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Stochastic Newton Equation 
with Reflecting Boundary Condition 

Shigeo Kusuoka 

§1. Introduction 

Let D be a bounded domain in Rd with a smooth boundary and 
n(x), x E aD, be an outer normal vector. Let aii : Rd ----> R, i,j = 
1, ... d, be smooth functions such that a ij ( x) = aii ( x), x E Rd. Also, 
let bi : R 2d ----> R, i = 1, ... d, be bounded measurable functions. We 
assume that there are positive constants C0 , C1 such that 

d 

Col~l 2 ::::; L aii(x)~i~j::::; C1l~l 2 , 
i,j=l 

Let L0 be a second order linear differential operator in R 2d given by 

d .a 1 d .. a2 d. a 
L 0 = "'""v'-a . +- "'""a'1 (x)-a ·a . + "'""b'(x,v)-a . L.J x' 2 L.J v' vJ L.J v' 

i=l i,j=l i=l 

Let Wd = C([O, oo); Rd)xD([O, oo); Rd). Now let <I>: RdxaD ____, Rd 
be a smooth map satisfying the following . 
(i) <I>(·,x): Rd----; Rd is linear for all X E an. 
(ii) <I>(v, x) = v for any x E aD and v E Tx(aD), i.e., <I>(v, x) = v if 
x E aM, v E Rd and v · n(x) = 0. 
(iii) <l>(<I>(v, x), x) = v for all v E Rd and x E aD. 
(iv) <l>(n(x), x) =J n(x) for any x E aD. 

The main theorem in the present paper is the following. 

Theorem 1. Let (x0 ,v0 ) E (.D)c X Rd. Then there exists a unique 
probability measure Jl over wd satisfying the following conditions. 
(1) Jl(w(O) = (xo, vo)) = 1. 
(2) Jl(w(t) E De x Rd, t E [0, oo)) = 1. 
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(3) For any f E C0 ((f>)c x Rd), {f(w(t))- J; Lof(w(s))ds; t 2 0} is 
a martingale under p,( dw). 
(4) p,(1an(x(t))(v(t)- ci>(v(t-),x(t))) = 0 for all t E [O,oo)) = 1. 
Here w(·) = (x(·), v(·)) E Wd. 

Now let us think of the following Stochastic Newton equation 

dXt V/'dt 

d~" a(Xt)dB(t) + (b(Xt, ~")- X\lU(Xt))dt 

X ,\_ 
0 - xo, v;,\-

0 - vo. 

Here B(t) is ad-dimensional Brownian motion, a E c=(Rd; Rd), 
b : R 2d ----> Rd is a bounded Lipschitz continuous function, and U E 
C0 (Rd). 

We assume the following also. 
(A-1) There are positive constants C0 , C1 such that 

(A-2) Let D = {x E Rd; U(x) > 0}. Then there are co > 0, U0 E 
c=(Rd; R) and a non-increasing C 1-function p: R----> R satisfying the 
following. 
(1) x E aD, if and only if U0 (x) = 0 and dis(x, aD) < c0 . 

(2) V'Uo(x) =/:- 0, x E an. 
(3) p(t) = 0, t 2 0, p(t) > 0, t < 0, and U(x) = p(U0 (x)) for x E Rd 
with dis(x, an) <co. 

. p'(t) 
(4) hm -( ) = -oo. 

tjO p t 
Now let dis be a metric function on Wd given by 

dis(wo,wl) 

= f: Tn(1/\ ((max lxo(t)- Xl(t)l) + ( r lvo(t)- vl(t)ln)lfn)), 
n=l tE[O,n] Jo 

- d . for wi(·) =(xi(·), vi(·)) E W , z = 0, 1. 
Then we will show the following. 

