# Backward Regularity for some Infinite Dimensional Hypoelliptic Semi-groups

#### Hélène Airault and Paul Malliavin

#### CONTENTS

- 1. Regularity of the canonic diffusion above Virasoro algebra
- 2. Infinite dimensionnal non autonomous riemannian metrics
- 3. Instability of HJM model in Mathematical Finance

We dedicate this work to Kiyosi Itô, the "Newton of continuous Stochastic Dynamic", one of the most influential scholars of the last century; the topic of this paper underlines in itsef the deep influence that the 1976 Kyoto Symposium [12] has had on the whole subsequent carrier of the second author who is also deeply indebted to Kiyosi Itô for fifty years of warm personnal relations; his attentive support from the beginning to some of our scientific enterprises has been a key step towards their international recognition.

In classical Stochastic Analysis regularity properties are time independent: the Brownian motion is for all time Hölderian of order  $(\frac{1}{2}-\epsilon)$  regular, the tangent space to the Wiener space (i.e. the Cameron-Martin space) is also time independent. The Stochastic Analysis on Loop groups have recently confirmed the paradigm that regularity properties are time independent.

It has been a surprise that regularity exponents for highly non linear infinite dimensionnal diffusion as the canonic diffusion above Virasoro algebra are time dependent [2],[9]. We shall discuss in this paper the status of tangent space to Virasoro diffusion; we shall exhibit a minimal tangent space which is time independent; it is conceivable that the maximal tangent space is time dependent, fact which will be established on a toy model. The finite dimensional root of this phenomen lies in the fact that hypoelliptic diffusion on  $\mathbb{R}^d$  does not satisfy simple scaling relation when the time goes to zero [4], [11].

Stability of interest models in Mathematical Finance are deeply affected by these infinite dimensional effects.

Received April 24, 2003.

### Regularity of the canonical diffusion above Virasoro algebra.

The group of  $C^{\infty}$  diffeomorphism of the circle  $S^1$ , Diff $(S^1)$ , has for Lie algebra diff $(S^1)$  the  $C^{\infty}$  vector fields on  $S^1$ ; we identify a function  $u(\theta)$  to the vector field  $u(\theta)\frac{d}{d\theta}$ ; with this identication the bracket of vector fields becomes  $[u,v]=\dot{v}u-\dot{u}v$ . Complexifying the underlying real vector space we get the following expression for this bracket in the complex trigonometric basis:

$$[e^{in\theta}, e^{im\theta}] = i(m-n)e^{i(m+n)\theta}$$

Given a positive constant c > 0, define the bilinear antisymmetric form

$$\omega_c(f,g) := -rac{c}{12}\int_{S^1} \left(f'+f^{(3)}
ight)g \; d\theta;$$

then

$$\omega_c([f_1, f_2], f_3) + \omega_c([f_2, f_3], f_1) + \omega_c([f_3, f_1], f_2) = 0,$$

$$\omega_c(e^{in heta},e^{-im heta})=i\delta_n^m\;rac{c}{6}(n^3-n),\;\;n>0.$$

Virasoro algebra is defined as  $\mathcal{V}_c := R \oplus \mathrm{diff}(S^1)$  with the following bracket :

$$[\xi \kappa + f, \eta \kappa + g] := \omega_c(f, g) \kappa + [f, g].$$

Brownian motion on Diff  $(S^1)$ .

Define the Hilbertian metric  $\frac{3}{2}$  by :

$$\|\phi\|_{\mathcal{H}^{\frac{3}{2}}}^2 = \sum_{n>1} (n^3 - n) (a_n^2 + b_n^2), \quad \phi(\theta) = \frac{1}{2} a_0 + \sum_{n=1}^{+\infty} (a_n \cos n\theta + b_n \sin n\theta);$$

define

$$e_n : R^2 \mapsto \text{diff}(S^1), \ e_n(\xi) = \frac{1}{\sqrt{n^3 - n}} (\xi^1 \cos n\theta + \xi^2 \sin n\theta), \ n > 1.$$

