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Abstract. 

This paper addresses the problem of approximating random vari­
ables in terms of sums consisting of a real constant and of a stochastic 
integral with respect to a given semimartingale X. The criterion is 
minimization of L 2 -distance, or "least-squares". This problem has 
a straightforward and well-known solution when X is a Brownian 
motion or, more generally, a square-integrable martingale, with re­
spect to the underlying probability measure P. We address the gen­
eral, semimartingale case by means of a duality approach; the adjoint 
variables in this duality are signed measures, absolutely continuous 
with respect to P, under which X behaves like a martingale. It is 
shown that this duality is useful, in that the value of an appropri­
ately formulated dual problem can be computed fairly easily; that it 
"has no gap" (i.e., the values of the primal and dual problems coin­
cide); that the signed measure which is optimal for the dual problem 
can be easily identified whenever it exists; and that the duality is also 
"strong" , in the sense that one can then identify the optimal stochas­
tic integral for the primal problem. In so doing, the theory presented 
here both simplifies and extends the extant work on the subject. 
It has also natural connections and interpretations in terms of the 
theory of ''variance-optimal" and "mean-variance efficient" portfo­
lios in Mathematical Finance, pioneered by H. Markowitz and then 
greatly extended by H. Follmer, D. Sondermann and most notably 
M. Schweizer. 
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§1. Introduction 

Suppose we are given a square-integrable, d-dimensional process 
X = {X(t); 0 ::::;: t ::::;: T} defined on the finite time-horizon [0, T], which 
is a semimartingale on the filtered probability space (n, :F, P), F = 
{:F(t)}o<t<T· How closely can we approximate in the sense of least­
squares~ Biven, square-integrable and :F(T)-measurable random vari-

able H, by a linear combination of the form c + I{{}' dX? Here c is a 
real number and {} a predictable d-dimensional process for which the 
stochastic integral I~{}' dX = Et=l I~ {}idXi is well-defined and is itself 
a square-integrable semimartingale. 

In other words, if we denote by 8 the space of all such processes {}, 
how do we compute 

(1.1) V(c) ~ inf E (H- c -1T {}' dX)
2 

!?E9 0 

if c E lR is given and we have the freedom to choose {} over the class 8 
as above? How do we find 

(1.2) V ~ inf E (H -c-1T {}'dX)
2 

= inf V(c) 
(c,!?)ERxe 0 cEIR 

when we have the freedom to select both c and {}? And how do we 
characterize, or even compute, the process {}(c) and the pair (c, J) that 
attain the infimum in (1.1) and (1.2), respectively, whenever these exist? 
To go one step further: How does one 

{1.3) minimize the variance Var ( H- 1T {}' dX) 

over all{} E 8 as above? Or even more interestingly, how does one 

{1.4) { 
minimize the variance Var ( H - I{{}' dX) } 

over {} E 8 with E [IoT iJ' dX] = J-L 

for some given J-L E lR? 

Questions such as {1.3) and {1.4) can be traced back to the pi­
oneering work of H. Markowitz (1952, 1959), and have been studied 
more recently by Foll.Iiler & Sondermann {1986), Foll.Iiler & Schweizer 
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(1991), Duffie & Richardson (1991), Schill (1992), in the modern con­
text of Mathematical Finance. Most importantly, problems (1.1)-(1.4) 
have received an exhaustive and magisterial treatment in a series of 
papers by Schweizer (1992, 1994, 1995.a,b, 1996) and his collabora­
tors (cf. Rheinlander & Schweizer (1997), [Ph.R.S.] (1998), [DMSSS] 
(1997), as well as Hipp (1993), [G.L.Ph.] (1996), Laurent & Pham 
(1999), Grandits (1999), Arai (2002)). In this context, the compo­
nents Xi(·), i = 1, ... , d of the semimartingale X are interpreted as the 
(discounted) stock-prices in a financial market, and H as a contingent 
claim, or liability, that one is trying to replicate as faithfully as possible 
at time T, starting with initial capital c and trading in this market. Such 
trading is modelled by the predictable portfolio process {}, whose com­
ponent iJi(t) represents the number of shares being held at timet in the 

ith stock, fori= 1, ... ,d. Then J[ iJ'dX = E1=1 f0T iJi(s)dXi(s) cor­
responds to the (discounted) gains from trading accrued by the terminal 
time T, with which one tries to approximate the contingent claim H, and 
one might be interested in minimizing the variance of this approxima­
tion over all admissible portfolio choices (problem of (1.3)), or just over 
those portfolios that guarantee a given mean-rate-of-return (problem of 
(1.4)). 

It turns out that solving the problem of (1.1) provides the key to 
answering all these questions. For instance, if {}(c) attains the infimum in 
(1.1) and c = argmincER V(c), then J ={}(c) is optimal for the problem 
of (1.3); the pair (c, J) is optimal for the problem of (1.2); and the 
process {}(c,.) with cl' = (E[1l'(H)]-E(H) +JL) I (E[11'(1)]-1) is optimal 
for the problem of (1.4). Here 1!' denotes the projection operator from 
the Hilbert space L2 (P) onto the orthogonal complement of its linear 

subspace { J[ {}' dX I {} E e}. 
The problem of (1.1) has a very simple solution, if X is a (square­

integrable) martingale; then every Has above has the so-called Kunita­
Watanabe decomposition 

H = E(H) + 1T ((H)' dX + LH (T), 

where (H E e and LH(·) is a square-integrable martingale strongly 
orthogonal to f~ {}' dX for every {} E 8. Then the infimum in (1.1) 

is computed as V(c) = (E[H]- c)2 + E (LH(T)) 2 and is attained by 

(HE 8, which also attains the infimum V = E (LH(T)) 2 in (1.2). 

