanlinna deficiency $\delta_f(\phi)$ and the Valiron deficiency $\Delta_f(\phi)$ of a moving target ϕ for f are defined similarly. (See [5])

Let f be a meromorphic mapping of \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})$. Then f has a reduced representation $(f_0 : ... : f_n)$, and we write $f = (f_0, ..., f_n)$ the same letter as the mapping f. Denote $D^{\alpha}f = (D^{\alpha}f_0, ..., D^{\alpha}f_n)$ for a multi-index α , where $D^{\alpha}f_j = \partial^{|\alpha|}f_j/\partial z_1^{\alpha_1} \cdots \partial z_m^{\alpha_m}, \alpha = (\alpha_1, ..., \alpha_m)$ and $|\alpha| = \alpha_1 + \cdots + \alpha_m$.

Fujimoto [2] defined the generalized Wronskian of f by

$$W_{lpha^0,...,lpha^n}(f)=\det(D^{lpha^k}f:0\leq k\leq n),$$

for n+1 multi-indices $\alpha^k = (\alpha_1^k, ..., \alpha_m^k), \ (0 \le k \le n).$

\S **2-2.** Some Results

Molzon-Shiffman-Sibony [6] defined the projective logarithmic capacity C(E) of a set E on $\mathbf{P}^{n}(\mathbf{C})$, and they gave a criterion of positivity of projective logarithmic capacity for a subset of $\mathbf{P}^{n}(\mathbf{C})$

Proposition 1 ([3]). Let f be a nonconstant meromorphic mapping of \mathbf{C}^m into $\mathbf{P}^n(\mathbf{C})$. Then, for $H \in \mathbf{P}^n(\mathbf{C})^*$,

$$\lim_{r \to +\infty} \frac{m_f(r, H)}{T_f(r)} = 0,$$

outside a set $E \subset \mathbf{P}^n(\mathbf{C})^*$ of projective logarithmic capacity zero.

Proposition 2 ([3]).

$$\mathcal{A}:=\left\{(1,a_1,...,a_n,a_1^2,a_1a_2,...,a_1^{i_1}\cdots a_n^{i_n},...,\prod_{k=1}^n a_k^d)\mid a_j\in\mathbf{C}
ight\}$$

is of positive projective logarithmic capacity.

$\S 3.$ Elimination of defects of meromorphic mappings.

For a meromorphic mapping f of \mathbf{C}^m into $\mathbf{P}^n(\mathbf{C})$, we can eliminate all defects by a small deformation of f.

Theorem 1. Let $f : \mathbb{C}^m \to \mathbb{P}^n(\mathbb{C})$ be a given transcendental meromorphic mapping, and d is a positive integer. Then there exists a regular matrix $L = (l_{ij})_{0 \le i,j \le n}$ of the form $l_{i,j} = c_{ij}g_j + d_{ij}$, $(c_{ij}, d_{ij} \in \mathbb{C} : 0 \le i, j \le n)$ such that $\det L \ne 0$ and $\tilde{f} = L \cdot f : \mathbb{C}^m \to \mathbb{P}^n(\mathbb{C})$ is a meromorphic mapping without Nevanlinna defects of hypersurfaces of degree at most d, and satisfies $|T_f(r) - T_{\tilde{f}}(r)| = O(\log r) \ (r \to \infty)$, where g_i (j = 1, ..., n) are some monomials on \mathbb{C}^m .

S. Mori

Theorem 2. Let $f: \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$ be a given transcendental holomorphic curve. Then there exists a regular matrix $L = (l_{ij})_{0 \le i,j \le n}$ of the form $l_{i,j} = c_{ij}g_j + d_{ij}$, $(c_{ij}, d_{ij} \in \mathbb{C} : 0 \le i, j \le n)$ such that $\det L \ne 0$ and $\tilde{f} = L \cdot f : \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$ is a holomorphic curve without Nevanlinna defects of rational moving targets and satisfies $|T_f(r) - T_{\bar{f}}(r)| = o(T_f(r))(r \to \infty)$, where g_j (j = 1, ..., n) are some transcendental entire functions on \mathbb{C} satisfying $T_{g_j}(r) = o(T_{g_{j+1}}(r))$, (j = 1, ..., n-1) and $T_{g_n}(r) = o(T_f(r))$ $(r \to \infty)$ which are constructed by using Edrei-Fuchs' theorem [1].

