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Stochastic Newton Equation
with Reflecting Boundary Condition

Shigeo Kusuoka

§1. Introduction

Let D be a bounded domain in R? with a smooth boundary and
n(z), z € 8D, be an outer normal vector. Let a¥/ : R? —» R, 4,5 =
1,...d, be smooth functions such that a”’(z) = a?(z), z € R%. Also,
let ¥ : R?¢ - R, i = 1,...d, be bounded measurable functions. We
assume that there are positive constants Cp, C; such that

Col¢|? < Z i(¢)tit; < Cilel?,  z,€ € RY

1,§=1
Let Lo be a second order linear differential operator in R2¢ given by

d 2 d

Ly ——Zv 8 ity Z a“(az)%?—a-q—);vLZbi(az,v)B%
i=1

Let W? = C([0, 00); R%) x D([0, 00); R%). Now let & : R*x8D — R
be a smooth map satisfying the following .
(i) ®(-,z) : R? — R4 is linear for all z € 8D.
(ii) ®(v,z) = v for any = € 8D and v € T,(9D), i.e., ®(v,z) = v if
z € OM, v e R? and v - n(z) = 0.
(iii) ®(®(v,z),z) = v for all v € R? and z € 8D.
(iv) ®(n(z), z) # n(z) for any z € 8D.

The main theorem in the present paper is the following.

Theorem 1. Let (zo,v0) € (D) x R?. Then there ezists a unique
probability measure u over we satisfying the following conditions.
(1) w(w(0) = (zo,v)) = 1.
(2) u(w(t) € D¢ x R4t € [0,00)) = 1.
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(3) For any £ € C((D)* x RY, {£(w(®)) — J¢ Lof(w(s))ds;t > 0} is
a martingale under p(dw).

(4) p(lap(z(t))(v(t) — @(v(t-),z(t))) =0 for all t € [0,00)) =1.

Here w(-) = (z(-),v(:)) € W<

Now let us think of the following Stochastic Newton equation

dX} = V)dt
AV} = o(XMdB(t) + (X}, V) — AVU(X}))dt

A A
XO = T, ‘/0 = 0.

Here B(t) is a d-dimensional Brownian motion, o € C®(R%; R%),
b: R? — R? is a bounded Lipschitz continuous function, and U €
Cse (RY).

We assume the following also.
(A-1) There are positive constants Cg, C; such that

Colé)? < lo()¢f* < Cil¢f?, =z, £ e R%

(A-2) Let D = {z € R% U(z) > 0}. Then there are ¢g > 0, Up €
Ce° (Rd; R) and a non-increasing C*-function p : R — R satisfying the
following.
(1) z € 9D, if and only if Up(z) = 0 and dis(z, 8D) < &o.
(2) VUo(z) #£ 0, z € 8D.
(3) p(t) =0,t >0, p(t) >0, t <0, and U(z) = p(Up(z)) for z € R4
with dis(z,dD) < eg.
/

(4) lim 7() = —00.

t10 p(t)

Now let dis be a metric function on W given by

d;s(wo, wl)

= 3T A g o) =210 + (o0 = )

for w;(-) = (z:(-), v%(")) € W?, i =0, 1.
Then we will show the following.

Theorem 2. Let v, X € [1,00), be the probability law of (X}, V;}),
t € [0,00), on Wy, and p be the probability measure given in Theorem 1
in the case when ®(v,z) = v — 2(v - n(z))n(z), v € R?, = € 8D. Then

v conveges to u weakly as X\ — oo as probability measures on (Wo, st)
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§2. Basic lemmas

Let (22, F, {Ft}1e0,00), P) be a filtered probability space, and B(t) =
(B(t),...,B%t)) be a d-dimensional Brownian motion. Let B°(t) =t,
t €[0,00). Let 0; : RN - RY i=0,1,...,d, be Lipschitz continuous
functions, and let X : [0,00) x R¥ x © — R¥ be the solution to the
following SDE

d t
X(t,x) =z + Z/o oi(X (s, x))dB(s), t>0, ze RV,

We may assume that X (¢, z) is continuous in (¢, ) (cf. Kunita [2]).
Then we have the following.

Lemma 3. For anyT > 0 and pg,p1,--.,Pm € (1,00), m > 1, with
S oPr ! =1, there is a constant C > 0 such that

B[ T (Xt )lda] < C ]I i oo gvoan
- k=0

forall0 =ty <t; <...<tym <T, and fr € CRN), k=0,1,...,m
Proof. From the assumption, there is a Cy > 0 such that
|0',,(.’E)—-0',(y)| Scoll"_y|, $,'y€RN

Let ¢ € C&(RYN) such that [ (x)dz = 1. Let on(z) = nNop(nz),
z € RY, forn > 1, and let 01(") = @¢n %04, 1 =0,...,d. Then O'Z(") €
C®(RN;RN). Let
W) = o™i (z),
geRY, j,k=1...,N,i=0,1,...,d, n> 1.