In order to deal with a general semimartingale X we develop a sim­
ple duality approach, which in a sense tries to reduce the problem to 
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the "easy" martingale case just described. This approach is the main 
contribution of the present paper. The dual or "adjoint" variables in 
this duality are signed measures Q, absolutely continuous with respect 
toP and with dQjdP E L 2{P), under which X behaves like a martin­
gale {Definition 2.1 and Remark 2.2). A simple observation, described 
in {3.1)-{3.7), leads to a dual maximization problem. The resulting du­
ality is useful because, as it turns out, the dual problem is relatively 
straightforward to solve {Proposition 3.1); its value is easily computed 
as E[1r2 {H- c)] and coincides with the value V(c) of the original prob­
lem {1.1), so there is no "duality gap"; and furthermore the duality is 
"strong", in that one can identify the optimal integrand iJ(c) of {1.1) 
rather easily, under suitable conditions {Theorem 4.1 and Remark 4.1). 
Several examples are presented in Section 5. 

We follow closely the notation and the setting of Schweizer {1996), 
our great debt to which should be clear to anyone familiar with this 
excellent work. Indeed, the present paper can be considered as comple­
menting and extending the results of this work, by means of our simple 
duality approach. 

§2. The Problem 

On a given complete probability space (n, :F, P) equipped with a 
filtration F = {:F(t); 0 $; t $; T} that satisfies the usual conditions, 
consider a process 

{2.1) X(t) = X{O) + M(t) + B(t), 0 $: t $: T, 

defined on the finite time-horizon [0, T] and belonging to the space 
8 2 = S2 (P) of square-integrable d-dimensional semimartingales. This 
means that each Xi{O) is in L2{n, :F{O), P); that each Mi(·) belongs to 
the space M~(P) of square-integrable F-martingales with Mi{O) = 0 and 
RCLL paths; and that we have Bi { ·) = At { ·) - Ai { ·), where At{-) are 
increasing, right-continuous and predictable processes with At(o) = 0 

and E(At(T)) 2 < oo, for every i = 1,··· ,d. We denote by 9 the 
space of "good integrands" for the square-integrable semimartingale 
X = {X(t), 0 $; t $; T}, namely, those F-predictable processes whose 
stochastic integrals with respect to X are themselves square-integrable 
semimartingales: 
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Here .C(X) stands for the space of all JRd-valued and predictable pro­
cesses, whose stochastic integrals 

(2.3) 

with respect to X are well-defined. 

Suppose now we are given a random variable H in the space L2 (P) = 
L2 (!1, F(T), P). The following problem will occupy us in this paper. 

Problem 2.1. Given HE L2 (P), compute 

(2.4) V ~ inf E(H- c- Gr(19)) 2 

(c,.?)ERxe 

and try to find a pair ( c, J) E JR X 8 that attains the infimum, if such a 
pair exists. D 

In other words, we are looking to find the least-squares approximation of 
H, as the sum of a constant c E lR and of the stochastic integral Gr(19), 
for some process 19 E 8. 

This problem has a rather obvious solution, if it is known that the 
random variable H is of the form 

(2.5) 

for some hE lR and (HE 8; because then we can take c = h, J = (H, 
and deduce that V = 0 in (2.4). Now it is a classical result (e.g. Karatzas 
& Shreve (1991), pp. 181-185 for a proof) that every H E L2 (P) can be 
written in the form (2.5), in fact with h = E(H), if X(·) is Brownian 
motion and ifF is the (augmentation of the) filtration Fx generated by 
X ( ·) itself. One can then also describe the integrand ( H in terms of the 
famous Clark (1970) formula, under suitable conditions on the random 
variable HE L2 (P) = L2 (!1,Fx(T),P). Thus, in this special case, we 
can take c = E(H), J = (H, and have V = 0 in (2.4). 

A little more generally, suppose that X(·) E M~(P) is a square­
integrable martingale (i.e., X(O) = 0 and A(·)= 0 in (2.1)). Then again 
it is well-known that every H E L2 (P) admits the so-called Kunita­
Watanabe (1967) decomposition 

(2.6) 

for h = E(H), some (H E 8, and some square-integrable martingale 
LH(·) E M~(P) which is strongly orthogonal to G.(19) for every 19 E 8; 



146 C. Hou and I. Ka.ratzas 

in particular, 

{2.7) v iJ E e. 

Then 

E (H- c- GT(iJ))2 = (h- c)2 + E (GT((H- iJ)) 2 + E (LH (T)) 2 , 

and it is clear that Problem 2.1 admits again the solution c = E(H), 
1J = (H, but now with V = E (LH(T)) 2 in {2.4). 

What happens for a general, square-integrable semimartingale X { ·) E 
S2 (P) ? In view of the above discussion it is tempting to try and "re­
duce" this general problem to the case where X(·) is a martingale. This 
can be accomplished by absolutely continuous change of the probability 
measure P. We formalize this idea as in Schweizer {1996). 

Definition 2.1. A signed measure Q on {n, F) is called a signed 8-
martingale measure, if Q{fl) = 1, Q « P with (dQidP) E L2 {P), and 

{2.8) E [ ~~ · GT(iJ)] = 0, v iJ E e. 