Theorem 2. Letv", A E [1,oo), be the probability law of(X[, ~"), 
t E [0, oo), on Wo, and p, be the probability measure given in Theorem 1 
in the case when ci>(v,x) = v- 2(v · n(x))n(x), v E Rd, x E an. Then 
v-' conveges top, weakly as A----> oo as probability measures on (W0 , dis). 
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§2. Basic lemmas 

Let (n, F, {FthE[O,oo), P) be a filtered probability space, and B(t) = 

(B1 (t), ... , Bd(t)) bead-dimensional Brownian motion. Let B 0 (t) = t, 
t E [O,oo). Let ai: RN ~ RN, i = 0,1, ... ,d, be Lipschitz continuous 
functions, and let X : [0, 00) X R N X n ~ RN be the solution to the 
following SDE 

d t 

X(t,x) = x + ~ 1 ai(X(s,x))dBi(s), 

We may assume that X(t, x) is continuous in (t, x) (cf. Kunita [2]). 
Then we have the following. 

Lemma 3. For any T > 0 and po,Pl, ... ,pm E (1, oo), m ~ 1, with 
E;:'=0 pk"1 = 1, there is a constant C > 0 such that 

for all 0 =to< t1 < ... < tm :S: T, and fk E C<f(RN), k = 0, 1, ... ,m. 

Proof. From the assumption, there is a C0 > 0 such that 

Let <p E C<f(RN) such that JRN <p(x)dx = 1. Let VJn(x) = nN <p(nx), 

x E RN, for n ~ 1, and let a;n) = <{Jn * ai, i = 0, ... , d. Then a;n) E 

C""(RN; RN). Let 

xERN, j,k=l. .. ,N, i=0,1, ... ,d, n~l. 

Then we see that IWi(~),j(x)l:::; Co, X ERN. Let xCn): [O,oo) X RN X 

n ~ RN be the solution to the following SDE 

d t 

xCn)(t, x) =X+ L 1 a;n)(x(n)(s,x))dBi(s), 
i=O O 

Then we may think that xCnl(t, ·) : RN ~ RN is a diffeomorphism 

with probability one. Let Jkn),j(t,x) = a~kx(n),i(t,x). Let Wt(x) = 
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(Wi(~),j(x))k,j=l, ... ,N and J(n)(t,x) = (Jln),j(t,x))k,j=l, ... ,N· Then the 

N ~ N-matrix valued process J(n)(t,x) satisfies the following SDE 

d t 
J(n)(t,x) =IN+ L 1 wi(n)(x(n)(s,x))J(n)(s,x)dBi(s). 

i=O O 

Also, we see that 
J(n)(t, x)-1 

d t 

=IN- L 1 J(n)(s,x)-1Wi(n)(X(n)(s,x))dBi(s) 
i=O O 

d t 
+! L [ J(n)(s,x)- 1Wi(n)(X(n)(s,x)) 2ds. 

2 i=l Jo 
Then we see that 

CT = sup{E[detJ(n)(t,x)-Po+l]; t E [0, T], x ERN, n ~ 1} < oo. 

So we have 

X!! E[LN ifk(X(n)(tk, x))iPto det J(n)(tk, x)dx] 11Pto 

~ CT( [ if(x)i~dx)lfpo IT ( [ ifk(x))iPtodx)lfp~o 
JRN k=l JRN 

Letting n--+ oo, we have our assertion. 1 
Now let D be a bounded domain in RN and pi : RN --+ R, j = 1, 2, 

be C2 functions satisfying the following assumptions (F1),(F2), further­
more. 
(F1) For xED and i = 1, ... , d, 

N 
"'"' . a 1 L.Jaf(x) a iF (x) = 0. 
j=l X 

(F2) inf{det(VFi(x) · VFi(x))i,j=1,2i xED}> 0. 
Then we have the following 
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Lemma 4. For a.e.x, 

P(X(t,x) E D,F(X(t,x)) = 0 for some t > 0) = 0. 

Here F = (Fl,F2): RN ~ R2. 