Then we see that |WZ(Z)’(:1:)] < Cp, z € RV. Let X(™ : [0,00) x RN x
Q — RY be the solution to the following SDE

d t
XMt z) =z + E / az-(") (X™)(s,z))dB(s), t>0, z RV,
5 Jo

Then we may think that X(™(¢,.) : R¥ — RY is a diffeomorphism
with probability one. Let J,gn)’J (t,z) = %X(")’j(t,m). Let W(z) =
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(WS @)k jm,.v and JO(t,2) = (I (6,2))ks=1,..,x- Then the
N x N-matrix valued process J(™)(t, ) satisfies the following SDE

d t
IO a) = Iy + Y [ WK, 5 0, 2)dBi(s).
— Jo

Also, we see that
JM (¢, £)~1

—Iy- Z / T™)(s,5)= W™ (X (5, 7))dBy(s)

i=0

1 t

2 (n) 1y () [y (n) 2
+2iz=1/0.] (s,2) W, (X\"™ (s, x))ds.

Then we see that
Cr = sup{E[det J™(t,z)"P*1]; t € [0,T],z € R¥,n > 1} < 0.

So we have

B[, L1 2]

<E[/ | fo(x) |P HdetJ(")(tk z)” pO/Pk)dx]l/po
k=1

<[] E[/ | (X ™ (tx, z))[P* det T (tx, z)da] /P
k=1 RN

m
<Or([ 1f@gda) o TL([ _ \futa))prda)i/os
Letting n — 0o, we have our assertion. 1
Now let D be a bounded domain in RY and F/ : RY - R, j =1,2,
be C? functions satisfying the following assumptions (F1),(F2), further-
more.
(Fl) Forx € Dandi=1,...,d,

(F2) inf{det(VF'(z) - VFI(z)); j=1,2; = € D} > 0.
Then we have the following
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Lemma 4. For a.e.z,
P(X(t,z) € D,F(X(t,z)) =0 for somet > 0)=0.

Here F = (F1,F?): RN — R2.

Proof. Let

7(s,z) = inf{t > 5; X (t,z) e D°} A (s +1), zeRN,s>0.
Also, let
p(z,s) = P(F(X(t,z)) = 0 for some t € [s,7(s,))), reRM,s>0.
Then we see that

P(X(t,z) € D,F(X(t,z)) =0 for some t > 0) < Z p(z,r),
TEQ4

where Q. is the set of positive rational numbers. Let V(m) = {z €
RY; |z| < m}, m > 1. Let us define random variables Z7,,, T > 0,
m 2> 1, and constant C; by

Z7,m = sup{|t — s|_1/3|X(t, z) - X(s,2)]; 0<s<t<T, z€V(m)},
and

d
G = sup{loo(w)IIVFl(w)le% > IVzFl(w)IIag(fv)i2+IVF2(-%‘)|; z € D}.

i=1

Then we see that P(Zr, < 00) =1 (cf. Kunita[2]). By the assumtion
(F1), we see that

FY(X(t,2)) = F'(z) + / (00(X (5,2))VF* (X (5,))

d
+y %vz FY(X(s,2))(0:(X (s, %)), 0:(X (s, )))ds.

=1

So we see that
|FY(X(t,z))-F'(X(s,z))| < Cilt—s|,  te[s,7(s,z)),5s >0,z € R",
and

|F2(X(t, a:))—Fz(X(s,m))l < C’lZT,m|t—s|1/3 t,s € [0,T),z € V(m).
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Also, by the assumption (F2), we see that there is a constant C; > 0
such that

/ 1(F(z))dz < ColA|
D

for any Borel set A in R?, where |A| denotes the area of A.
Let Agnk = [-Cin~ 1, Cin~ 1] x [—£C1n~ Y3, £C1n~ 3], £,n > 1,
k=1,...,n. Then we have for any £ > 1,

/ dzP(F(X(t,z)) =0 for some t € [s,7(s,%)), Zss1,m < £)
V(m)

< ,; /V ., 4 POX(5,2) € D, X(s 4 (s~ )/m,2) € D,

F(X(s+ (k—1)/n,z)) € Agnk)
-3 5 /R  daly oy (2)1p(X (5,2))
1p(X(s + (k = 1)/n, 2))1a,,, . (F(X (s + (k = 1)/n, 2)))]

= 02"2 |V(m)ll/1°|Dll/1°(/ 1o, (F(x))dz)*/?
D

k=1
< CCyn|V (m)|Y/ 10| D|M/10(4C2m—4/3)4/5,

Here C is the constant in Lemma 3 for T = s + 1, pg = p; = 10 and
ps = 5/4. Since n > 1 is arbitrary, we see that

dzP(F(X(t,x)) = 0 for some t € [s,,7(s,z)), Zst1,m <) =0,
V(m)
£>1.