We shall denote by P 8 (e) the set of all such signed e-martingale mea­
sures, and introduce the closed, convex set 

{2.9) V ~{DE L2 {P) I D = (dQidP), some Q E P 8 {8)} 

={DE L2 (P) I E(D) = 1 and E(DGT(iJ)) = 0, V {} E E>}. 

0 

We shall assume from now onwards, that 

{2.10) (equivalently, V # 0 ) . 

Remark 2.1 : The linear subspace GT(e) ~ u: iJ'(s) dX(s) I{} E 

e} of the Hilbert space L2 (P) is not necessarily closed for a general 
semimartingale X(·) {it is, if B{·) = 0 in {2.1), or equivalently if X{-) 
is a square-integrable martingale, since then the stochastic-integral of 
(2.3) is an isometry). For a semimartingale X{·) with continuous paths, 
necessary and sufficient conditions for the closedness of GT(e) have 
been provided by Delbaen, Monat, Schachermayer, Schweizer & Stricker 
[DMSSS] (1997); see also Theorem 2 in Rheinlander & Schweizer {1997), 
as well as Corollary 4 in Pham, Rheinlander & Schweizer [Ph.R.S.] (1998) 
and section 5, equation (5.11) of the present paper, for sufficient con­
ditions. As noted by W. Schachermayer (see Schweizer (1996), p. 210; 
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Lemma 4.1 in Schweizer (2001)), the assumption (2.10) is equivalent to 
the requirement that 

(2.10)' { the closure in L2(P) of Gr(B) } 
does not contain the constant 1 · 

On the other hand, the orthogonal complement 

(2.11) (Gr(B))j_ ~ {DE L2 (P) I E(DGr(1J)) = 0, v {} E e} 

of Gr(B) is a closed linear subspace of L2 (P), and its orthogonal com­
plement (Gr(B))j_j_ is the smallest closed, linear subspace of L2 (P) that 

contains Gr(B). Clearly, (Gr(B))j_ includes the set V of (2.9), and the 
requirement (2.10)' amounts to 

(2.10)" 1 fJ_ (Gr(B))j_j_. 

Remark 2.2 : The notion of signed 8-martingale measure in Def­
inition 2.1 depends on the space e itself, as well as on the defini­
tion of the stochastic integral Gr(1J), {} E e. In many cases of in­
terest, though, every Q E P 8 (8) belongs also to the space P~(X) of 
signed martingale measures for X, namely those signed measures Q on 
(O,F) with Q «: P, dQjdP E L 2 (P), Q(O) = 1 and 

(2.12) E [ ~~ · (X(t)- X(s)) I F(s)] = 0, a.s. 

for any 0:::; s:::; t:::; T. (If Q is a true probability measure, as opposed to 
a signed measure with Q(O) = 1, then (2.12) amounts to the martingale 
property of X under Q.) See Muller (1985), Lemma 12(b) in Schweizer 
(1996), as well as conditions (5.1)-(5.4) and the paragraph immediately 
following them in the present paper. 

In addition to Problem 2.1, it is useful to consider also the following 
question, which is interesting in its own right. 

Problem 2.2. Given HE L2 (P) and c E IR, compute 

(2.13) V(c) ~ inf E(H- c- Gr(1J)) 2 

19E8 

and try to find {}(c) E 8 that attains the infimum in (2.13), if such exists. 

Clearly, infcEIR V(c) coincides with the quantity V of (2.4); and if this 
last infimum is attained by some c E IR, then the pair (c, {}(c)) attains the 
infimum in (2.4). In the next Sections we shall try to solve Problems 2.2 
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and 2.1 using very elementary duality ideas. In this effort, the elements 
of the set V in (2.9) will play the role of adjoint or dual variables. For 
the duality methodology to work in any generality it is critical to allow, 
as we did in Definition 2.1, for signed measures Q with Q(O) = 1, as 
opposed to just standard probability measures. 

§3. The Duality 

The duality approach to Problem 2.2 is simple, and is based on the 
elementary observation 

(3.1) min [(H- x) 2 + yx] 
xElR 

(H- (H- y/2)) 2 + y (H- yj2) 

yH -y2 j4, VyER 

The key idea now, is to read (3.1) with x = c+ Gr(-o), y = 2kD for 
given c E lR and arbitrary -a E 8, D E Vas in (2.2) and (2.9), and with 
arbitrary k E JR, to obtain 

(3.2) (H- c- Gr(-o)) 2 + 2kD (c + Gr(-o)) 2 2kDH- k2 D2 . 

Note also that (3.2) holds as equality for some -a==: -a<c) E 8, D = D(c) E 
V and k = k(c) E JR, if and only if 

(3.3) 

Now let us take expectations in (3.2) to obtain, in conjunction with the 
properties of (2.9): 

for every k E JR, DE V and -a E 8. Clearly, 

(3.5) E(D2 ) - 1 = Var(D) 2 0, VDEV 

and the mapping k ~ -k2 E(D2 ) + 2k [E(DH) - c] attains over lR its 
maximal value (E(DH)- c) 2 / E(D2 ) at the point 

(3.6) .6. 
kv,c = 

E(DH) -c 

E(D2 ) 
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Thus, we obtain from (3.4) the inequality 

V(c) 

(3.7) > 

in£ E (H- c- GT(TJ))2 
'I?ES 

sup sup [-k2 E(D2 ) + 2k (E(DH)- c)] 
DE'D kElR 

(E(DH) - c)2 -

;~"f!v E(D2) =: V(c), 

which is the basis of our duality approach. Here V(c) is the value of our 
original ("primal") optimization Problem 2.2, whereas V(c) is the value 
of an auxiliary ("dual") optimization problem. 