Let  $X_k$  be independent copies of Wiener space of the  $\mathbb{R}^2$ -valued Brownian motion; define  $X = \bigotimes X_k$  and consider the Stratonovich SDE:

$$dg_x(t) = \left(\sum_{k>1} e_k(dx_k(t))\right) o g_x(t), \quad g_x(0) = \text{Identity}$$

$$dg_x^r(t) = \left(\sum_{k>1} r^k \ e_k(dx_k(t))\right) o \ g_x^r(t), \ \ g_x^r(0) = \text{Identity};$$

then,  $g_x^r(t) \in \text{Diff }(S^1) \ \forall r < 1.$ Theorem.[2],[9].

Denote  $\mathcal{H}^{\beta}(S^1)$  the group of homemorphism of  $S^1$ , with an Hölderian modulus of continuity  $\beta$ , then

$$\lim_{r \to 1} g_x^r(t) := g_x(t) \in \mathcal{H}^{\beta(t)}(S^1), \ a.s.,$$

$$\beta(t) = \frac{1 - \sqrt{1 - e^{-\frac{t}{2}}}}{1 + \sqrt{1 - e^{-\frac{t}{2}}}}.$$

The laws  $\nu_t$  of  $g_x(t)$  satisfy  $\nu_t * \nu_{t'} = \nu_{t+t'}$ .

Remark. The composition of two homemorphisms of Hölderian exponents  $\gamma$ ,  $\gamma'$  can have an Hölderian exponent as worst as  $\gamma\gamma'$ : this fact explains the exponential decrease of  $\beta(t)$  when  $\to +\infty$ .

It is obvious that the metric used to construct the Brownian motion degenerates on the vector fields  $\cos \theta$ ,  $\sin \theta$ , 1. The Lie subagebra generated by these three vector fields is isomorphic to  $\mathrm{sl}(2,R)$ ; the corresponding subgroup  $\Gamma$  of  $\mathrm{Diff}(S^1)$  is the restriction to the circle of the group of Möbius transformations of the unit disk.

It had be shown [1] that  $\mathcal{M}_1 := \operatorname{Diff}(S^1)/\Gamma$  is an homogeneous Riemannian manifold, that the Hilbert transform on the circle pass to the quotient and defines an integrable almost complex structure for which  $\mathcal{M}_1$  becomes an homogeneous Kähler manifold. Denote  $\pi : \operatorname{Diff}(S^1) \to \mathcal{M}_1$ , then  $\pi(g_x^{-1}(t))$  is the Brownian motion on  $\mathcal{M}_1$  and defines the heat semi-group on function on  $\mathcal{M}_1$ . This section will prove the backward regularity of this heat semi-group.

# Background of finite dimensional Stochastic Riemannian Geometry.

Denote by M a Riemannian manifold of dimension d; a  $frame\ r$  is a Euclidean isomorphism of  $R^d$  onto the tangent plane  $T_{\pi(r)}(M)$ ; the collection of all frames on M is a smooth manifold O(M) on which the orthogonal group operates on the right: this is the bundle of orthonormal frames. The Levi-Civita connection defines on O(M) a parallelism that is a canonical differential form of degree 1, with values in  $R^d \oplus R^d \otimes_a R^d$  let  $\omega = (\dot{\omega}, \ddot{\omega})$ . Riemannian geometry is encompassed in the Darboux-Cartan structural equations:

$$< A \wedge B , \ d\dot{\omega} > = \ddot{\omega}(A)\dot{\omega}(B) - \ddot{\omega}(B)\dot{\omega}(A),$$

$$\langle A \wedge B, d\ddot{\omega} \rangle = \ddot{\omega}(A)\ddot{\omega}(B) - \ddot{\omega}(B)\ddot{\omega}(A) + \Omega(\dot{\omega}(A), \dot{\omega}(B)),$$

where  $\Omega$  is the Riemann curvature tensor.

