Levi form of logarithmic distance to complex submanifolds and its application to developability

Kazuko Matsumoto

§1. Introduction

Let M be a complex manifold of codimension q defined in an open subset U of \mathbb{C}^{n} and let $\delta_{M}(P)$ be the Euclidean distance from $P \in U$ to M. Then it is well-known that the function $\varphi:=-\log \delta_{M}$ is, near M, weakly q-convex i.e., the Levi form $L(\varphi)$ of φ has $n-q+1$ nonnegative eigenvalues. Moreover, $L(\varphi)$ is positive semi-definite in the tangential direction of dimension $n-q$ to M (cf. [M2]).

The purpose of the present article is to calculate the Levi form $L(\varphi)$ explicitly near M and to give a necessary and sufficient condition for defining functions of M that $L(\varphi)$ degenerates in the tangential direction ($\S 2$, Theorem 1). Such calculation was first done by Matsumoto-Ohsawa [M-O] to study Levi flat hypersurfaces in complex tori of dimension two. As its application, by combining it with the theorem of Fischer-Wu [FW], developability of a complex submanifold $M\left(\subset \mathbb{C}^{n}\right)$ is characterized by the Levi form of $-\log \delta_{M}$ if $\operatorname{dim} M=1,2$ or $n-1$ ($\S 3$, Theorem 2).

§2. Levi form of logarithmic distance

Let r, q and n be integers with $r+q=n, r \geq 1$ and $q \geq 1$, and let M be a complex submanifold of dimension r in \mathbb{C}^{n} defined by

$$
M=\left\{(t, f(t)) \mid t=\left(t_{1}, \ldots, t_{r}\right) \in V\right\}
$$

for open $V \subset \mathbb{C}^{r}$ and holomorphic $f=\left(f_{1}, \ldots, f_{q}\right): V \longrightarrow \mathbb{C}^{q}$. Let $(z, w)=\left(z_{1}, \ldots, z_{r} ; w_{1}, \ldots, w_{q}\right)$ be a (given) coordinate system of $\mathbb{C}^{n}=$ $\mathbb{C}^{r} \times \mathbb{C}^{q}$. By a translation and a unitary transformation of (z, w) if necessary we may assume that $0=(0, \ldots, 0) \in V$ and

$$
\begin{equation*}
f_{\mu}(0)=0, \quad \frac{\partial f_{\mu}}{\partial t_{i}}(0)=0 \tag{1}
\end{equation*}
$$

for $1 \leq i \leq r$ and $1 \leq \mu \leq q$. We denote by $\delta_{M}(z, w)$ the Euclidean distance from $(z, w) \in \mathbb{C}^{n}$ to M and put $\varphi(z, w):=-\log \delta_{M}(z, w)$.

We define the (r, r)-matrices $\Phi(w)$ and $F_{\mu}(t), 1 \leq \mu \leq q$, by

$$
\Phi(w):=\left(\frac{\partial^{2} \varphi}{\partial z_{i} \partial \bar{z}_{j}}(0, w)\right)_{1 \leq i, j \leq r}, \quad F_{\mu}(t):=\left(\frac{\partial^{2} f_{\mu}}{\partial t_{i} \partial t_{j}}(t)\right)_{1 \leq i, j \leq r}
$$

and put

$$
\mathcal{F}(w):=\sum_{\mu=1}^{q} \overline{F_{\mu}(0)} w_{\mu} .
$$

$F_{\mu}(t)$ and $\mathcal{F}(w)$ are symmetric and $\Phi(w)$ is Hermitian.
Then we obtain the following (see [M-O], Lemma for $q=r=1$).
Theorem 1. There exists $\varepsilon>0$ such that

$$
\Phi(w)=\frac{1}{2\|w\|^{2}} \overline{\mathcal{F}(w)} \mathcal{F}(w)[E-\overline{\mathcal{F}(w)} \mathcal{F}(w)]^{-1}
$$

for $0<\|w\|<\varepsilon$, where $\|w\|^{2}:=\sum_{\mu=1}^{q}\left|w_{\mu}\right|^{2}$ and E denotes the identity matrix. In particular, two matrices $\Phi(w)$ and $\mathcal{F}(w)$ have the same rank for each w with $0<\|w\|<\varepsilon$.

