Advanced Studies in Pure Mathematics 42, 2004 Complex Analysis in Several Variables pp. 115–121

A link between the asymptotic expansions of the Bergman kernel and the Szegö kernel

Kengo Hirachi

Introduction

Let Ω be a strictly pseudoconvex domain in \mathbb{C}^n . Then the Bergman kernel K^{B} and the Szegö kernel K^{S} of Ω have singularities at the boundary diagonal. These singularities admit asymptotic expansions in powers and log of the defining function of Ω ([3], [2]) and, moreover, the coefficients of which can be expressed in terms of local invariants of the CR structure of the boundary $\partial\Omega$ as an application of the parabolic invariant theory developed in [4], [5], [1], [8], [6] and others. While these works provide a geometric algorithm of expressing the expansion of each kernel, it is not easy to read relations between them from this construction — for example, we can say very little about the relation between the log term coefficients of K^{B} and K^{S} , cf. §2.

In this note we present a method of relating these asymptotic expansions. Our strategy is to construct a meromorphic family of kernel functions K_s , $s \in \mathbb{C}$, such that K^{B} and K^{S} are realized as special values of K_s . In the case of the unit ball, $\{|z| < 1\}$, such a family is given by

 $K_s(z) = \pi^{-n} \Gamma(n-s) \left(1 - |z|^2\right)^{s-n},$

where $\Gamma(\alpha)$ is the gamma function, and K_{-1} , K_0 give $K^{\rm B}$, $K^{\rm S}$, respectively. Note that, for s < 0, K_s is characterized as the Bergman kernel for the weighted L^2 norm defined by the measure $(1-|z|^2)^{-s-1}/\Gamma(-s)dV$, see §1. For general strictly pseudoconvex domains, we begin by defining K_s for s < 0 as the weighted Bergman kernel, and then extend to $s \in \mathbb{C}$ by analytic continuation. Here we only consider the asymptotic expansion of K_s and define the analytic continuation as a meromorphic family of formal series, see §2. We then apply the invariant theory to express K_s in terms of geometric invariants of the boundary (Theorem 2). In these expansions, all K_s contain the same invariants up to universal

Partially supported by Grants-in-Aid for Scientific Research, JSPS..

Received April 15, 2002.

constants depending polynomially on s. These formulae, in particular, give a relation between $K^{\rm B} = K_{-1}$ and $K^{\rm S} = K_0$.

Note that the kernel functions K_s for $s \in \mathbb{Z}$ have been introduced in Hirachi–Komatsu [7] and the present note is a continuation of that work. In [7], K_s are defined as the solutions of simple holonomic systems, which naturally arise from Kashiwara's microlocal analysis of the Bergman kernel [9]. While this point of view is not given explicitly in this note, this is also the main tool of the proofs of Theorems 1 and 2; the details will be given in my forthcoming paper.

§1. Weighted Bergman kernels

Let $\Omega \subset \mathbb{C}^n$ be a domain with C^{∞} smooth boundary. Then there is a function $r \in C^{\infty}(\overline{\Omega})$, called a *defining function*, such that $\Omega = \{r > 0\}$ and $dr \neq 0$ on $\partial\Omega$. Fixing such an r, we define for s < 0 a weighted L^2 norm on Ω by

(1)
$$||f||_s^2 = \int_{\Omega} |f(z)|^2 \frac{r(z)^{-s-1}}{\Gamma(-s)} dV(z),$$

where dV(z) is the standard Lebesgue measure on \mathbb{C}^n . Let

$$H_s(\Omega, r) := \{ f \in \mathcal{O}(\Omega) : \|f\|_s < \infty \},\$$

the Hilbert space of weighted L^2 holomorphic functions on Ω . If we take a complete orthonormal system $\{h_j\}_{j=0}^{\infty}$ of $H_s(\Omega, r)$, then the series

$$K_s[r](z,\overline{w}):=\sum_j \, h_j(z) \, \overline{h_j(w)}$$

converges for $(z, w) \in \Omega \times \Omega$ and define a function, which is shown to be independent of the choice of $\{h_j\}$. We call $K_s[r]$ the weighted Bergman kernel. Note that the Bergman kernel K^{B} is given by $K_{-1}[r]$, which is clearly independent of the choice of r.