Note that we cannot replace all transcendental entire functions g_j by rational functions.

Remark 1. In Theorem 1 and 2, mappings f may be linearly degenarate or of infinite order, and also if f is of finite order we can replace "Nevanlinna deficiency" by "Valiron deficiency" in the conclusion.

Remark 2. I first proved Theorem 1 for a meromorphic mapping $f: \mathbf{C}^m \to \mathbf{P}^n(\mathbf{C})$ and hyperplanes [3], and also for a holomorphic curve $f: \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ and hypersurfaces [4]. The case where m > 1 in Theorem 1 is not yet published. Theorem 2 is found in [5].

We now give a very short sketch of the proof of Theorem 1 for $m \ge 1$. We need following lemmas.

Lemma 1. There are monomials $g_1, ..., g_n$ in \mathbb{C}^m such that any n derivatives in $\{D^{\alpha}g := (D^{\alpha}g_1, ..., D^{\alpha}g_n)||\alpha| \leq n+1\}$ are linearly independent over the field \mathcal{M} of meromorphic functions on \mathbb{C}^m , where $\alpha = (\alpha_1, ..., \alpha_m) \in \mathbb{Z}_{>0}$ is a multi-index and $D^{\alpha}g_k = \partial^{|\alpha|}g_k/\partial z_1^{\alpha_1} \cdots \partial z_m^{\alpha_m}$.

Lemma 2. Let $h = (h_0 : h_1 : \dots : h_n)$ be a reduced representation of a meromorphic mapping of \mathbf{C}^m into $\mathbf{P}^n(\mathbf{C})$ and g_1, \dots, g_n linearly independent monomials as in Lemma 1. Then there exists $(\tilde{a}_1, \dots, \tilde{a}_n)$ such that

 $f := (h_0 : h_1 + \tilde{a}_1 g_1 h_0 : h_2 + \tilde{a}_2 g_2 h_0 : \dots : h_n + \tilde{a}_n g_n h_0)$

is a reduced representation of a linearly nondegenerate meromorphic mapping of \mathbf{C}^m into $\mathbf{P}^n(\mathbf{C})$.

Sketch of the proof of Theorem 1: There is a regular linear change L_1 of $\mathbf{P}^n(\mathbf{C})$ such that $h := L_1 \cdot f \equiv (h_0 : \cdots : h_n)$: $\mathbf{C}^m \to \mathbf{P}^n(\mathbf{C})$ is a reduced representation of the meromorphic mapping h which satisfies

$$m_h(r, H_j) = o(T_h(r)) \quad (r \to +\infty), \quad (j = 0, 1, .., n),$$

where $H_j = \{(w_0 : \cdots : w_n) | w_j = 0\}.$

Consider the Veronese mapping v_d given by monomials of degree d. We first deform a meromorphic mapping h to $\tilde{h} := (h_0 : h_1 + \tilde{a}_1 g_1 h_0 : h_2 + \tilde{a}_2 g_2 h_0 : \cdots : h_n + \tilde{a}_n g_n h_0)$ by using g_1, \ldots, g_n as in Lemma 1, and compose it to the Veronese mapping v_d . We write the composed mapping as $\tilde{f} = v_d \circ \tilde{h} = (\tilde{f}_0, \ldots, \tilde{f}_s)$.