Proof. If we put

$$
\begin{equation*}
\alpha(z, w, t):=\sum_{i=1}^{r}\left|z_{i}-t_{i}\right|^{2}+\sum_{\mu=1}^{q}\left|w_{\mu}-f_{\mu}(t)\right|^{2} \tag{2}
\end{equation*}
$$

for $(z, w) \in \mathbb{C}^{r} \times \mathbb{C}^{q}$ and $t \in V$, then

$$
\begin{equation*}
\frac{\partial \alpha}{\partial t_{i}}=\overline{t_{i}-z_{i}}+\sum_{\mu=1}^{q} \frac{\partial f_{\mu}}{\partial t_{i}}\left\{\overline{f_{\mu}(t)-w_{\mu}}\right\} \tag{3}
\end{equation*}
$$

for $1 \leq i \leq r$. By the implicit function theorem we can find C^{ω}-functions $t_{k}=t_{k}(z, w), 1 \leq k \leq r$, defined near $(0,0) \in \mathbb{C}^{r} \times \mathbb{C}^{q}$ such that

$$
\begin{equation*}
\frac{\partial \alpha}{\partial t_{i}}(z, w, t(z, w))=0, \quad \frac{\partial \alpha}{\partial \bar{t}_{i}}(z, w, t(z, w))=0 \tag{4}
\end{equation*}
$$

for $1 \leq i \leq r$ (cf. [M1]). Then by (1) we have $t_{k}(0, w)=0$ for $1 \leq k \leq r$.
If we put $\beta(z, w):=\alpha(z, w, t(z, w))$ then $\beta(z, w)=\delta_{M}(z, w)^{2}$ near $(0,0) \in \mathbb{C}^{r} \times \mathbb{C}^{q}$. By applying (4) and (2) we have

$$
\begin{equation*}
\frac{\partial \beta}{\partial z_{i}}=\frac{\partial \alpha}{\partial z_{i}}=\overline{z_{i}-t_{i}}, \quad \frac{\partial^{2} \beta}{\partial z_{i} \partial \bar{z}_{j}}=\delta_{i j}-\frac{\partial \bar{t}_{i}}{\partial \bar{z}_{j}} \tag{5}
\end{equation*}
$$

for $1 \leq i, j \leq r$. By differentiating (4) we have

$$
\left\{\begin{array}{l}
\frac{\partial^{2} \alpha}{\partial t_{i} \partial z_{j}}+\sum_{k=1}^{r}\left(\frac{\partial^{2} \alpha}{\partial t_{i} \partial t_{k}} \frac{\partial t_{k}}{\partial z_{j}}+\frac{\partial^{2} \alpha}{\partial t_{i} \partial \bar{t}_{k}} \frac{\partial \bar{t}_{k}}{\partial z_{j}}\right)=0 \tag{6}\\
\frac{\partial^{2} \alpha}{\partial \bar{t}_{i} \partial z_{j}}+\sum_{k=1}^{r}\left(\frac{\partial^{2} \alpha}{\partial \bar{t}_{i} \partial t_{k}} \frac{\partial t_{k}}{\partial z_{j}}+\frac{\partial^{2} \alpha}{\partial \bar{t}_{i} \partial \bar{t}_{k}} \frac{\partial \bar{t}_{k}}{\partial z_{j}}\right)=0
\end{array}\right.
$$

and by differentiating (3) we have

$$
\begin{gathered}
\frac{\partial^{2} \alpha}{\partial t_{i} \partial z_{j}}=0, \quad \frac{\partial^{2} \alpha}{\partial \bar{t}_{i} \partial z_{j}}=-\delta_{i j} \\
\frac{\partial^{2} \alpha}{\partial t_{i} \partial t_{j}}=\sum_{\mu=1}^{q} \frac{\partial^{2} f_{\mu}}{\partial t_{i} \partial t_{j}}\left\{\overline{f_{\mu}(t)-w_{\mu}}\right\}, \quad \frac{\partial^{2} \alpha}{\partial t_{i} \partial \bar{t}_{j}}=\delta_{i j}+\sum_{\mu=1}^{q} \frac{\partial f_{\mu}}{\partial t_{i}} \frac{\partial \bar{f}_{\mu}}{\partial \bar{t}_{j}} .
\end{gathered}
$$

Now if $(z, w)=(0, w)$ then $t(0, w)=0$ and by (1) we have

$$
\begin{equation*}
\frac{\partial^{2} \alpha}{\partial t_{i} \partial t_{j}}(0, w, 0)=-\sum_{\mu=1}^{q} \frac{\partial^{2} f_{\mu}}{\partial t_{i} \partial t_{j}}(0) \bar{w}_{\mu}, \quad \frac{\partial^{2} \alpha}{\partial t_{i} \partial \bar{t}_{j}}(0, w, 0)=\delta_{i j} \tag{7}
\end{equation*}
$$