In case s = 0, the right-hand side of (1) does not make sense because $\Gamma(-s)$ has simple poles at $s \in \mathbb{N}_0 = \{0, 1, 2, ...\}$. However, we may define $\|\cdot\|_0$ by taking the limit

$$\lim_{s \to -0} \|f\|_s^2 = \int_{\partial \Omega} |f|^2 d\sigma(z), \quad f \in C^0(\overline{\Omega}),$$

where $d\sigma$ is the volume element on $\partial\Omega$ normalized by the condition

$$d\sigma \wedge dr = dV$$
 on $\partial \Omega$.

116

Thus it is natural to define $H_0(\Omega, r) := \ker \overline{\partial}_b \subset L^2(\partial\Omega, d\sigma)$, where $\overline{\partial}_b$ is the tangential Cauchy–Riemann operator of $\partial\Omega$. Since each $f \in H_0(\Omega, r)$ admits an extension to $f \in \mathcal{O}(\Omega)$, we may also regard $H_0(\Omega, r) \subset \mathcal{O}(\Omega)$. The Szegö kernel is then defined by $K^{\rm S}[r](z,\overline{w}) := \sum_j h_j(z) \overline{h_j(w)}$, where $\{h_i\}_i$ is a complete orthonormal system of $H_0(\Omega, r)$.

Model case. In the case of the unit ball Ω_0 , we may take $r(z) = 1 - |z|^2$. Then the monomials of z form a complete orthogonal system of $H_s(\Omega_0, r)$ (cf. [7]) and thus

$$K_s[r](z,\overline{w}) = \sum_{\alpha} \frac{z^{\alpha} \overline{w}^{\alpha}}{\|z^{\alpha}\|_s^2} = \frac{\Gamma(n-s)}{\pi^n} \left(1 - z \cdot \overline{w}\right)^{s-n}.$$

The right-hand side is a meromorphic function of $s \in \mathbb{C}$ (with parameters $z, w \in \Omega$) and, thus $K_s[r]$ (s < 0) can be analytically continued to a meromorphic function of $s \in \mathbb{C}$, which we also denote by $K_s[r]$. Then, in particular, $K_0[r]$ gives the Szegö kernel $K^{\mathrm{S}}[r]$.

§2. Asymptotic expansions of the weighted Bergman kernels

In what follows, we assume that Ω is strictly pseudoconvex, and mainly consider the restriction to the diagonal of the kernel functions $K_s[r](z) := K_s[r](z, \overline{z}).$

It is known from the work of Fefferman [3] that the boundary singularity of the Bergman kernel $K^{\rm B}(z)$ takes the form $\varphi r^{-n-1} + \psi \log r$, where $\varphi, \psi \in C^{\infty}(\overline{\Omega})$. Based on his analysis, G. Komatsu has shown that the weighted Bergman kernels $K_s[r]$ admit similar expansions.

Theorem ([10]). For s < 0, the weighted Bergman kernel $K_s[r]$ admits the following asymptotic expansion at the boundary:

(2)
$$K_{s}[r] = \begin{cases} \varphi^{(s)}[r] r^{s-n} + \psi^{(s)}[r] \log r & \text{if } s \in \mathbb{Z}, \\ \varphi^{(s)}[r] r^{s-n} & \text{if } s \notin \mathbb{Z}, \end{cases}$$

where $\varphi^{(s)}[r], \psi^{(s)}[r] \in C^{\infty}(\overline{\Omega}).$

If we introduce the functions

$$\Phi_s[r] = egin{cases} \Gamma(-s)\,r^s & ext{if } s \in \mathbb{C}\setminus\mathbb{N}_0, \ rac{(-1)^{s+1}}{s!}\,r^s\log r & ext{if } s \in \mathbb{N}_0, \end{cases}$$

then we may rewrite the expansions (2) in a unified form:

(3)
$$K_s[r](z) = \sum_{j=0}^{\infty} \varphi_j^{(s)}[r](z) \Phi_{s-n+j}[r](z), \quad \varphi_j^{(s)}[r] \in C^{\infty}(\overline{\Omega}).$$

K. Hirachi

Here the coefficients $\varphi_j^{(s)}[r]$ are not uniquely determined because r and z are not independent.

