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Levi form of logarithmic distance to complex 
submanifolds and its application to developability 

Kazuko Matsumoto 

§1. Introduction 

Let M be a complex manifold of codimension q defined in an open 
subset u of en and let JM(P) be the Euclidean distance from p E u to 
M. Then it is well-known that the function tp := -logJM is, near M, 
weakly q-convex i.e., the Levi form L( tp) of tp has n - q + 1 nonnegative 
eigenvalues. Moreover, L( tp) is positive semi-definite in the tangential 
direction of dimension n - q to M ( cf. [M2]). 

The purpose of the present article is to calculate the Levi form L( tp) 
explicitly near M and to give a necessary and sufficient condition for 
defining functions of M that L( tp) degenerates in the tangential direction 
(§2, Theorem 1). Such calculation was first done by Matsumoto-Ohsawa 
[M-0] to study Levi flat hypersurfaces in complex tori of dimension two. 
As its application, by combining it with the theorem of Fischer-Wu [F
W], developability of a complex submanifold M ( c en) is characterized 
by the Levi form of -log JM if dim M = 1, 2 or n- 1 (§3, Theorem 2). 

§2. Levi form of logarithmic distance 

Let r, q and n be integers with r + q = n, r 2': 1 and q 2': 1, and let 
M be a complex submanifold of dimension r in en defined by 

M = {(t,j(t)) It= (h, ... ,tr) E V} 

for open V c rcr and holomorphic f = (h, ... , Jq) : V -----* Cq. Let 
(z, w) = (z1, ... , Zr; WI, ... , Wq) be a (given) COOrdinate system of en = 
rcr X ceq. By a translation and a unitary transformation of ( z' w) if 
necessary we may assume that 0 = (0, ... , 0) E V and 

(1) 
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for 1 ~ i ~rand 1 ~ JL ~ q. We denote by 8M(z,w) the Euclidean 
distance from (z,w) E <Cn toM and put cp(z,w) := -log8M(z,w). 

We define the (r, r)-matrices IP(w) and FIL(t), 1 ~ JL ~ q, by 

( a2cp ) 
IP(w) := a .a-. (0, w) , 

z, ZJ l:<:;i,j:<:;r 

and put 
q 

F(w) := L FIL(O)ww 
IJ.=l 

FIL(t) and F(w) are symmetric and IP(w) is Hermitian. 
Then we obtain the following (see [M-0], Lemma for q = r = 1). 

Theorem 1. There exists c > 0 such that 

IP(w) = 2·11~ 112 F(w)F(w)[E- F(w)F(w)r 1 

for 0 < llwll < c, where llwll 2 := E~=1 lwiLI 2 and E denotes the identity 
matrix. In particular, two matrices IP(w) and F(w) have the same rank 
for each w with 0 < llwll <c. 

Proof. If we put 

r q 

(2) a(z, w, t) := L lzi- til 2 + L lwiL- fiL(t)l 2 

i=l 

for ( Z, W) E <Cr X <Cq and t E V, then 

(3) 

for 1 ~ i ~ r. By the implicit function theorem we can find cw -functions 
tk = tk(z,w), 1 ~ k ~ r, defined near (0,0) E cr x <Cq such that 

(4) 
a a -a (z, w, t(z, w)) = 0, 

ti 

a a 
a - (z,w,t(z,w)) = 0 

ti 

for 1 ~ i ~ r (cf. [M1]). Then by (1) we have tk(O, w) = 0 for 1 ~ k ~ r. 
If we put {3(z,w) := a(z,w,t(z,w)) then f3(z,w) = 8M(z,w)2 near 

(0,0) E <Cr x <Cq. By applying (4) and (2) we have 

(5) 
a{3 aa --
-=-=Zi-ti 
azi azi ' 

2 -
a !3 _ 8 ati 
-a a- - ij - -a-zi Zj Zj 
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for 1 ~ i,j ~ r. By differentiating (4) we have 

(6) 

and by differentiating ( 3) we have 

Now if (z,w) = (O,w) then t(O,w) = 0 and by (1) we have 

(7) 

If we put 

(8) 
q o2! 