This kind of duality is useful, only if the dual problem is easier to 
solve than the primal Problem 2.2 and if there is no "duality gap" (i.e., 
equality holds in (3.7)), so that by computing the value of the dual 
problem we also compute the value of the primal. Both these features 
hold for our setting, as we are about to show. Furthermore, the duality 
is "strong", in the sense that we can identify an optimal De E V for the 
dual problem, namely 

(3.8) V(c) 
( E(DcH) - c f 

E(D~) 

for all but a critical value of the parameter c, and then obtain from this 
an optimal process TJ(c) for the primal problem via (3.3). 

In order to make headway with this program, let us start by in­
troducing the projection operator 1r : L2 (P) ---+ (GT(8))j_ with the 
property 

(3.9) E [(H- 1r(H)) · D] = 0, V HE L2 (P), V DE (GT(8))j_. 

In particular, 

(3.9)' 

and from (3.9)' and (2.10)' we have 

(3.10) E[1r(l)] = E[1r2 (l)] > 0. 

Proposition 3.1. The value of the dual problem in {3. 7}, namely 

(3.11) 
- ~ (E(DH) - c)2 

V(c) = ;~"f!v E(D2) ' 
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can be computed as 

(3.12) V c E JR. 

The supremum in {3.11} is attained by 

(3.13) 

it is not attained for c = c. 
For every c =f. c, we shall call the random variable De E V of (3.13) 

the "density of the dual-optimal signed martingale measure" in P 8 (9), 
namely 

(3.14) A E :F. 

Remark 3.1 : Suppose that for some h E lR we have 

(3.15) E(DH) = h, VDEV. 

(For instance, this is the case when His of the form (2.5).) Then the 
dual value function of (3.11) becomes 

(3.16) 
- (h- c)2 

V(c) = infveD E(D2 ) 

and, for c =f. h, the dual-optimal De of (3.13) coincides with 

(3.17) 
- .6. . 2 7r(1) -

D = arg WJ% E(D ) = E[1r(1)] = E(D2 ) + R E V 

j_j_ -
for some R E (Gr(9)) , and E(D2 ) = 1/E[7r(1)] ;:::: 1, as we shall 
establish below. Following Schweizer (1996), we shall call D the "density 
of the variance-optimal signed martingale measure" 

(3.18) AE:F 

in P 8 (9). This terminology should be clear from (3.5) and the definition 
in (3.17). 

• Proof of Proposition 3.1 :For every DE V, we have 

E(DH)- c = E[D(H- c)] = E[D · 1r(H- c)] 
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thanks to (3.9). Thus, from the Cauchy-Schwarz inequality, 

which implies 

Now these last two inequalities are valid as equalities, if and only if we 
can find DeE V of the form 

(3.13)' De = canst· 1r(H- c), 

where the constant has to be chosen so that E(De) = 1. This is impos­
sible to do if E[1r(H- c)] = E[1r(H) - c · 7r(1)] is equal to zero, i.e., if 
c = c as in (3.13); in other words, the supremum of (3.11) cannot be 
attained in this case. But for c =/= c, the normalizing constant in (3.13)' 
can be taken as 1/ E[1r(H- c)], leading to the expression of (3.13) and 
to (3.12) as well. 

. a 
It remains to show that (3.12) holds even for c= c. For this, let c,. = 
c- 1/n, n E N and 

cpn 
E(cpn) E V 

so that 

( E(De .. H)- c) 2 
_ ( E(De .. H) -en - 1/n r 

E(D~J - E(D~J 

(E(De.,H)-enr 1;n2 _ ~- E [De .. (H-en)] 
- + - -

E(D~J E(D~J n E(D~J 

1/n2 2 
= E [1r2(H- c..)] + - -- E[1r(H- c..)] 

E(D~J n 

- E( 2) 1/n2 - ~ E( ) 
- cpn + E(D~J n cpn 

as n --+ oo. We have used the inequality 0 < 1/ E ( D~ .. ) ~ 1; the facts 

cpn - cp = 7r(1)/n --+ 0 a.s., lcpnl ~ lcpl + 7r(1) E L2 (P); the Dominated 
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Convergence Theorem; and the observation that, for c =f. c, we have 

(3.19) 

E[Dc·(H-c)] 

E(b~) 

from (3.9)', (3.13). 

E [nc · 1r(H- c)] 
E(b~) 

E [1r2 (H- c)] 
E [1r(H- c)] 

(E[7r(H- c)])2 = E[7r(H- c)] 
E [1r2 (H- c)] 

• Proof of (3.17) :For any DE V, we have 

0 

from (3.9) and the Cauchy-Schwarz inequality. Equality holds if and 
only if 

- .6. 
D = D = const · 1r(1), 

and the normalizing constant has to be chosen so that E(D) = 1, namely, 
equal to 1/ E[1r(1)]. We conclude that iJ = 7r(1)/ E[1r(1)] satisfies 

(3.20) 
1 -2 

E [7r(1)] = E(D ) ' \:1 DE V. 