This implies that [;n p(z,s) =0, s > 0.
Therefore we have our assertion. 1

Corollary 5. Suppose moreover that xo € (D)¢, 05,1 =0,...,d, are
smooth around g and that dim Lie[% —Vo,V4,...,V4](0,z9) = N + 1.
Here :

d
V,(w)=20"3($)%7, 1':1?"'7d;
—

and

4 L
Vo(@) = Y (@4(@) - 5 3 Yok @) s (@) 5

i=1 k=1
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Then
P(X(t,zo0) € D, F(X(t,z0)) = 0 for some t > 0) = 0.

Proof. Let U be an open neighborhood of zy such that o;, 1 =
0,...,d, are smooth around U and that UN D = 0. Let 7 = inf{t >
0; X (t,z0) € U¢}. Then we see that

P(X(t,zo) € D, F(X(t,z0)) = 0 for some t > 0)

o0
1 1
< ZP(X(t,xo) € D,F(X(t,z0)) = 0 for some t > T E)

n=1
ot 1 1
< /U P(X(zm0) € dz,7 > )P(X(t,x) € D, F(X(t,)) = 0
n=1
for some t > 0).

However, by (3], we see that P(X(L,z0) € dr,7 > 1) is absolutely
continuous. So by Lemma 4, we have our assertion. i

§3. Proof of Theorem 1

Since the proof is similar, we prove Theorem 1 in the case that D =
{z = (z',...,2%) € R4 z! <0} C R%, and ®(v,z) = (—v},2?%,...,v%)
for v = (v1,v?,... ,v9) and z € 8D. In general, if we take a double
cover of D¢ and change the coordinate functions, we can apply a similar
proof. Let ¥ : R4 — R, 4,5 = 1,...d, be bounded Lipschitz continuous
function such that a(z) = a’*(z), z € R? and that there are positive
constants Cy, C; such that

d
Colé? < Y a¥(z)&&; < Culéf?,  z,6€ R
i’j

Let b: R?¢ — R? be a bounded measurable function.
Let Lg be a second order linear differential operator in R?? given by

8 1K 82 d . E)
Lo=) v'gi+3 D> a/@5m5+ ‘;bz(m’”) e
i=1 i,j=1 i=

1=

Then Theorem 1 is somehow equivalent to the following Theorem.
So we prove this Theorem.
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Theorem 6. Let (z9,v5) € (D) x R, and suppose that a'/, i,j =
1,...,d, are smooth around xo. Then there exists a unique probability
measure pu over W¢ satisfying the following conditions.

(1) p(w(0) = (20,v0)) = L.

(2) u(w(t) € D° x R4, t € [0,00)) = 1.

(3) For any f € C§&((D)° x RY), {f(w(t)) — [y Lof(w(s))ds;t > 0} is
a martingale under p(dw).

(4) u(1goy(=z' (1)) () +v'(t-)) =0, t € [0,00)) =1 and

p(vi(t) is continuous in t € [0,00), 1 =2,...,d) = 1.
Proof. Let @7 : R - R, 4, = 1,...d, be given by
a"(x) = a"(|zt],2?,...,z%), r = (z,2%...,2%) € R%
Let b : R - R, i=1,...d, be given by
bl(z) = sgn(z')b*(|z!|, 22, . .., z%),

and _ _
bi(z) = bi(|z!|,22,...,2%), i=2,...,d

for z = («!,22,...,2%) € R% Let Lo be second order linear differential
operators in R?? given by

R T =y & Zd - 3
L= Zvlaxi t3 an(m)aviavj * 1 b’(x,v)%{_
1 i=

i=1 i,j=

Then by transformation of drift (cf. Ikeda-Watanabe[1]), we see that
there is a unique probability measure v on C([0,00); R??) such that
v(w(0) = (x0,v0)) = 1 and that {f(w(t)) — fot Lof(w(s))ds;t > 0} is a
martingale under v(dw) for any f € C$°(R?*¥).