If we put

$$
\begin{equation*}
\mathcal{F}(w)_{i j}:=\sum_{\mu=1}^{q} \frac{\partial^{2} \bar{f}_{\mu}}{\partial \bar{t}_{i} \partial \bar{t}_{j}}(0) w_{\mu} \tag{8}
\end{equation*}
$$

then $\mathcal{F}(w)_{i j}$ is the (i, j)-component of the symmetric matrix $\mathcal{F}(w)$. By substituting (7) and (8) for (6) we have

$$
\left\{\begin{array}{l}
\frac{\partial \bar{t}_{i}}{\partial z_{j}}(0, w)=\sum_{k=1}^{r} \overline{\mathcal{F}}(w)_{i k} \frac{\partial t_{k}}{\partial z_{j}}(0, w) \tag{9}\\
\frac{\partial t_{i}}{\partial z_{j}}(0, w)-\delta_{i j}=\sum_{k=1}^{r} \mathcal{F}(w)_{i k} \frac{\partial \bar{t}_{k}}{\partial z_{j}}(0, w)
\end{array}\right.
$$

and hence

$$
\frac{\partial t_{i}}{\partial z_{j}}(0, w)-\delta_{i j}=\sum_{k=1}^{r} \mathcal{F}(w)_{i k} \sum_{l=1}^{r} \overline{\mathcal{F}}(w)_{k l} \frac{\partial t_{l}}{\partial z_{j}}(0, w)
$$

Since $\mathcal{F}(0)$ is the zero matrix, we thus obtain

$$
\left(\partial t_{i} / \partial z_{j}(0, w)\right)_{1 \leq i, j \leq r}=[E-\mathcal{F}(w) \overline{\mathcal{F}(w)}]^{-1}
$$

for sufficiently small w and therefore by (5) we have

$$
\begin{aligned}
\left(\partial^{2} \beta / \partial z_{i} \partial \bar{z}_{j}(0, w)\right)_{1 \leq i, j \leq r} & =E-[E-\overline{\mathcal{F}(w)} \mathcal{F}(w)]^{-1} \\
& =-\overline{\mathcal{F}(w)} \mathcal{F}(w)[E-\overline{\mathcal{F}(w)} \mathcal{F}(w)]^{-1}
\end{aligned}
$$

On the other hand, $\beta=\delta_{M}{ }^{2}$ and

$$
\frac{\partial^{2}\left(-\log \delta_{M}\right)}{\partial z_{i} \partial \bar{z}_{j}}=\frac{1}{2}\left(-\frac{1}{\beta} \frac{\partial^{2} \beta}{\partial z_{i} \partial \bar{z}_{j}}+\frac{1}{\beta^{2}} \frac{\partial \beta}{\partial z_{i}} \frac{\partial \beta}{\partial \bar{z}_{j}}\right) .
$$

Moreover by (2) and (5) we have $\beta(0, w)=\|w\|^{2}$ and $\partial \beta / \partial z_{i}(0, w)=0$ for $1 \leq i \leq r$. This proves the theorem.
Q.E.D.

Remark. The complex Hessian matrix of $\varphi(z, w):=-\log \delta_{M}(z, w)$ at $(z, w)=(0, w), 0<\|w\|<\varepsilon$, is written as

$$
\left(\begin{array}{cc}
\left(\partial^{2} \varphi / \partial z_{i} \partial \bar{z}_{j}\right) & \left(\partial^{2} \varphi / \partial z_{i} \partial \bar{w}_{\nu}\right) \\
\left(\partial^{2} \varphi / \partial w_{\mu} \partial \bar{z}_{j}\right) & \left(\partial^{2} \varphi / \partial w_{\mu} \partial \bar{w}_{\nu}\right)
\end{array}\right)(0, w)=\left(\begin{array}{cc}
\Phi(w) & O \\
O & \Psi(w)
\end{array}\right)
$$

where $\Phi(w)$ is the (r, r)-matrix defined as above and $\Psi(w)$ is the (q, q) matrix defined by $\Psi(w):=\left(\partial^{2}(-\log \|w\|) / \partial w_{\mu} \partial \bar{w}_{\nu}\right)_{1 \leq \mu, \nu \leq q}$.