On the other hand, since 

(3.21) 1=7r(1)+ry for some '17 E (Gr(8))j_j_ , 

we have iJ = (1- ry)/E[7r(1)] = E(D2 ) + R, with R = -ry/E[7r(1)]. 0 

Remark 3.2 : If Gr(8) is closed in L2 (P), then (3.21) becomes 

(3.21)' for some e E 8 

and (3.17), (3.20) give 

(3.22) with t ~ -E(D2 ). e E e. 

§4. Results 

We are now in a position to use the duality developed in the previous 
section in order to provide solutions to Problems 2.1 and 2.2. First, a 
lemma from Schweizer (1996), pp. 230-231; we provide the proof for 
completeness. 
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Lemma 4.1. Suppose that the infimum in {2.13} is attained by some 
-o(c} E 8. Then this process satisfies 

(4.1) E [n- c- Gr (-o<c>)] = E(DH_) - c 
E(D2 ) 

in the notation of {3.9} and {3.17). 

and 

Proof of (4.1) : The assumption implies that, for any given~ E 8, 
the function 

f(c) ~ E [n- c- Gr ( -o<c} + c~) r 
=c2 ·E[G~(~)] -2c·E[(n-c-Gr(-n<c))) ·Gr(~)] +V(c) 

attains its minimum over IR at c = 0. This gives f' (0) = 0, or equiva­
lently 

(4.3) E [ ( H- c- Gr (-a< c))) · Gr(~)] 0, v~ E 8. 

Let us also notice that the mapping 

(4.4) D ~---+ E(DD) is constant on V, 

since we have 

E(D2 )- E(DD) = E[D(D- D)] = E[1r(l)(D- D)]/E [1r(l)] 

= E(D- D)/E [1r(l)] = 0 

thanks to (3.9). 

Now denote 'Y ~ E [H- c- Gr (D(c))]. If 'Y = 0, then the random 
variable 

belongs to V by virtue of (4.3), and (4.4) implies 
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so that (4.1) holds. If 'Y =/:- 0, then D2 ~ [H- c- GT (t?(c))] his in V, 
and by ( 4.4) once again: 

and so (4.1) holds in this case too. D 

• Proofof(4.2): From (4.3), the random variable H -c-GT (t?(c)) be­
longs to the closed subspace (GT(e))l. of(2.11), so we have 

E [ H - c - GT ( t?( c))] 2 

E ([H- c- GT (t?<c>)] · [H -1r(H) + 1r(H)- c- GT (t?<c>)]) 

= E([H-c-GT(t?<c>)] · [1r(H)-c]) 

E(DH)- c 
E [1r2 (H)] - cE [1r(H)]- c E(D2 ) 

thanks to (4.3), (3.9) and (4.1). The equation (4.2) now follows from 

(4.5) E(DH) = E(D2) · E [1r(H)]. 

In order to check (4.5), recall (3.17), (3.20) and use (3.9)' repeatedly, to 
wit: 

(4.6) 
E(DH) 

( - ) = E [H1r(1)] = E [1r(H)1r(1)] = E [1r(H)]. 
E D 2 

D 

Theorem 4.1. {i} Suppose that there exists some t?(c) E 9 which 
attains the infimum in {2.13}. Then this t?(c) satisfies 

(4.7) H- c- GT ('I?( c)) = 1r(H- c), 

and there is no duality gap in {3. 7}, namely 

(4.8) 

V(c) = V(c) = E [1r2 (H- c)] 

( E(DH) - c f 2 (E1r(H))2 
= E(D2) + E [1r (H)] - E [1r(1)] . 
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{ii) Conversely, suppose there exists some iJ(c) E 8 that satisfies (4. 7}; 
then this iJ(c) attains the infimum in {2.13}, and the equalities of (4.8} 
hold .. 

• Proof of (4.8), Part (i) :Under the assumption of (i), we claim that 

(4.9) 

V(c) = 

= 

E ( H - c - GT ( iJ(c))) 2 

(E(DH)- cr 
--'----E-(D~-2-) ----<--- + E [7r2(H)] - (E7r(H))2 . E(iJ2) 

= E [7r2(H- c)] = V(c), 

which clearly proves (4.8) in light of the last equality in (3.20). Indeed, 
the first equality in (4.9) holds by assumption, whereas the second is a 
consequence of (4.2), (4.5). The third equality is a consequence of (4.6), 
(3.20) and (4.2), thanks to the simple computation 

E [7r2(H- c)] = E (7r(H)- c · 7r(1))2 

E [7r2(H)] + c2 · E [7r2(1)]- 2c · E [7r(1)7r(H)] 

[ 2 ( )] ~- 2c · E(iJH) 
E 7r H + E(fJ2) . 

Finally, the last equality in (4.9) is just (3.12). 

• Proof of (4. 7), Part (i); c =f. c : Let us write (3.2) with iJ = iJ(c), 

D =De as in (3.13), and 

k = k ~ k-
c Dc,C 

as in (3.6): namely, 
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Taking expectations in (4.10), and recalling the optimality of -a( c) as well 
as Proposition 3.1, we obtain 

V(c) 

(4.11) > -k~ E(b~) + 2kc ( E(DcH) -c) 
(E(DcH)- c/ 

E(iJ~) 
V(c). 

But from (4.8) we know that (4.11) actually holds as equality, which 
means that the left-hand side and the right-hand side of ( 4.10) have the 
same expectation. In other words, (4.10) must hold as equality, which 
we know happens only if (3.3) holds, namely only if 

( ) E(DcH) - c 1r(H- c) _ ( ) 
H- c- GT -a( c) = kc De = E(D~) E [7r(H- c)] - 7f H- c ' 

holds a.s., thanks to (3.19). 