Our basic result that enables us to define the meromorphic family $K_s[r], s \in \mathbb{C}$, is the following

Theorem 1. The coefficients $\varphi_j^{(s)}[r]$ of (3) can be chosen so that $\varphi_j^{(s)}[r] = \sum_{k=0}^{2j} a_{j,k}[r] s^k$ holds for functions $a_{j,k}[r] \in C^{\infty}(\overline{\Omega})$ that are independent of s.

Taking $\varphi_j^{(s)}[r]$ as in the theorem above and then using the relation $s \Phi_{s+j}[r] = -r \Phi_{s+j-1}[r] - j \Phi_{s+j}[r]$, we may rewrite (3) in the form

(4)
$$K_s[r] = \sum_{j=-\infty}^{\infty} a_j[r] \Phi_{s-n+j}[r],$$

where $a_j[r] \in C^{\infty}(\overline{\Omega})$ are independent of s and satisfies $a_j[r] = O(r^{-2j})$ for j < 0 (hence the boundary singularity of $a_j[r]\Phi_{s-n+j}[r]$ gets weaker as $|j| \to \infty$). Note that $a_j[r]$ modulo $O(r^{\infty})$ is now uniquely determined by r, and moreover it is shown that map $r \mapsto a_j[r]$ is given by a partial differential operator.

Now we define $K_s[r]$ for $s \in \mathbb{C} \setminus (-\infty, 0)$ by the formula (4), which is regarded as formal series. Then we can show, in particular, that $K_0[r]$ gives the asymptotic expansion of the Szegö kernel $K^{S}[r]$.

§3. Transformation law and an invariant expansion of $K_s[r]$

We next examine the transformation law of $a_j[r]$ under biholomorphic maps $F: \widetilde{\Omega} \to \Omega$. Recall [3] that F can be extended to a diffeomorphism up to the boundary. So, for a defining function r of Ω , we may give a defining function of $\widetilde{\Omega}$ by

(5)
$$\widetilde{r} := |\det F'|^{-2/(n+1)} r \circ F,$$

where det F' is the holomorphic Jacobian of F. Now from the definition of the norm $\|\cdot\|_s$, we see that the weighted Bergman kernel transforms according to

(6)
$$K_s[\tilde{r}] = |\det F'|^{2(n-s)/(n+1)} K_s[r] \circ F.$$

Thus, substituting these transformation laws into (4), we get

(7)
$$a_j[\widetilde{r}] = |\det F'|^{2j/(n+1)}a_j[r] \circ F$$

by the uniqueness of the expansion (4).

A link between the asymptotic expansions

Our next task is to construct functionals of r that transform like this under biholomorphic maps — and hopefully express $a_j[r]$ in terms of these functionals. Here we utilize the ambient metric construction of [4]. Associated to each r, we first define a Lorentz-Kähler metric g = g[r]on a neighborhood of $\mathbb{C}^* \times \partial \Omega \subset \mathbb{C}^* \times \mathbb{C}^n$ by $g[r] = \sum_{j,k=0}^n g_{j\overline{k}} dz_j d\overline{z}_k$, where $g_{j\overline{k}} = \partial^2 r_{\#}/\partial z_j \partial \overline{z}_k$. Let R = R[r] be the curvature of g and $R^{(p,q)} = \overline{\nabla}^{q-2} \nabla^{p-2} R$ be its iterated covariant derivatives. Then consider complete contractions of the form

$$W_{\#} = \operatorname{contr} \Big(R^{(p_1,q_1)} \otimes \cdots \otimes R^{(p_m,q_m)} \Big),$$

with $\sum p_l = \sum q_l = m + w$. Such a contraction $W_{\#}$ assigns to each r a smooth function $W[r] := W_{\#}[r]|_{z_0=0}$ on $\overline{\Omega}$ near $\partial\Omega$. We call the functional $r \mapsto W[r]$ a Weyl functional of weight w. If W has weight w, then under (5), we have the desired transformation law

$$W[\widetilde{r}] = |\det F'|^{2w/(n+1)} W[r] \circ F.$$

It is a natural hope that all a_j can be expressed in terms of these Weyl functionals. However, at this stage, it is hard to deal with the case of arbitrary r. So we here choose a good class of defining functions in such a way that we can apply the invariant theory of [4], [1], [6]. To specify a class of defining functions, following [6], we consider the following complex Monge-Ampère equation