§3. Developability of complex submanifolds

Let $M=\{(t, f(t)) \mid t \in V\}\left(\subset \mathbb{C}^{n}\right)$ be as in $\S 2$. If we put $J(t):=$ $\left(F_{1}(t), \ldots, F_{q}(t)\right)$ then ${ }^{t} J(t)$ is the Jacobian matrix of the Gauss map

$$
t \longmapsto\left(\frac{\partial f_{1}}{\partial t_{1}}, \ldots, \frac{\partial f_{1}}{\partial t_{r}}, \ldots, \frac{\partial f_{q}}{\partial t_{1}}, \ldots, \frac{\partial f_{q}}{\partial t_{r}}\right) .
$$

By Fischer-Wu [F-W] (cf. [F-P]), the complex submanifold M of dimension r is developable almost everywhere (i.e., at each point $(t, f(t))$ where $\operatorname{rank} J(t)$ is maximal) if and only if $\operatorname{rank} J(t)<r$ for all t.

As an application of Theorem 1, we can obtain the following.
Theorem 2. In the case $\operatorname{dim} M=1,2$ or $n-1, M$ is developable almost everywhere if and only if the Levi form of $-\log \delta_{M}$ degenerates in the tangential direction at each point near M.

For the proof we use the following.
Lemma. Let A_{1}, \ldots, A_{q} be complex symmetric matrices of degree r and let $w=\left(w_{1}, \ldots, w_{q}\right) \in \mathbb{C}^{q}$. Then
(i) $\max _{w \in \mathbb{C}^{q}} \operatorname{rank} \sum_{\mu=1}^{q} A_{\mu} w_{\mu} \leq \operatorname{rank}\left(A_{1}, \ldots, A_{q}\right)$.
(ii) The equality holds if $r=1,2$ or if $q=1$.
(iii) The equality does not hold in general if $r \geq 3$ and $q \geq 2$.

Proof. (i) is trivial and (ii) is also trivial if $r=1$ or $q=1$. (In these cases the matrices A_{1}, \ldots, A_{q} need not be symmetric.)

If (2,2)-matrices A_{1}, \ldots, A_{q} are symmetric and $\operatorname{det}\left(\sum_{\mu=1}^{q} A_{\mu} w_{\mu}\right) \equiv$ 0 then $\operatorname{det}\left(A_{\mu_{1}} w_{\mu_{1}}+A_{\mu_{2}} w_{\mu_{2}}\right) \equiv 0$ for any pair (μ_{1}, μ_{2}) with $1 \leq \mu_{1}<$ $\mu_{2} \leq q$, and the coefficients of the polynomial of degree 2 with respect to $\left(w_{\mu_{1}}, w_{\mu_{2}}\right)$ are all zero. From this it is easy to see that $\operatorname{rank}\left(A_{\mu_{1}}, A_{\mu_{2}}\right) \leq$ 1 for all $\left(\mu_{1}, \mu_{2}\right)$ and hence $\operatorname{rank}\left(A_{1}, \ldots, A_{q}\right) \leq 1$, which proves (ii).
(iii) follows from the next example. Q.E.D.

Example. Consider the real symmetric matrices

$$
A_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Then $\operatorname{rank}\left(A_{1}, A_{2}\right)=3$, although $\operatorname{det}\left(A_{1} w_{1}+A_{2} w_{2}\right) \equiv 0$. Therefore, if $M \subset \mathbb{C}^{5}=\mathbb{C}^{3} \times \mathbb{C}^{2}$ is the complex submanifold defined by

$$
M=\left\{(z, w) \in \mathbb{C}^{5} \mid w_{1}=z_{1} z_{2}, w_{2}=z_{1} z_{2}+z_{1} z_{3}\right\}
$$

then $-\log \delta_{M}$ degenerates in the tangential direction at $(0, w)$ for all w near $0 \in \mathbb{C}^{2}$, but M is not developable at the origin $(0,0) \in M$.

References

[F-P] G. Fischer and J. Piontkowski, "Ruled Varieties", Vieweg, Braunschweig, 2001.
[F-W] G. Fischer and H. Wu, Developable complex analytic submanifolds, Internat. J. Math., 6 (1995), 229-272.
[M1] K. Matsumoto, A note on the differentiability of the distance function to regular submanifolds of Riemannian manifolds, Nihonkai Math. J., 3 (1992), 81-85.
[M2] K. Matsumoto, Boundary distance functions and q-convexity of pseudoconvex domains of general order in Kähler manifolds, J. Math. Soc. Japan, 48 (1996), 85-107.
[M-O] K. Matsumoto and T. Ohsawa, On the real analytic Levi flat hypersurfaces in complex tori of dimension two, Ann. Inst. Fourier (Grenoble), to appear.

Department of Applied Mathematics
Osaka Women's University
Daisen-cho, Sakai 590-0035
Japan