• Proof of ( 4. 7), part (i); c = c : In this case we shall need a new kind 
of duality, namely with 

(4.12) 

replacing the spaceD of (2.9); the elements of£ will be the dual (adjoint) 
variables in this new duality. We begin by writing (3.1) with x = c + 
GT('!?), y = 2£ for arbitrary'!? E 8, L E £: 

with equality if and only if 

(4.14) H-c-GT('!?) = L 

holds a.s. Taking expectations in (4.13), we obtain 

E (H- c- GT('!?)) 2 > E [2L(H- c)- £ 2) 

(4.15) E [2L · 1r(H- c)- £ 2) 

E [1r2(H- c)) - E (L- 1r(H- c))2 . 

This suggests that we should read ( 4.13)-( 4.15) with '!? = '!?(c), the el­
ement of 8 that attains the infimum in (2.13) and is thus optimal for 
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- .6. -
Problem 2.2, and L = L = 1r(H- c), noting that E(L) = 0 since 
c = c = E[1r(H)] /E[7r(1)]. With these choices, the left-most member 
of (4.15) becomes 

whilst its right-most member is E [1r2 (H- c)] = V(c). From (4.8) we 
know that these two quantities are equal, so the two sides of (4.13) have 
the same expectation. This means that (4.13) must holds as equality, 
which happens only if ( 4.14) is valid, namely 

H- c- Gr ({}(c)) = 1r(H- c), a.s. 

• Proof of Part (ii) : Suppose there exists some {}(c) E 8 that satisfies 
(4.7); then 

E(H-c-Gr(iJ(c))f = E[1r2 (H-c)] V(c) 

from Proposition 3.1. But we also have 

V(c) ~ V(c) ~ E(H-c-Gr({}(c))f, 

thanks to (3.7) and (2.13). In other words, these last two inequalities are 
valid as equalities, {}(c) attains the infimum in (2.13), and (4.8) holds. 

0 

Remark 4.1 : The case of Gr(8) closed. 
If Gr(8) is closed in L 2 (P), then the infimum in (2.13) is attained, 
as was assumed in Lemma 4.1 and in Theorem 4.1(i). In this case we 
have of course Gr(8) = (Gr(8))_i_i' and every H E L 2 (P) admits a 
decomposition of the form 

(4.16) for some ~HE 8. 

In particular, there exists e E 8 so that (3.21) holds, and thus 

H- c- 1r(H- c) = [H- 1r(H)] - c [1 - 1r(1)] = Gr (~H - ce) . 

Comparing this expression with ( 4. 7), we conclude that ( 4. 7) is satisfied 
with the choice 

( 4.17) 

According to Theorem 4.1(ii), the process {}(c) E e of (4.17) is then 
optimal for Problem 2.2, and (4.8) holds. 
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Example 4.1. Follmer-Schweizer decomposition. The as-
sertion at the end of Remark 4.1 remains valid even if GT(8) is not 
closed in L2 (P), provided that (3.21) and (4.16) still hold. Consider, 
for example, the case of a semimartingale X(·) E S2 (P) and of a ran­
dom variable HE L2 (P) which admits the so-called "Follmer-Schweizer 
decomposition"; this means that H can be written in the form H = 
h + GT((H) + LH (T) of (2.6), for h = E(H), some (H E 8, and some 
martingale LH(·) E M~(P) that satisfies the property (2.7). 

Suppose that (3.21) is also satisfied; then rr( H) = hrr(1) + LH (T) 
and we have H- rr(H) = h(1- rr(1)) + GT((H) = GT(he +(H), so 
we may take ~H =he+ (H in (4.16) and 

(4.17)' 

in (4.7). The process -aCe) of (4.17)' is then optimal for the Problem 2.2, 
i.e., attains the infimum in (2.13), which can be readily computed as 

This simple result may be compared with Theorem 3 and Proposition 
18 in Schweizer ( 1994). 

We are now in a position to discuss the solution of Problem 2.1 as 
well. 

Theorem 4.2. Suppose that GT(8) is closed in L 2 (P). Then the 
value of Problem 2.1 is given as 

(4.18) V = V (c) = E [rr2 (H)] - (E [rr(H)])2 

E [rr(1)] 

with the notation 

(4.19) c = 
E [rr(H)] 
E [rr(1)] 

of {3.13}. Furthermore, the infimum in (2.4} is attained by the pair 
(c,J) with cas in (4.19} and with 

(4.20) 

Proof: Immediate from Theorem 4.1 and Remark 4.1, when it is 
observed that the number c of (4.19) minimizes the expression of (4.8) 
over c E R 0 
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Note that when the signed measure Q of (3.8) is a probability mea­
sure (i.e., when P[1r(1) ~ 0] = 1), the quantity of (4.19) is just the 
expectation of the random variable H under the dual-optimal measure 
Q. Sufficient conditions are spelled out in the next section. 

Remark 4.2 : Variance Minimization. If GT(8) is closed in L2 (P), 
then the process J of (4.20) also 

(4.21) minimizes Var (H- GT(il)), over all iJ E 8. 

This is because for any tJ E 8, and with C..J ~ E [H- GT(tJ)], we have: 

Var (H- GT(tJ)) E (H- c19 - GT(i1)) 2 

~ E ( H- c- GT(J) r = Var ( H- GT(J)), 

from Theorem 4.2. 