Let £(w) = inf{t > 0; z'(t) = 0,v(t—) = 0}. Then by Corollary 5
and Girsanov’s transformation, we see that v(£(w) = co) = 1. Let

X(t,w) = (lz' (@)}, 2*(®),...,2%(1)),  t€[0,00),

and
dt
V(t,’LU) = Et—X(t,'LU), te [0,00)

Let p is the probability law of (X (-,w), V(-,w)) under v. Then we see
that u satisfies the conditions (1)-(4). So we see the existence.

Now let us prove the uniqueness. Let u be a probability measure as
in Theorem. Let £(w) = inf{t > 0; zl(t) = 0,v'(t—) = 0}. Also, let us
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define stopping times 7 : Wy — [0,00], k = 0,1,2,..., inductively by
To(w) = 0 and

Te+1(w) = inf{t > 7 (w); «*(t) = 0}, weW? k=0,1,....
Then we see from the assumption (4) that if 7 (w) < &(w), then 7 (w) <
Tre+1{w) for p-a.s.w. Also, it is easy to see that {(w) < supy 7 (w),
w € W,

Foranye >0and k =0,1,2,..., let

op(w) = inf{t > 7 (w); z'(t) > €},
and

or(w) = inf{t > op(w); z'(t) < ¢/2}, weW? k=0,1,....

Then we see from the assumption (3) that

1

" Lof(a(s), v(s))ds

tAo

F(a(t Aot),u(tAob)) — Fa(tAol),u(tAad) - /

(1]
tAoy

is a bounded continuous martingale for any f € C3°(R?%).

Now let
X(t,w)
_ { z(t), t € [Te(w), Te+1(w)), if k is even,
(—z'(t),z2(t), ..., z%(t)), t € [1e(w), Te+1(w)), if k is odd,
V(t, w)
_ { v(t), t € [mi(w), Teq1(w)), if k is even,
(—vi(t),v2(t),...,v%(t), t€ [r(w), Tks1(w)), if k is odd.

Then we can see that (X(t A £€), V(t A €)) is continuous in ¢ for p-a.s.w.
Also, we see that
tAoy

F(X(tAaR), V(tAa)—F(X (tAaR), V (tAaR))~ / " Lof(X(s), V(s))ds

tAo?

is a continuous martingale for any f € C$°(R24).
Therefore we see that

FXEATE4), VEATeq1)) — FXEA T, V(EATR))
_ /t N Eof(X(s), V(s))ds

ATk
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is a continuous martingale for any f € C5°(R??). So we can conclude

that
EAE

FXENE,V(ENE) - A Lof(X(s),V(s))ds

is a continuous martingale for any f € C3°(R24).

Therefore we see that the probability law of (X(-A€), V(- A¢)) under
p is the same of w(- A £) under v, by the argument of shift of drift and
the fact that a strong solution of stochastic differential equation with
Lipschitz continuous coefficients is unique. So we see that p(é(w) =
0o) = 1. Since we see that

z(t) = (IX'(), X*¢),..., X%(t),  te[0,8),

and
ot = (IR WL, 7). tepe,

we see the uniqueness.
This completes the proof.

§4. Proof of Theorem 2

We will make some preparations to prove Theorem 2.

Proposition 7. Let T > 0. Let Ay be the set of w € D([0,T);R)
for which w(0) =0, w(T—) < 1, and w(t) is non-decreasing in t. Then
Ag is compact in LP((0,T),dt), p € (1,00), and its cluster points are in
D([0,T); R).

Proof. Suppose that w, € Ag, n = 1,2,.... Then we see that
wy(t) € [0,1], t € [0,T), n > 1. So taking subsequence if necessary, we
may assume that {w,(r)}52, is convergent for any r € [0,T) N Q. Let
W(r) = limp 00 wn(r), r € Q, and let w(t) = lim, |, w(r), t € [0,T), and
w(T) be arbitrary such that sup,ciq 1) w(t) < w(T) < 1. Then we see
that w € D([0,T);R) and w is non-decreasing, and that w,(t) — w(?),
t € [0,T),if t is a continuous point of w. So we see that w,, — w, n — oo,
in L?((0,T), dt).

This completes the proof. 1

We have the following as an easy consequence of Proposition 7.

Corollary 8. Let T > 0. Let A be the set of w € D([0,T); R?) for
which w(0) = 0 and the total variation of w is less than 1. Then A is
compact in LP((0,T); R%,dt), p € (1,00), and its cluster points are in
D([o,T); R9).
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Now let us prove Theorem 2. Let
1
HY = U(X2) + 3V, t>o0.