Proof. Let 

r(s,x) = inf{t ~ s;X(t,x) E De} 1\ (s + 1), 

Also, let 

p(x,s) = P(F(X(t,x)) = 0 for some t E [s,r(s,x))), 

Then we see that 

P(X(t, x) ED, F(X(t, x)) = 0 for some t > 0) ~ L p(x, r), 
rEQ+ 

where Q+ is the set of positive rational numbers. Let V(m) = {x E 

RN; ixl ~ m}, m ~ 1. Let us define random variables Zr,m, T > 0, 
m ~ 1, and constant cl by 

Zr,m =sup{ it- si-1/ 3 IX(t, x)- X(s, x)l; 0 ~ s < t ~ T, x E V(m)}, 

and 

Then we see that P(Zr,m < oo) = 1 (cf. Kunita[2]). By the assumtion 
(F1), we see that 

So we see that 

t E [s,r(s,x)),s ~ O,x ERN, 

and 

t, s E [0, T], x E V(m). 
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Also, by the assumption (F2), we see that there is a constant C2 > 0 
such that 

l1A(F(x))dx :5 C2 JAJ 

for any Borel set A in R 2 , where JAI denotes the area of A. 
Let !.lt,n,k = [-C1n-1,C1n-1] x [-£C1n-113 ,£C1n-113], f,n 2: 1, 

k = 1, ... , n. Then we have for any f 2: 1, 

[ dxP(F(X(t, x)) = 0 for some t E [s, T(s, x)), Zs+l,m :5 £) 
Jv(m) 

:5 t { dx P(X(s, x) ED, X(s + (k- 1)/n, x) ED, 
k=l Jv(m) 

F(X(s + (k- 1)/n, x)) E !.lt,n,k) 

= tE[i dx1v(m)(x)1v(X(s,x)) 
k=l RN 

1v(X(s + (k -1)/n,x))1f}.l,n,k(F(X(s + (k -1)/n,x)))] 

:5 C ~ JV(m)JlflOJDJlflO(l1f}.l,n,k (F(x))dx)4f5 

::; CC2nJV( mW/10 JDJlfl0(4C?£n -4/3)4/5. 

Here C is the constant in Lemma 3 for T = s + 1, p0 = p1 = 10 and 
p3 = 5/4. Since n 2: 1 is arbitrary, we see that 

{ dxP(F(X(t,x)) = 0 for some t E [s,T(s,x)),Zs+l,m :5 f)= 0, 
Jv(m) 

f 2: 1. 

This implies that JRN p(x, s) = 0, s > 0. 
Therefore we have our assertion. I 

Corollary 5. Suppose moreover that x 0 E (D)c, O"i, i = 0, ... , d, are 
smooth around x 0 and that dimLie[%t- V0 , Vi, ... , Vd](O,xo) = N + 1. 
Here 

and 

d . 8 
Vi(x) = LO"f(x) 8xi' 

j=l 
i = 1, ... ,d, 

d 1 d N 8 j 8 
'"' . '"''"' k (}". Vo(x) = L.)~(x)- 2 ~ ~ O"i (x) 8x~ (x)) 8xi' 
j=l i=lk=l 
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Then 

P(X(t, x 0 ) ED, F(X(t, x0 )) = 0 for some t > 0) = 0. 

Proof. Let U be an open neighborhood of x0 such that O"i, i 
0, ... , d, are smooth around [J and that [J n tJ = 0. Let r = inf{ t > 
0; X(t, x 0 ) E uc}. Then we see that 

P(X(t, x 0 ) ED, F(X(t, x 0 )) = 0 for some t > 0) 

00 1 1 ::; L P(X(t, xo) ED, F(X(t, xo)) = 0 for some t > -, r > -) 
n=l n n 

00 1 1 1 ::; L P(X( -, xo) E dx, r > - )P(X(t, x) ED, F(X(t, x)) = 0 
n=l u n n 

for some t > 0). 

However, by [3], we see that P(X(~, x0 ) E dx, T > ~) is absolutely 
continuous. So by Lemma 4, we have our assertion. 1 

