Cells for a Hecke Algebra Representation

T. A. Springer

Abstract

. If Y is an affine symmetric variety for the reductive group G with Weyl group W, there exists by Lusztig and Vogan a representation of the Hecke algebra of W in a module which has a basis indexed by the set Λ of pairs (v, ξ), where v is an orbit in Y of a Borel group B and ξ is a B-equivariant rank one local system on v. We introduce cells in Λ and associate with a cell a two-sided cell in W.

Introduction.

Let G be a connected reductive group over an algebraically closed field of characteristic $\neq 2$. Let θ be an automorphism of G of order 2 , with fixed point group K. In [LV] Lusztig and Vogan introduced a module \mathcal{M} over the Hecke algebra of the Weyl group W of G, coming from the action of K on the flag manifold \mathcal{F} of G. In the present note we introduce cells for that situation. Instead of K-orbits on \mathcal{F} we prefer to work with orbits of a Borel group B on the affine symmetric variety $Y=G / K$. The module \mathcal{M} then has a basis indexed by the set of pairs $\Lambda=(v, \xi)$, where v is a B-orbit on Y and ξ a B-equivariant rank one local system on v.

After the introductory Section 1 we define the cells of Λ in Section 2, in much the same way as the cells of W. In Section 3 we attach to a cell in Λ a representation of Lusztig's asymptotic ring \mathcal{J}. We also attach in 3.5 (ii) to a cell in Λ a two-sided cell in W. The final Section 4 discusses some complements and also two examples for $G=S L_{3}$.

The results of this note about cells in Λ are more or less well-known. In the case $k=\mathbb{C}$ they can probably be extracted from the literature on representations of real reductive groups.

Received February 18, 2002.

The definition of cells is also given in [G, 3.1] and [H, no. 4]. In [G, loc. cit.] it is also stated without proof that one can attach to a cell in Λ a two-sided cell in W (see also [H, 4.6]).
The examples at the end of Section 4 are counterparts of the examples of $[\mathrm{V}, 16.2,16.3]$, which are discussed in the context of representation theory of real Lie groups (viz. $S L_{3}(\mathbb{R})$ and $S U(2,1)$). But cells do not occur there.

I am indebted to A. Henderson for a useful remark.

1. Notations and recollections.

1.1. Let B be a θ-stable Borel subgroup of G and T a θ-stable torus contained in B. The root system of (G, T) is R, the system of positive roots in R defined by B is R^{+}. The Weyl group of R is W and S is the set of simple reflections defined by B. The associated length function is l.

Denote by \mathcal{H} the generic Hecke algebra defined by (W, S) (see $[\mathrm{Cu}, \mathrm{p}$. $16]$). It is a free module over $\mathbb{Z}\left[t, t^{-1}\right]$, with basis $\left(e_{x}\right)_{x \in W}$. The multiplication is described in [loc. cit.]. In particular, $e_{s}^{2}=\left(t^{2}-1\right) e_{s}+t^{2}$ $(s \in S)$.
1.2. Denote by V the set of B-orbits on Y. The results to be used about these orbits can be found in [RS1] and [S1].
For $v \in V$ denote by \mathcal{L}_{v} the group of isomorphism classes of B-equivariant rank one local systems on v. Let Λ be the set of pairs $l=(v, \xi)$ with $v \in V, \xi \in \mathcal{L}_{v}$. Let \mathcal{M} be the free module over $\mathbb{Z}\left[t, t^{-1}\right]$ with basis ϵ_{l} indexed by the elements $l \in \Lambda$. Then \mathcal{M} has a left module structure over the Hecke algebra \mathcal{H}. The products $e_{s} \epsilon_{l}(s \in S, l \in \Lambda)$ are described in [MS2, 4.3.1]. We shall not write down the formulas of [loc. cit.], as we shall not need them. (Notice that in the present case we have, with the notations of [loc. cit.], $\hat{\phi}_{v} \xi=0$ since we are dealing with B-equivariant local systems. Moreover in the cases IIIb and IVb, $2 a_{v}(\xi)=0$, see [loc. cit., 6.7].)