Given an  $\mathbb{R}^d$  valued brownian motion  $x(\tau)$  the horizontal diffusion is defined by the Stratonovitch SDE

$$< dr_x, \dot{\omega} > = dx, \quad < dr_x, \ddot{\omega} > = 0, \quad r_x(0) = r_0,$$

where  $r_0 \in O(M)$  is fixed. The Itô parallel transport is the isometry

$$t_{0 \leftarrow \tau}^{x}: T_{\pi(r_{x}(\tau)}(M) \mapsto T_{\pi(r_{0})}(M) \text{ defined by } t_{0 \leftarrow \tau}^{x} = r_{x}(0) \text{ } o \text{ } (r_{x}(\tau))^{-1}.$$

A variation induces  $x\mapsto x+\epsilon\tilde{\zeta}$  induces a variation of the path  $(\zeta,\rho)$  defined by

$$\zeta(\tau) := <\frac{dr^{\epsilon}(\tau)}{d\epsilon_{=0}} \ , \ \dot{\omega}>, \quad \rho(\tau) := <\frac{dr^{\epsilon}(\tau)}{d\epsilon_{=0}} \ , \ \ddot{\omega}>, \quad r^{\epsilon}(\tau) := r_{x+\epsilon}(\tau).$$

These two variations are linked by the two following key SDE [6], [10], [7], [14], the first being an Itô SDE, the second a Stratonovitch SDE:

$$(1.1) d\tilde{\zeta} = d\zeta - \frac{1}{2} \mathrm{Ricci}(\zeta) \; d\tau - \rho \; dx, \quad d\rho = \Omega(\zeta, \; o \; dx).$$

# Two parallel transports on $\mathcal{M}_1$ .

We follow Bowick-Lahiri [5]. We have on  $\mathcal{M}_1$  two connections: the Levi-Civita connection  $\nabla_X$  and the connection  $\mathcal{L}_X$  induced by the left invariant Maurer-Cartan form on  $\mathrm{Diff}(S^1)$ ; we introduce a tensorial operator on  $T_0(\mathcal{M}_1)$  defined by

$$\phi_X = \mathcal{L}_X - \nabla_X$$

The operator  $\phi$ , extended to the complexification, has the following expression in the complex trigonometric basis :

(1.2) 
$$\phi_{e^{ir\theta}}(e^{iq\theta}) = i(r-q)\Theta(-q-r), \quad r > 1,$$

where  $\Theta(t) := 1_{[0,+\infty[}$  is the Heaviside function. For s < -1 we prolongate  $\phi_*$  by requiring hermitian symmetry :  $\phi_{e^{is\theta}} := (\phi_{e^{-is\theta}})^*$ .

Then the Riemannian curvature of  $\mathcal{M}_1$  can be expressed in terms of the operator  $\phi_*$  by

$$\Omega(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]} = [\phi_X, \phi_Y] - \phi_{[X,Y]},$$

the last identity results from  $[\mathcal{L}_X, \mathcal{L}_Y] - \mathcal{L}_{[X,Y]} = 0$  together with  $[\mathcal{L}_X, \nabla_Y] = \nabla_{[X,Y]}$  identity coming from the invariance of the Kählerian metric

under the left action of Diff  $(S^1)$ . The curvature tensor is of trace class [5], and its trace is

(1.3) 
$$Ricci = -\frac{13}{6} \times Identity$$

Lemma.

Denote  $V_q$  the space generated by  $\cos k\theta$ ,  $\sin k\theta$ ,  $k \in [2,q]$  then the operators  $\phi_*$  preserve  $V_q$  and are nilpotent on  $V_q$ .

Denote  $\eta_n(\xi) = \tilde{\phi}_{e_n(\xi)}$ ,  $\xi \in \mathbb{R}^2$ , where  $\tilde{\phi}_X$  is the matrix associated to  $\phi_X$  in the real trignometric basis  $(n^3-n)^{-\frac{1}{2}}\cos n\theta$ ,  $(n^3-n)^{-\frac{1}{2}}\sin n\theta$ . Theorem

The matrix Stratonovich SDE

(1.4) 
$$d\mathcal{U}_t = \mathcal{U}_t \ o \left( -\sum_{k>1} \eta_k(dx_k(t)) \right), \quad \mathcal{U}_0 = \text{Identity}$$

has a unique solution and  $U_t$  is a unitary matrix. Proof.