§3. Proof of Theorem 1 

Since the proof is similar, we prove Theorem 1 in the case that D = 

{x = (x 1 , ... ,xd) E Rd; x 1 < 0} C Rd, and <I>(v,x) = (-v 1 ,v2 , ..• ,vd) 
for v = ( vl, v2 , •.. , vd) and x E aD. In general, if we take a double 
cover of De and change the coordinate functions, we can apply a similar 
proof. Let aij : Rd ---> R, i, j = 1, ... d, be bounded Lipschitz continuous 
function such that aij(x) = aji(x), x E Rd and that there are positive 
constants C0 , C1 such that 

d 

Col~l 2 ::; L:aij(x)~i~j::; C1l~l 2 , 
i,j 

Let b: R 2d---> Rd be a bounded measurable function. 
Let L 0 be a second order linear differential operator in R 2d given by 

d .a 1 d .. a2 d. a 
L0 = ~v'-a . +- ~ a'1 (x)-a ·a . + ~b'(x,v)-a . L...J x• 2 L...J v• vJ L...J v• 

i=l i,j=l i=l 

Then Theorem 1 is somehow equivalent to the following Theorem. 
So we prove this Theorem. 
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Theorem 6. Let (x0 ,v0 ) E (.fJ)c x Rd, and suppose that aii, i,j = 
1, ... , d, are smooth around x 0 . Then there exists a unique probability 
measure J.L over wd satisfying the following conditions. 
(1) J.L(w(O) = (xo, vo)) = 1. 
(2) J.L(w(t) E De x Rd, t E [0, oo)) = 1. 

(3) For any f E C(f((.tJ)c X Rd), {f(w(t)) - J; Lof(w(s))ds; t ~ 0} is 
a martingale under J.L(dw). 
(4) J.L(1{o}(x1 (t))(v1(t) +v1 (t-)) = 0, t E [O,oo)) = 1 and 

J.L(vi(t) is continuous in t E [0, oo), i = 2, ... , d)= 1. 

Proof. Let a,ii: Rd-+ R, i,j = 1, ... d, be given by 

( 1 2 d) Rd x=x,x, ... ,x E . 

Let Ji : R 2d-+ R, i = 1, ... d, be given by 

and 
-i i 1 2 d . b (x) = b (lx I, x , ... , x ), t = 2, ... , d 

for x = (x1 , x2 , ... , xd) E Rd. Let Lo be second order linear differential 
operators in R 2d given by 

- L:d . a 1 I:d .. a2 L:d -· a 
L0 = v'-a . +- a'3(x)-a ·a . + b'(x,v)-a .. 

x' 2 v' vJ v' 
i=1 i,j=1 i=1 

Then by transformation of drift (cf. Ikeda-Watanabe[1]), we see that 
there is a unique probability measure v on C([O, oo ); R 2d) such that 

v(w(O) = (xo, vo)) = 1 and that {f(w(t))- J; L0 f(w(s))ds; t ~ 0} is a 
martingale under v(dw) for any f E C(f(R2d). 

Let t(w) = inf{t > 0; x 1 (t) = O,v1(t-) = 0}. Then by Corollary 5 
and Girsanov's transformation, we see that v(t(w) = oo) = 1. Let 

t E [O,oo), 

and 
d+ 

V(t,w) = dtX(t,w), t E [0, oo). 

Let J.L is the probability law of (X(·,w), V(·,w)) under v. Then we see 
that J.L satisfies the conditions (1)-(4). So we see the existence. 

Now let us prove the uniqueness. Let J.L be a probability measure as 
in Theorem. Let ~(w) = inf{t > 0; x 1 (t) = O,v1 (t-) = 0}. Also, let us 
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define stopping times Tk : W0 ---. [0, oo], k = 0, 1, 2, ... , inductively by 
To(w) = 0 and 

- d w E W , k = 0, 1, .... 

Then we see from the assumption ( 4) that if Tk ( w) < ~ ( w), then Tk ( w) < 
Tk+t(w) for J.L-a.s.w. Also, it is easy to see that ~(w) :::; supkTk(w), 
wEWd. 