More generally, for any given c E ~.the process tJ(c) E 8 of (4.17) 
has the "mean-variance efficiency" property 

(4.22) 

{ Var(H-GT(tJCcl))::::; Var(H-GT(il)), forany } 
iJ E 8 that satisfies E [H- GT(il)] = E [H- GT (tJCcl)] . 

Indeed, let Jlc ~ E [H- GT (tJ(cl)] and observe that, for any {J E e 
withE [H- GT(iJ)] = Jlc, we have 

Var (H- GT(il)) 

Var (H- c- GT(tJ)) = E (H- c- GT(iJ)) 2 - (Jlc- c)2 

> E(H-c-GT(il(c))f- (E(H-c-GT(il(c)))f 

Var ( H- c- GT ( tJ(c))) = Var ( H - GT ( tJ(c))) . 

Remark 4.3: Mean- Variance Frontier. Suppose that GT(8) is closed 
in L2 (P), that we have P[1r(1)-=/=- E(7r(1))] > 0; this implies E(D2 ) > 1 
in (3.5), hence E[1r(1)] < 1. For some given m E ~. consider the 
following problem: 

(4.23) { To minimize the variance Var (H- GT(il)), } 
over tJ E e with E [H- GT(il)] = m. 

In view of the property (4.22), it suffices to show that we can find c = Cm 

such that 

(4.24) 
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Then the solution of the problem (4.23) will be given by 19(c) E e as 
in (4.17), with c =em. Now from (4.1) we have E [H- Gr ('!?(c))] = 

E(fm)-c 
c+ E(b2 ) , so that (4.24) amounts to 

c = Cm 
d m · E(D2)- E(DH) 

E(D2 ) -1 

m- E[1r(H)J 
1- E [7r(1)J ' 

thanks to (4.6) and (3.20). We take these two Remarks 4.2, 4.3 from 
Schweizer (1994, 1996). 

§5. A Mathematical Finance Interpretation 

The Problems 2.1, 2.2 have an interesting interpretation in the con­
text of Mathematical Finance, when one interprets the components Xi ( ·) 
of the semimartingale in (2.1) as the (discounted) prices of several risky 
assets in a financial market. In this context, 'l?i(t) represents the num­
ber of shares in the corresponding ith asset, held by an investor at 
time t E [0, TJ. The resulting process '19 E 8 stands then for the in­
vestor's (self-financing) trading strategy, and Gt('!?) = J; '!?'(s) dX(s) = 
L:t=l J; '!?i(s) dXi(s) for the (discounted) gains-from-trade associated 
with the strategy '19 by time t. 

Suppose now that the investor faces a contingent claim (liability) 
H at the end T of the time-horizon [0, TJ. Starting with a given ini­
tial capital c, and using a trading strategy '19 E 8, the investor seeks to 
replicate this contingent claim H as faithfully as possible, in the sense of 
minimizing the expected squared-error loss E (H- c- Gr('!9)) 2 . This 
leads us to Problem 2.2. When the determination of the "right" initial 
capital c is also part of the problem, one is led naturally to the for­
mulation of Problem 2.1. Similarly, one may consider minimizing the 
variance of the discrepancy H- c- Gr('!?) over all trading strategies 
'19 E 8 (problem of (4.21)), or just over those strategies that guarantee 
a given "mean-gains-from-trade" level E [Gr('!?)J = E(H)- m (problem 
of (4.23)). 

If one decides to stick with this interpretation, it makes sense to 
ask whether the model for the financial assets represented by (2.1) ad­
mits arbitrage opportunities; these are trading strategies '19 E 8 with 
P[Gr('!?) ~ OJ = 1 and P[Gr('!?) > OJ > 0. To this effect, let A 
be an increasing, predictable and RCLL process with values in [0, oo) 
and A(O) = 0, (M)i « A for i = 1, · · · , d, and suppose that the pro­
cesses M = (Mb ... , Md) and B = (B1 , ... , Bd), in the decomposition 
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X = X(O) + M + B of (2.1) for the semimartingale X = (XI. ... , X d), 
satisfy 

(5.1) Bi(·) « (M}i(·) 

(5.2) Bi(t) = 1t 'Yi(s) dA(s), O~t~T 

(5.3) (Mi, Mi)(t) = 1t O'ij(s) dA(s), 0 ~t~T 

fori= 1, ... ,d and j = 1, ... ,d. Here 'YO= (1'1(·), ... ,'Yd(·))' and 
a(·)= {aij(·)}1<i "<dare suitable predictable processes that satisfy - ,J_ 

(5.4) a(t)>.(t) = 7(t), a.e. t E (0, TJ 

almost surely, for some.>.(·)= (.>.1(-), · · · , Ad(·))' in the space 

(5.5) 

£ 2 (M) ~ { {}: (0, TJ -t !Rd predictable j 

E J.T D'(s)a(s)D(s)dA(s) ~ E ([ D'(s)dM(s))' < oo }· 

Following Schweizer (1996), we shall refer to (5.1)-(5.4) as the structure 
conditions on the semimartingale X ( ·). 