The restriction to  $V_q$  of this SDE is equivalent to an SDE which is driven only by 2q Brownian motion; this SDE which is solvable by the finite dimensional theory  $\bullet$ 

# Backward regularity. (Minimal tangent space)

Given z such that  $\|z\|_{H^{\frac{3}{2}}} < \infty$  then, for a generic test function  $\Phi$  defined on  $\mathcal{M}_1$ ,

(1.5) 
$$\left| \frac{d}{d\epsilon_{=0}} E((\pi^* \Phi)(\exp(\epsilon z) g_x(t)))) \right|^2 \\ \leq \frac{13}{6(1 - \exp(-\frac{13}{6}t)} \|z\|_{H^{\frac{3}{2}}}^2 E(|\pi^* \Phi(g_x(t))|^2).$$

Proof.

We follow the strategy that Driver [8] developped in the case of Loop groups making the change of variables

$$y_t = \int_0^t \mathcal{U}_s \ dx(s);$$

then  $y_t$  is a new brownian motion to which we can apply the finite dimensional Riemannian geometry because the curvature operator preserves the  $V_q$   $\bullet$ 

#### 2. Infinite dimensional non autonomous Riemannian metrics.

Consider a group G of dimension finite or infinite; for instance G could be the group of diffeomorphism of a compact manifold, case which includes the theory of Stochastic Flows.

We consider a left invariant diffusion on G; denote by  $\Delta = \frac{1}{2} \sum_{k \geq 1} \partial_{A_k}^2 + \partial_{A_0}$  its infinitesimal operator where the  $A_k$  are left invariant vector field on G; denote by  $\nabla$  the corresponding gradient :  $\nabla \phi * \nabla \psi := \Delta(\phi \psi) - \phi \Delta \psi - \psi \Delta \phi$ .

We denote by  $p_T(dg)$  the law of the process starting from the identity. Given a tangent vector at the identity z define the "logarithmic derivative" of  $p_T$  by the identity

(2.1) 
$$\frac{d}{d\epsilon_{=0}} E(\Phi(\exp(\epsilon z)g_x(T)) = E(K_{z,T}(g_x(T))\Phi(g_x(T))),$$

where  $\Phi$  is a generic test function.

For all T > 0 define a Hilbertian norm by

(2.2) 
$$||z||_T^2 := E(|K_{z,T}(g_x(T))|^2)).$$

Theorem.

If T < T' then

$$||z||_{T'} \le ||z||_T.$$

Proof.

For 
$$\eta > 0$$
 define  $\Psi(g) := E_{g_x(T)=g}(\Phi(g_x(T+\eta)))$ , then

$$E(\Phi(\exp(\epsilon z)g_x(T+\eta))) = E(E^{\mathcal{N}_T}(\Phi(\exp(\epsilon z)g_x(T+\eta)))$$
$$= E(\Psi(\exp(\epsilon z)g_x(T)));$$

differentiating relatively to  $\epsilon$  we obtain

$$E(K_{z,T+\eta}(g_x(T+\eta)) \Phi(g_x(T+\eta))) = E(K_{z,T}(g_x(T))\Psi(g_x(T))),$$

letting  $\eta \to 0$  we write  $\simeq$  equalities modulo  $o(\epsilon);$  then by Itô calculus :

$$K_{z,T+\eta}(g_x(T+\eta)-K_{z,T}(g_x(T)\simeq \eta(\frac{\partial K}{\partial T}+\Delta K)+
abla K*(x(T+\eta)-x(T))$$