For any c > 0 and k = 0, 1, 2, ... , let 

and 

al(w) = inf{t > aZ(w); x 1 (t) < c/2}, 

Then we see from the assumption (3) that 

- d w E W , k = 0, 1, .... 

t/\u 1 

f(x(t 1\ aD, v(t 1\ at))- f(x(t 1\ aZ), v(t 1\ aZ)) -1 k Lof(x(s ), v(s) )ds 
tACT~ 

is a bounded continuous martingale for any f E C[f (R 2d). 
Now let 

X(t,w) 

{ x(t), 
= (-x1 (t), x2 (t), ... , xd(t)), 

V(t,w) 

{ v(t), 
= (-v1(t),v2(t), ... ,vd(t)), 

t E [Tk(w), Tk+ 1(w)), if k is even, 
t E [Tk(w),Tk+t(w)), if k is odd, 

t E [Tk(w), Tk+t(w)), if k is even, 
t E [Tk(w), 7"k+1 (w)), if k is odd. 

Then we can see that (X(t 1\ ~), V(t 1\ ~)) is continuous in t for J.L-a.s.w. 
Also, we see that 

ti\CT 1 

J(X(tAaD, V(tAaD)- J(X(tAa2), V(tAa2))-1 k Lof(X(s), V(s))ds 
ti\CT~ 

is a continuous martingale for any f E C[f (R 2d). 
Therefore we see that 
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is a continuous martingale for any f E C0 (R2d). So we can conclude 
that 

f(X(t "~), V(t "~)) -1t"~ Lof(X(s), V(s))ds 

is a continuous martingale for any f E 00 (R 2d). 
Therefore we see that the probability law of (X(·/\~), V(·/\~)) under 

J-L is the same of w(· 1\ {) under v, by the argument of shift of drift and 
the fact that a strong solution of stochastic differential equation with 
Lipschitz continuous coefficients is unique. So we see that J-L(~(w) 
oo) = 1. Since we see that 

and 
d+-1 -2 -d 

v(t) = ( dt IX (t)j, V (t), ... , V (t)), t E [0, ~), 

we see the uniqueness. 
This completes the proof. 

§4. Proof of Theorem 2 

We will make some preparations to prove Theorem 2. 

Proposition 7. LetT > 0. Let A0 be the set of w E D([O, T); R) 
for which w(O) = 0, w(T-) ~ 1, and w(t) is non-decreasing in t. Then 
A0 is compact in V'((O, T), dt), p E (1, oo), and its cluster points are in 
D([O, T); R). 

Proof. Suppose that Wn E A0 , n = 1, 2, .... Then we see that 
wn(t) E [0, 1], t E [0, T), n ~ 1. So taking subsequence if necessary, we 
may assume that {wn(r)}~=l is convergent for any r E [O,T) n Q. Let 
w(r) = limn-+oo wn(r), r E Q, and let w(t) = limr!t w(r), t E [0, T), and 
w(T) be arbitrary such that suptE[O,T) w(t) ~ w(T) ~ 1. Then we see 
that w E D([O, T); R) and w is non-decreasing, and that wn(t) --+ w(t), 
t E [0, T), if tis a continuous point of w. So we see that Wn --+ w, n --+ oo, 
in V'((O, T), dt). 

This completes the proof. 1 
We have the following as an easy consequence of Proposition 7. 

Corollary 8. LetT > 0. Let A be the set of w E D([O, T); Rd) for 
which w(O) = 0 and the total variation of w is less than 1. Then A is 
compact in V'((O,T);Rd,dt), p E (1,oo), and its cluster points are in 
D([O, T); Rd). 
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Now let us prove Theorem 2. Let 

Then we have 

Hf = ~lvol 2 + {tV/'· a(x;)dBs + tV:.>.· b(X;, Vs>.)ds 
2 lo lo 11t +- trace(a(x;)*a(x;))ds. 

2 0 

So we see that for any p E [2, oo) there is a constant C independent 
of >. such that 

~ C(lvoi 2P + 1 + 2PI2TE[ sup (Hf)P] 112). 
tE[O,T] 

So we see that 

(1) sup E[ sup (Ht>.)P] < oo, 
A>O tE[O,T] 

Therefore we see that 

supE[ sup IV/IPJ < oo, 
>->O tE[O,T] 

p E [1, oo). 

p E [1, oo). 

So we see that {Hf}tE[O,oo), and {Xf}tE[O,oo)' >. ~ 0, are tight in C. 
Moreover, we see that 

(2) E[ sup U(Xf)P] .....,. 0, >......,. oo, 
tE[O,T] 

Let us take an c E (0, co) such that 

p E [1, oo). 