$$(-1)^n \det \left(\partial^2 U / \partial z^j \partial \overline{z}^k \right)_{0 \le j,k \le n} = |z_0|^{2n}$$

for a function $U(z_0, z)$ on $\mathbb{C}^* \times \overline{\Omega}$. This equation admits asymptotic solutions along $\mathbb{C}^* \times \partial \Omega$ of the form

$$U = r_{\#} + r_{\#} \sum_{k=1}^{\infty} \eta_k \cdot (r^{n+1} \log r_{\#})^k,$$

where r is a C^{∞} defining function of Ω , $r_{\#}(z_0, z) = |z_0|^2 r(z)$ and $\eta_k \in C^{\infty}(\overline{\Omega})$. For such a solution U, the smooth part $r_{\#} = |z_0|^2 r$ is uniquely determined. So, for each Ω , we may define \mathcal{F}_{Ω} to be the totality of r that arises as the smooth part of an asymptotic solution U. This class \mathcal{F}_{Ω} is shown to be preserved under the pull-back (5).

Now we use Weyl functionals to express $K_s[r]$ for $r \in \mathcal{F}_{\Omega}$. The invariant theory of [6] implies that each $a_j[r]$ admits an asymptotic expansion

(8)
$$a_j[r] = \sum_{k=0}^{\infty} W_{j,k}[r] r^k, \qquad r \in \mathcal{F}_{\Omega},$$

K. Hirachi

where $W_{j,k}$ is a linear combination of Weyl functionals of weight j + k. Hence, using $r\Phi_{s-m}[r] = (m-s)\Phi_{s-m+1}[r]$ to absorb all explicit r in (8) into other $\Phi_{s-l}[r]$, we get

Theorem 2. If $r \in \mathcal{F}_{\Omega}$, then $K_s[r]$ admits an expansion

(9)
$$K_s[r] = \sum_{j=0}^{\infty} W_j^{(s)}[r] \Phi_{s-n+j}[r],$$

where each $W_j^{(s)}$ is a linear combination of Weyl functionals of weight j whose coefficients are polynomials in s of degree $\leq 2j$.

The first three terms of the expansion are given by

$$\pi^n K_s[r] = \Phi_{s-n}[r] + \frac{1}{24} \|R\|_{z_0=1}^2 \Phi_{s-n+2}[r] + O(r^{s-n-3}).$$

Here the second term $W_{s-n+1}^{(s)}$ vanishes. Thus we see in particular that the Bergman and the Szegö kernels have the same expansion in $\Phi_s[r]$ up to this order.

References

- T. N. Bailey, M. G. Eastwood and C. R. Graham, Invariant theory for conformal and CR geometry, Ann. of Math. 139 (1994), 491–552.
- [2] L. Boutet de Monvel et J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Soc. Math. de France, Astérisque 34–35 (1976), 123–164.
- [3] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65.
- [4] C. Fefferman, Parabolic invariant theory in complex analysis, Adv. in Math. 31 (1979), 131–262.
- [5] C. R. Graham, Scalar boundary invariants and the Bergman kernel, Complex analysis II, Lecture Notes in Math., vol. 1276, Springer, 1987.
- [6] K. Hirachi, Construction of boundary invariants and the logarithmic singularity of the Bergman kernel, Ann. of Math. 151 (2000) 151–191.
- [7] K. Hirachi and G. Komatsu, Local Sobolev-Bergman kernels of Strictly Pseudoconvex Domains, in "Analysis and Geometry in Several Complex Variables", Trends in Math., pp. 64–96, Birkhüser, 1999.
- [8] K. Hirachi, G. Komatsu and N. Nakazawa, CR invariants of weight five in the Bergman kernel, Adv. in Math. 143 (1999), 185–250.
- [9] M. Kashiwara, Analyse micro-locale du noyau de Bergman Sém.
 Goulaouic-Schwartz, École Polytech., Exposé n° VIII, 1976–77.
- [10] G. Komatsu, personal communication.

Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba, Meguro Tokyo 153-8914 Japan E-mail address: hirachi@ms.u-tokyo.ac.jp