$$egin{aligned} \Psi(g) - \Phi(g) &\simeq \eta \Delta \Phi(g), \ \Phi(g_x(T+\eta)) &\simeq \Phi(g_x(T)) + \eta (\Delta \Phi(g_x(T))) + 
abla \Phi * (x(T+\eta) - x(T)) \end{aligned}$$

$$\frac{1}{\eta} E^{\mathcal{N}_T} (K_{z,T+\eta}(g_x(T+\eta)) \Phi(g_x(T+\eta))) - (K_{z,T}(g_x(T)) \Phi(g_x(T)))$$

$$\simeq \Phi(\frac{\partial K}{\partial T} + \Delta K) + K \Delta \Phi + \nabla \Phi * \nabla K;$$

$$\frac{1}{\eta} E \left( K_{z,T+\eta}(g_x(T+\eta)) \Phi(g_x(T+\eta)) - (K_{z,T}(g_x(T)) \Phi(g_x(T)) \right)$$

$$\simeq \Phi(\frac{\partial K}{\partial T} + \Delta K) + K \Delta \Phi + \nabla \Phi * \nabla K) - K \Delta \Phi$$

(2.4) 
$$E\left(\Phi(\frac{\partial K}{\partial T} + \Delta(K)) + \nabla K * \nabla \Phi\right) = 0.$$

From the other hand

$$\frac{\partial}{\partial T}E[(K_T(g))^2)] = E[\Delta(K_T^2) + \frac{\partial K_T^2}{\partial T}]$$

$$= E[2K_T(\frac{\partial K}{\partial T} + \Delta(K_T)) + \nabla K_T * \nabla K_T)] = -E[\nabla K_T * \nabla K_T] < 0,$$

the last equality is obtained by applying (2.4) with  $\Phi = K_T$  •

Consider now the free Lie algebra  $\mathcal{G}$  generated by d vector fields  $A_1, \ldots A_d$ ; denote G the infinite dimensional group associated. Denote x a d-dimensional Brownian motion and define on G the process by the following Stratanovitch SDE

$$dg_x(t) = g_x(t) \ o \ \sum_{k=1}^d A_k \ dx^k(t), \ \ g_x(0) = \text{Identity}$$

denote  $\mathcal{H}_T$  the completion of  $\mathcal{G}$  for the norm  $||z||_T$ .

Theorem. For  $T \neq T'$ , we have (2.5)

 $\mathcal{H}_T \neq \mathcal{H}_{T'}$ , which means the inequivalence of the corresponding norms.

Proof.

We shall use the Ben-Arous expansion [3] ( see Theorem 15)

$$g_x(t) = \exp\left(\sum_{m=1}^{\infty} \sum_{J \in \sigma_m} M_J(t) U^J\right)$$

where  $A^J := [A_{j_1}, [A_{j_2}, \dots, [A_{j_{n-1}}, A_{j_n}]]$ , where  $\sigma_m$  denotes a maximal subset of  $[1, d]^m$  such that the  $A^J$  are linearly independent in  $\mathcal{G}$  and

where iterated integrals  $M_J$  have been constructed by Meyer and are mutually orthogonal in  $L^2$ . We decompose

$$z = \sum_{m=1}^{\infty} z_m, \quad z_m = \sum_{J \in \sigma_m} c_J A^J.$$

Lemma.

(2.6) 
$$||z||_T^2 = \sum_{m=1}^{\infty} ||z_m||_T^2$$

By the rescaling of Meyer integrals we have

$$\|z_m\|_{T'}^2 = \left\lceil rac{T}{T'} 
ight
ceil^m \|z_m\|_T^2$$

relation which shows the inequivalence of the two norms

#### 3. Instability of Heath-Jarrow-Merton model of interest rates.

All long terms loans (States bounds, mortgages, companies bounds) are appearing on a single market, the "zero coupon default free bonds market". Every day it is possible to buy bonds at any maturity between 1 up to 360 months; for each maturity the market gives a price; all these prices can be summarized by a single positive function  $r_t(x)$  the instantaneous forward rate such that the discount price today of a 1 dollar bound paid in five years is equal to

$$\exp(-\int_0^{60} r_t(x) \ dx).$$

The associated configuration space C is  $(R^+)^{360}$ .