Co= sup{IV'"Uo(x)l- 1 ; dis(x,8D) ~ c} < oo. 

Let r.p E C0 (Rd), such that 0 ~ r.p ~ 1, r.p(x) = 1, if dis(x, 8D) < c/3, 
and r.p(x) = 0, if dis(x; 8D) > c/2. Let Do= {xED; dis(x, 8D) > c/4}, 
and letT= T>. = inf{t > 0; Xf E D 0 }. Then we see by Equation (2) 
that 
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for any T > 0. Let A;, t 2:: 0 be a non-decreasing continuous process 
given by 

t/\T). 

A;= -.X 1 cp(X;')p'(Uo(X;'))IVUo(X_;)I2ds, t:;::: 0. 

Note that AS = 0. Since we have 

t/\T). 

=A;+ 1 cp(X;)V2U0 (X_;)(V/, V/)ds 

ti\T>. 

+ 1 cp(X;)(VU0 (X;') · b(X;', V/))ds 

t/\T). 

+ 1 cp(X;)(VU0 (X;))*a(X;)dB8 

t/\T). 

+ 1 (Vcp(X;) · ~A)(VU0 (X;) · V/)ds, 

we see that 
supE[(A~)PJ < oo, p E [1, oo). 
).>0 

Since we have 

TI\T). TI\T). ( ( A)) 
[ .XU(XA)dt = [ p Uo xt IVU. (XA)I-2dAA 

lo t lo IP'(Uo(Xr))l 0 t t' 

we see that 
TI\T). P(1 .XU(XtA)dt > 8) 

:::; P( sup U(Xf) > TJ) + P(C5A~ sup I ~((s))l > 8) 
tE[O,TJ p-1(7J):5s<O P S 

for any 8, TJ > 0. So we see that 

(3) 

for any 8 > 0. 
Also, we see that 

TTA + trA,O + trA,l 
vti\T). = Vo Vt Vt ' 
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where 

and 
[tAT~ [tAT 

~A,l = lo a-(x;)dBs + lo b(x;, V..A)ds. 

So we see that the total variation of ~A,O, t E [0, T], is dominated by 

GoA~. Also, {~A'0 }tE[O,oo) is tight in C. 
Then by Corollary 8 it is easy to see that {~A hE[O,T) is tight in 

LP((O, T); Rd) and its limit process is in D([O, T); Rd) with probability 
one for any T > 0 and p E (1, oo). 

Let FE C""(Rd x Rd; Rd) be given by 

F(x,v) = cp(x)(v-IV'Uo(x)I-2 (V'Uo(x)·v)V'Uo(x)), 

Then by Ito's lemma it is easy to see that {F(Xf, ~A)}tE[O,oo), >. E 

(O,oo), is tight inC, and that {!(Xf, ~A) - J~ L0 f(X;, V/)ds} is a 
continuous martingale for any>. E (0, oo) and f E C0 ((lJ)c x Rd). 

So we see that there are stochastic processes {(Xt, V't)}tE[O,oo) and 
{Ht}tE[O,oo) and a subsequence {.An}~= 1 , An ~ oo, n ~ oo, such that 

{((X;'n, ~An),H;'n)}tE[O,oo) converges in law to {((Xt, Vi),Ht)}tE[O,oo) 
in Wd X C with respect the metric function dis + disc. 

Then we see that {!(Xt, Vi) - J~ Lof(Xs, V,)ds hE[O,oo) is a continu­
ous martingale for any f E C0 ((.D)c X Rd), and that {F(Xt, V't)}tE[O,oo) 
is a continuous process. Also, we see by Equation (3) that 

a.s. 

for any T > 0. So we see that {IVil 2 hE[O,oo) is a continuous process. 
Therefore we have 

P(lav(Xt)(vt- Vi-- 2(n(Xt) · Vi-)n(Xt)) = 0, t E [O,oo)) = 1. 

So we see that the probability law of {(Xt, V't)}tE[O,oo) in W is J1, in 
Theorem 1. 

This complets the proof of Theorem 2 
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