Then we have
1 ¢ ‘
Hy = < [vo[? +/ V) - o(X2)dB, +/ VX b(X),V,))ds
o 0
1t
+ -2—/ trace(a(X))* o (X2))ds.
0

So we see that for any p € [2,00) there is a constant C independent
of X such that

T
E[ sup (HMP) < C(luol™ +1+ E] / VRAPdt)
te[0,T) 0

< Ol + 1+ 2p/2TE[t:E3%](H3)”]1/2)-

So we see that

(1) sup E[ sup (H})?] < oo, p € [1,00).
A>0  tel0,T)

Therefore we see that

sup B[ sup |VAPP] <oo,  pe[L,00).
A>0  te[0,T)

So we see that {Ht)‘}te[o,oo)a and {X}}ejo,00), A > 0, are tight in C. .
Moreover, we see that

(2) E[ sup U(X})P] =0, X\ — oo, p € [1,00).
t€(0,T] :

Let us take an € € (0, &) such that
Co = sup{|VUo(z)|™*; dis(z,0D) < €} < oo.

Let ¢ € C°(RY), such that 0 < ¢ < 1, ¢(z) = 1, if dis(z,dD) < £/3,
and p(z) = 0, if dis(z; D) > /2. Let Dy = {z € D; dis(z,8D) > e/4},
and let 7 = 7* = inf{t > 0; X € Dy}. Then we see by Equation (2)
that

P(t* <T) -0, )\— oo,
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for any T > 0. Let A}, t > 0 be a non-decreasing continuous process
given by

tATA
A =x [ P CIVU s, 20,
0

Note that A} = 0. Since we have

P(Xrx) (VUO(XD ) - Vingr) = 0(X3)(VU(X3) - Vi)

tA

tATA
Sy / P(XN)V2U(XN) (V2 V) ds
0
tATA
+ / P(XX)(VU(X2) - b(X2, V2))ds
0
t/\‘rA
+ [ (T2 o(X2)dB,
0

+ / T (To(XD) - VA (VUR(X2) - Vs,

we see that
sup E[(A})P] < oo, p € [1,00):

A>0
Since we have

TAT> TAT> A
Uo(X3)) _
AU(XN)dt = / PWo(X7)) oy (x> 2440
[ dvea= [ R U0

we see that

TAT>
P( / AU (X)dt > 6)
0

< P( sup U(X})>n)+P(C24A} sup ”,(s) > 6)
te[0,T] p-1(m<s<o |0'(5)|
for any 6,7 > 0. So we see that
TATY 1
(3) P(/ |Ht’\—§|Vt"|2|dt>6) -0, A—>oo
0

for any 6 > 0.
Also, we see that

A 2,0 Al
Vs = o0+ VM0 + VM,

t
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where

tAT
VMO =+ / |VUo(X )|~V Uo(X2)d A,
0

and
tAT> tAT
VM = / o(X2)dB, + / b(X2,V))ds.
0 0

So we see that the total variation of V;°, t € [0,T], is dominated by
CoAY. Also, {V,*}c(0,00) is tight in C.

Then by Corollary 8 it is easy to see that {V;*};e[o,) is tight in
LP((0,T); R?) and its limit process is in D([0,T); R%) with probability
one for any T' > 0 and p € (1, 00).

Let F € C*(R? x R4 RY) be given by

F(z,v) = ¢(z)(v—|VUs(z)|"2(VUs(z)v) VUps(x)), (z,v) € RIxR4,

Then by It6’s lemma it is easy to see that {F(X2, V) }icp,00); A €
(0,00), is tight in C, and that {f(X}, V) =[5 Lof(X2,V})ds} is a
continuous martingale for any A € (0,00) and f € C§°((D)¢ x R9).

So we see that there are stochastic processes {(Xt, V;)}tejo,00) and
{H:}te[0,00) and a subsequence {A\n}52;, An — 00, n — o0, such that
{((X2, V"), H" ) heepo,oo) converges in law to {((Xe, Vi), He) beefo,co)
in W9 x C with respect the metric function dis + disc.

Then we see that {f(X;, Vi) — fy Lof(Xs, Vs)ds}ie[o,00) is & continu-
ous martingale for any f € Cg°((D)° x R%), and that {F(X;, V;) }te(0,00)
is a continuous process. Also, we see by Equation (3) that

T 1
/|Ht——|Vt[2|dt=0 as.
o 2

for any T' > 0. So we see that {|V;|?}¢c[0,00) is a continuous process.
Therefore we have

P(lop(X2) (Vs — Vie — 2(n(Xs) - Vs—)n(X2)) = 0, t € [0,00)) = 1.

So we see that the probability law of {(X:, V;)}iejo,00) in W is p in
Theorem 1.
This complets the proof of Theorem 2
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