The HJM model replace the  $\mathcal{C}$  by the space of continuous positive functions  $r_t(x)$ ,  $x \in [0,360]$  and propose that "for the risk free measure" the interest rate curve dynamic can be described by the following Itô SDE, driven by q independent Brownian motion  $W^*(t)$ ,

$$dr_t(x) = \left( rac{\partial r_t(x)}{\partial x} + Z_t(x) 
ight) \, dt + \sum_{k=1}^q \phi_{k,t}(x) \, \, dW^k(t),$$

(3.1) 
$$Z_t(x) = \sum_{k=1}^q \phi_{k,t}(x) \int_0^x \phi_{k,t}(s) \ ds.$$

This HJM modell can be mathematically established under the two general assumptions: market where an agent cannot increase his wealth without risk (*arbitrage free*) and market variations free from jumps.

A practical fact is that the variance injected in the equation is very low:  $q \leq 4$ . This means that the operator associated with the SDE (3.1) is an hypoellitic operator driven by at most four vectors fields in a Euclidean space of large dimension.

Consider the Stochastic flow  $U_{t\leftarrow t_0}^{w}$  defined as  $U_{t\leftarrow t_0}^{w}(r_0)$  being the solution of (3.1) for  $r_w(t_0) = r_0$ . Denote by  $J_{t\leftarrow t_0}^{w}$  the Jacobian of the flow  $U_{t\leftarrow t_0}^{w}$  which is defined by solving the linearized SDE.

Greeks means the reaction of the market at an infinitesimal pertubation  $\delta_0$  of  $r_0$  appearing at time  $t_0$ ,  $W^*(s) - W^*(t_0)$ ,  $s \geq t_0$  being fixed:

$$\frac{d}{d\epsilon_{\epsilon-0}}U^W_{t\leftarrow t_0}(r_0+\epsilon\delta_0)=J^W_{t\leftarrow t_0}(\delta_0):=\delta^W(t),$$

is called the Greek propagation.

Every trader can buy or sell *european options* which is a contract by which the seller obliges himself to pay at maturity T an amount of money equal to  $F(r_T)$ . The option is called *digital* if the function F is discontinuous.

Sensitivities at the option F is defined

$$\frac{d}{d\epsilon_{\epsilon-0}}E(F(U^W_{T\leftarrow t_0}(r_0+\epsilon\delta_0))=E(< dF , J^W_{T\leftarrow t_0}(\delta_0)>).$$

# Sensitivities regularization for digital european options

Denote C the vector space of all possible infinitesimal pertubation  $\delta_0$  of the market at time  $t_0$ ; consider the Hilbertian norm  $\|\delta\|_{T,t_0}$  defined in (2.2) and denote  $C_{t_0,T}$  the corresponding Hilbert space then

$$\left| \frac{d}{d\epsilon_{\epsilon=0}} E(F(U_{T\leftarrow t_0}^W(r_0 + \epsilon \delta)) \right| \le \|\delta\|_{T,t_0} (E(|F(r_W(T)|^2))^{\frac{1}{2}})$$

 $Compartimentage\ Principle.$ 

"Generically" the sequence of Hilbert spaces  $C_{T,t_0}$  is strictly increasing relatively the parameter T and strictly decreasing relatively to the parameter  $t_0$ .

# Hedging

The Clark-Ocone-Karatzas formula (3.2)

$$F(r_W(T)) - E(F(r_W(t_0))) = \sum_{k=1}^{q} \int_{t_0}^{T} E^{\mathcal{F}_s}(D_{s,k}(F(r_W(T))) \ dW^k(s)$$

gives a realization of the option along each trajectory. The corresponding strategy of replication, consist for the trader to balance at each time t his portfolio according the infinitesimal observed variation of the driving Brownian  $W^k(t+\epsilon) - W^k(t)$ , multiply by  $E^{\mathcal{F}_s}(D_{s,k}(F(r_W(T)))$ .