Under these conditions, it can be shown that the semimartingale 
X(·) does not admit arbitrage opportunities, and that we have equality 
P 8 (8) = P~(X) in Remark 2.2 (cf. Ansel & Stricker (1992); Schweizer 
(1995); and Schweizer (1996), Lemma 12). If, in addition, X(-) has con­
tinuous paths, then it can be shown that the variance-optimal martingale 
measure Q of (3.18) is nonnegative, namely a probability measure: 

(5.6) P[D ;::: OJ = 1 and Q(O) = E(D) = 1 

in (3.17), (3.18). This Q is in fact equivalent toP (i.e., P(11'(1) >OJ = 1 ), 
under the extra assumption 

(5.7) { X(·) is a Q-local martingale under some } 
probability measure Q"' P with (dQjdP) E V(P) 

(cf. Schweizer (1996), Theorem 13; Delbaen & Schachermayer (1996), 
Theorem 1.3). This condition (5.7) also implies that 

(5.8) the mapping {} ~---+ Gr(iJ) is injective; 
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cf. [DMSSS), Lemma 3.5. 
Always under the structure conditions (5.1)-(5.4) on the semimartin­

gale X(-) of (2.1), consider now the so-called mean-variance tradeoff 
process 

K(t) ~ 1t A1(s) dB(s) = 1t A1(s)a(s)A(s) dA(s) = \! A1 dM) (t), 

O~t~T. 

If this process is P-a.s. bounded, then 

(5.9) 

in the notation of (2.2), (5.5) and 

(5.10) Gr(8) is closed in L 2 (P) 

([Ph.R.S.), Corollary 4 and below; Schweizer (1996), Lemma 12). See 
also [DMSSS) where conditions both necessary and sufficient for (5.10) 
are presented. 

Remark 5.1 : In the one-dimensional cased= 1, the structure con­
ditions (5.1)-(5.4) are satisfied if there exists a process A E £ 2 (M) with 

(5.11) X(t) = X(O) + M(t) + 1t A(s) d(M)(s), 0 ~ t ~ T. 

In this case, the mean-variance tradeoff process of (5.9) takes the form 

(5.12) 

Remark 5.2 : Suppose that X(·) has continuous paths, and that 
(5.11) and (5.7) hold. If the random variable HE V(P) is of the form 
H = h + Gr((H) in (2.5), then 

H- 1r(H) = Gr(he +(H) 

and the injectivity property (5.8) allows us to make the identifications 

(5.13) 

in (4.16) and (4.17), respectively. 

More generally, under the assumptions of Remark 5.2 but now for 
any H E L 2 (P), we have the Kunita-Watanabe decomposition under 
the variance-optimal probability measure Q of (3.18), namely 

(5.14) 



Least-squares approximation of mndom variables by stochastic integmls 163 

(cf. Ansel & Stricker (1993), or Theorem 3 in Rheinlander & Schweizer 
(1997)). Here E denotes expectation with respect to the probability 

--a- -- -
measure Q, h = E(H) = E(DH), (H E 8, and LH E S2 (P) is a 
Q-martingale with LH (0) = 0 and 

(5.15) vi= 1, ... ,d. 

On the other hand, since LH (T) belongs to the space L2 (P), we also 
have its decomposition 

(5.16) 

from the closedness of GT(e), where JH E 8 is such that 

(5.17) v iJ E e. 

Back in (5.14), this gives H = h + GT((H + JH) + 7r(LH (T)), so that 

(H- c)- 7r(H- c) = (h- c)(1 - 7r(1)) + GT((H + JH) 

= GT ((h- c)e + (H + JH) 

from (3.21)'. Again, the injectivity property (5.8) allows us to make the 
identification 

(5.18) 

in { 4.17). Finally, let us consider the positive Q-martingale 

(5.19) D(t) ~ E[D IF(t)] = E(D2 ) + Gt([) 

E(D2 ) [1- Gt(e)], 0 $ t ~ T 

obtained by taking conditional expectations in (3.22) under Q. 

We are now in a position to identify the process JH appearing in 
(5.16), (5.18) and state the following result, which simplifies and gener­
alizes Theorems 5, 6 of Rheinlander & Schweizer (1997). 

Theorem 5.1. Suppose that the semimartingale X(·) E S 2 (P) has 
continuous paths, and that {5. 7}, (5.11} hold. Then the optimal process 
iJ(c) E 8 for Problem 2.2 takes the form 

(5.20) fJ(c) = (H + [(E(DH)- c)+ E(D2 ) 1· d~H(s)]· e 
o D(s) 

in the notation of (5.14}, (5.19}. 
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Sketch of Proof: The Q-martingales N(t) a J~(1/D(s))dLH(s), 
0 ::5 t ::5 T and D(·) of {5.19) are orthogonal, since 

from {5.15) and {5.19). Thus, integration by parts gives 

(5.21) 

LH(T) 1T D(s)dN(s) = D(T)N(T) -1T N(s){'(s)dX(s) 

= DN(T)- GT(N{), 

and transforms ( 5 .17) into 

ViJ E e. 

But the right-hand-side of {5.22) vanishes, since 

thanks to {5.15). Thus the left-hand-side of {5.22) also vanishes for every 
{} E 8, which suggests 

. -H 

JH = -N{ = E(.iJ2) e 1 d~ (s) 
o D(s) 

and leads to {5.20) after substitution into (5.18). D 

In order to justify the legitimacy of the above argument, particularly 
the steps leading to {5.22), one needs to show that the random variable 

SUPo:::=:;t:::=:;T ID(t) J~(1/ D(s)) dLH (s) I belongs to L2{P); this is carried out 

on pp. 1820-1823 of RheinHi.nder & Schweizer {1997). 
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