We next choose a sequence of integers $\{m_{j,i}\}$ with large gaps such that $m_{j,i}^{(s+1)^2} < m_{j,i+1}$ for (j=1,...,n; i=1,...,m). We consider monomials $g_j = g_{j,1}(z_1) \cdots g_{j,m}(z_m)$, where $g_{j,i}(z_i) = z_i^{m_{j,i}}$ (j=1,...,n; i=1,...,m). Then we can prove Lemma 1 and Lemma 2. In the proof of Theorem 1, the key point is an auxiliary mapping F which is constructed by using the generalized Wronskian of $\tilde{f}_0, ..., \tilde{f}_s$. By using Proposition 1 and 2, we can choose complex numbers $\tilde{a}_1, ..., \tilde{a}_n$ in Lemma 2 such that F is nonconstant and $\Delta_F(H_{\mathbf{a}}) = 0$ for some suitable vector $\mathbf{a} \in \mathbf{C}^{s+1} \setminus \{0\}$ constructed by using $\tilde{a}_1, ..., \tilde{a}_n$. Another part of the proof is essentially similar to the method of [3]. Detail is omitted here.

$\S4.$ A space of meromorphic mappings.

We shall introduce a distance on the space \mathcal{F} of meromorphic mappings into $\mathbf{P}^n(\mathbf{C})$. Let $f = (f_0 : ... : f_n)$ and $g = (g_0 : ... : g_n)$ be reduced representations of meromorphic mappings of \mathbf{C}^m into $\mathbf{P}^n(\mathbf{C})$. Then we define the distance $d(f,g) := d_1(f,g) + d_2(f,g)$, where

$$d_1(f,g) := \sum_{n=1}^{\infty} \frac{1}{2^{n+1}} \int_n^{n+1} dt \int_{\partial B(t)} \inf_{\theta} \left| \left| \frac{f(z)}{\|f(z)\|} - e^{i\theta} \frac{g(z)}{\|g(z)\|} \right| \right| \sigma \le 1,$$

which is a distance and it can not distinguish mappings which are rational or transcendental, and

$$d_2(f,g) := \liminf_{\alpha \to +1} \limsup_{r \to \infty} \Big\{ \Big| \frac{T_f(r)}{(\log r)^\alpha + T_f(r)} - \frac{T_g(r)}{(\log r)^\alpha + T_g(r)} \Big| \Big\},$$

which is a pseudodistance and it distinguishs mappings which are rational or transcendental.

In our case, a small deformation \tilde{f} is represented as a form $\tilde{f} = (h_0, h_1 + a_1g_1h_0; ..., h_n + a_ng_nh_0)$. Also, we can choose $(a_1, ..., a_n)$ such that $\|\mathbf{a}\| := |a_1| + \cdots + |a_n|$ is as small as possible. So, we can choose $\hat{f} := L_1^{-1} \cdot \tilde{f}$ which is also a small deformation without Nevanlinna defects such that $d(\hat{f}, f)$ is as small as possible. Hence we see meromorphic mappings without Nevanlinna defects are dense in the subset $\mathcal{F}_T \subset \mathcal{F}$ of transcendental meromorphic mappings on this distance.

S. Mori

References

- A. Edrei and W. H. J. Fuchs, Entire and meromorphic functions with asymptotically prescribed characteristic, Canad. J. Math., 17 (1965), 383 - 395.
- [2] H. Fujimoto, Non-integrated defect relation for meromorphic maps of complete Kähler manifolds into $\mathbf{P}^{N_1}(\mathbf{C}) \times \cdots \times \mathbf{P}^{N_k}(\mathbf{C})$, Japanese J. Math. 11 (1985), 233 264.
- [3] S. Mori, Elimination of defects of meromorphic mappings of \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})$, Ann. Acad. Sci. Fenn. vol. 24 (1999), 89 104.
- [4] S. Mori, Elimination of defects of meromorphic mappings by small deformation, Proc. of US-Japan Seminar of the Delaware Conference, Recent Developments in Complex Analysis and Computer Algebra, Kluwer Acad. Publ. (1999), 247 - 258.
- [5] S. Mori, Defects of holomorphic curves into $\mathbf{P}^{n}(\mathbf{C})$ for rational moving targets and a space of meromorphic mappings, Complex Variables, Vol.43 (2001), 369 - 379.
- [6] R. E. Molzon, B. Shiffman and N. Sibony, Average growth of estimate for hyperplane section of entire analytic sets, Math. Ann. 257 (1987), 43 - 59.

Department of Mathematical Sciences Faculty of Science Yamagata University Yamagata 990-8560 Japan