The formula (3.2) is a specialization of the general Itô theorem saying that any random variable of zero expectation is representable by a Stochastic integral; at this level of generality the integrand is only in  $L^2([t_0,T])$  on each trajectory. As the *financial replication* of the option is given by this integrand, it is impossible to realize this replication if this integrand is not at least continuous; otherwise instabilities appear.

## 3.3. Theorem [13].

Denote  $\Theta$  the stopping time such that

$$J_{t_0 \leftarrow t}^W(\Phi_k(r_W(t))) \in \mathcal{C}_{T,t} \ \forall \ t \leq \Theta, \ \forall k \in [1,q];$$

then  $E^{\mathcal{F}_{\Theta}}(F(r_W(T)))$  is replicable by a stable Clark-Ocone-Karatzas formula. Proof.

$$E^{\mathcal{F}_s}(D_{s,k}(F(r_W(T)))) = E(\langle dF, J_{T \leftarrow s}^W(\Phi_k(r_W(s)) \rangle)$$

Consequence : Traders must try to sale digital options before the stopping time  $\Theta$ .

#### **BIBLIOGRAPHY**

- [1] Airault(H.), Malliavin(P.) and Thalmaier(A), Support of Virasoro unitarizing measures: C.R. Acad.Sci. Paris Ser. I 335 (2002) 621-626.
- [2] Airault(H.) and Ren(J.), Modulus of continuity of the canonic Brownian motion "on the group of diffeomorphism of the circle": J. Funct. Analysis 196 (2002) 325-426.
- [3] Ben-Arous (G.), Flots et séries de Taylor stochastiques : Prob. Theory Rel. Fields 81 (1989) 29-77.
- [4] Ben-Arous (G.) and Léandre (R.), Décroissance exponentielle du noyau de la chaleur sur la diagonale: Prob. Th. Rel. Fields 90 (1991) 175-202 and 377-402.
- [5] Bowick(M.J.) and Lahiri(A.), The Ricci curvature of Diff(S<sup>1</sup>)/SL(2, R):
   J.Math. Phys. 29(1988) 1979-1981.
- [6] Bismut(J.M.), Large deviations and the Malliavin Calculus: Birkhäuser, Prog. Math. 45 (1984) 216 pp.
- [7] Cruzeiro(A.B.) and Malliavin(P.), Renormalized differential geometry on path spaces: Structural equation, curvature: J. Funct. Analysis 139 (1996) 119-181.

- [8] Driver (B), Integration by parts and quasi-invariance for heat kernel measure on Loop groups: J.Funct.Analysis 149 (1997) 470-547 and 155 (1998) 297-301.
- [9] Fang(S.), Canonical brownian motion on the diffeomorphism group of the circle: J. Funct. Analysis 196 (2002) 162-179.
- [10] Fang(S.) and Malliavin (P.), Stochastic Analysis on the path space of a Riemannian manifold: J. Funct. Analysis 118 (1993) 249-274.
- [11] Kusuoka(S.) and Stroock(D.), Precise asymptotics of certain Wiener functionals: J. Funct. Analysis 99 (1991) 1-74.
- [12] Malliavin(P.), Stochastic Calculus of Variations and hypoelliptic operators: In Proc. Int. Symp. on SDE Kyoto 1976, K. Itô ed., John Wiley 1978, 195-263.
- [13] Malliavin(P.) and Thalmaier(A.), Stochastic Calculus of Variations in Mathematical Finance: Springer 2003, 120 pp.
- [14] Stroock(D.), An introduction to the Analysis of Paths on a Riemannian manifold: American Math. Society 2000, pp. 269.

#### H.A.

INSSET, Université de Picardie, 48 rue Raspail, 02100 Saint-Quentin, France; hairault@insset.u-picardie.fr

#### P.M.

10 rue Saint Louis en l'Isle, 75004 Paris, France; sli@ccr.jussieu.fr