:F( w )ii := "" !l- !l~ (O)wJ.L ~ ut·ut· 
J.L=l ' J 

then :F(w)ij is the (i,j)-component of the symmetric matrix :F(w). By 
substituting (7) and (8) for (6) we have 

(9) 

and hence 

Since :F(O) is the zero matrix, we thus obtain 
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for sufficiently small w and therefore by (5) we have 

(82 f3/8z;8z1(o, w))I:s;;,1:s;r = E- [E- F(w)F(w)r 1 

= -F(w)F(w)[E- F(w)F(w)]- 1 . 

On the other hand, f3 =6M2 and 

82 (;z:~::M) = ~ ( -~8:;2!J + ;z;!:~) · 
Moreover by (2) and (5) we have f3(0,w) = llwll 2 and 8(3/8z;(O,w) = 0 
for 1 :=; i :=; r. This proves the theorem. Q.E.D. 

Remark. The complex Hessian matrix of <p(z, w) := -log 6M(z, w) 
at (z,w) = (O,w), 0 < llwll < c:, is written as 

where cJ>(w) is the (r,r)-matrix defined as above and tJi(w) is the (q,q)
matrix defined by tJi( w) := ( 82 (-log llwll) / 8wp,8wv h:s;p,,v:S:q· 

§3. Developability of complex submanifolds 

Let M = {(t,j(t)) It E V} (c en) be as in §2. If we put J(t) := 

(F1 (t), ... , Fq(t)) then t J(t) is the Jacobian matrix of the Gauss map 

t f---4 ( ~h ' ... ' ~h ' ... ' ~Jq ' ... ' ~Jq) . 
ut1 utr ut1 utr 

By Fischer-Wu [F-W] (cf. [F-P]), the complex submanifold M of di
mension r is developable almost everywhere (i.e., at each point (t, f(t)) 
where rankJ(t) is maximal) if and only if rankJ(t) < r for all t. 

As an application of Theorem 1, we can obtain the following. 

Theorem 2. In the case dim M = 1, 2 or n -1, M is developable 
almost everywhere if and only if the Levi form of - log 6 M degenerates 
in the tangential direction at each point near M. 

For the proof we use the following. 

Lemma. Let A1, ... , Aq be complex symmetric matrices of degree 
r and let w = ( w 1 , ... , Wq) E <Cq. Then 

(i) maxwEICq rank I:~=l Ap,wp, :S: rank(A1, ... , Aq)· 
(ii) The equality holds if r = 1, 2 or if q = 1. 

(iii) The equality does not hold in general if r ;::: 3 and q ;::: 2. 
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Proof. (i) is trivial and (ii) is also trivial if r = 1 or q = 1. (In 
these cases the matrices A 1 , ... , Aq need not be symmetric.) 

If (2, 2)-matrices All ... , Aq are symmetric and det(I:~=l Al-'wl-') = 
0 then det(AI-',wl-', + Al-'2 wi-'J = 0 for any pair (Jh,J-L 2 ) with 1 ~I-Ll< 
J-L2 ~ q, and the coefficients of the polynomial of degree 2 with respect to 
( Wl-' 1 , Wl-' 2 ) are all zero. From this it is easy to see that rank( AI-',, Al-'2 ) ~ 
1 for all (J-L 1 , J-L2) and hence rank(A1 , ... , Aq) ~ 1, which proves (ii). 

(iii) follows from the next example. Q.E.D. 

Example. Consider the real symmetric matrices 

Then rank(A1 , A2) = 3, although det(A1w1 + A2w2) = 0. Therefore, if 
M c C 5 = C3 x C2 is the complex submanifold defined by 

M = {(z, w) E C 5 I wl = ZlZ2, W2 = ZlZ2 + ZlZ3} 

then - log J M degenerates in the tangential direction at ( 0, w) for all w 
near 0 E C2, but M is not developable at the origin (0,0) EM. 
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