The construction of \mathcal{M} is sheaf-theoretic. One works over the algebraic closure of a sufficiently large finite field. The elements of \mathcal{M} lie in a Grothendieck group built out of B-equivariant l-adic sheaves on Y with Frobenius action. In the general situation of [loc. cit.], \mathcal{M} appears as a module over a large ring, which can in the present case be cut down to $\mathbb{Z}\left[t, t^{-1}\right]$.

Let $l=(v, \xi) \in \Lambda$. The basis element ϵ_{l} of \mathcal{M} is the element in the appropriate Grothendieck group defined by the sheaf on Y extending ξ by zero.
Denote by $A_{\xi, v}$ the irreducible perverse sheaf on Y supported by the closure \bar{v} whose restriction to v is $\xi[\operatorname{dim} v]$ (the "perverse extension" of $\xi)$. It defines an element γ_{l} of \mathcal{M} (see [loc. cit., 3.1.2, p. 42]).
For $l=(v, \xi) \in \Lambda$ put $d(l)=\operatorname{dim}(v)$.
We next quote some results of Lusztig and Vogan, established in [LV] (see also [MS2, no. 7]).
1.3. Lemma. There exists an additive duality map D of \mathcal{M} such that for $\mu \in \mathcal{M}, s \in S, l \in \Lambda$
(a) $D(t \mu)=t^{-1} D(\mu)$,
(b) $D\left(e_{s} \mu\right)=e_{s}^{-1} D(\mu)$,
(c) $D\left(\epsilon_{l}\right)=t^{-2 d(l)}\left(\epsilon_{l}+\sum_{d(m)<d(l)} R_{m, l}\left(t^{2}\right) \epsilon_{m}\right)$, where $R_{m, l} \in \mathbb{Z}[T]$ has degree $\leq d(l)-d(m)$.
D is an algebraic reflection of Verdier duality.
1.4. Lemma. γ_{l} is the unique element of \mathcal{M} satisfying $D\left(\gamma_{l}\right)=\gamma_{l}$, of the form

$$
\begin{equation*}
t^{-d(l)}\left(\epsilon_{l}+\sum_{d(m)<d(l)} P_{m, l}\left(t^{2}\right) \epsilon_{m}\right) \tag{1}
\end{equation*}
$$

where $P_{m, l} \in \mathbb{Z}[T]$ has degree $\leq \frac{1}{2}(d(l)-d(m)-1)$ and has positive coefficients.

If $l=(v, \xi), m=(w, \eta)$ and $P_{m, l} \neq 0$ then w is contained in the closure of v.
For $d(m)<d(l)$ we denote by $\mu(m, l)$ the coefficient of $T^{\frac{1}{2}(d(l)-d(m)-1)}$ in $P_{m, l}$. If $d(l)<d(m)$ we put $\mu(m, l)=\mu(l, m)$.

Denote by $b_{x}(x \in W)$ the Kazhdan-Lusztig elements of \mathcal{H} (see $[\mathrm{Cu}, \mathrm{p}$. 30]). They can also be viewed as the elements $\left[A_{0, x}\right]$ of [MS2, 3.2]).

Let $l=(v, \xi)$. For $s \in S$ let $P_{s}=B \cup B s B$ be the parabolic subgroup defined by s. Denote by $\tau(l) \subset S$ the set of simple reflections s such that $\operatorname{dim} P_{s} v=\operatorname{dim} v$ and, moreover, ξ extends to a sheaf on $P_{s} v$. (In the notations of [MS2, 4.3.1] the $s \in \tau(l)$ are the simple reflections for which we have one of the cases I, IIb, IIIb or IVb with $a(\xi)=0$.)
1.5. Proposition. $b_{s} \gamma_{l}$ equals

$$
\begin{align*}
& \sum_{s \in \tau(m)} \mu(m, l) \gamma_{m} \text { if } \quad s \notin \tau(l), \tag{2}\\
&\left(t+t^{-1}\right) \gamma_{l} \text { if } \tag{3}\\
& s \in \tau(l) .
\end{align*}
$$

Proof. (2) is proved in the same way as [LV, 5.3], using [loc. cit., 5.4]. For (3) see [loc. cit., 5.2].
1.6. Corollary. Assume that $\gamma=\sum_{l \in \Gamma} f_{l} \gamma_{l}$, where the f_{l} are Laurent polynomials. If $b_{s} \gamma=\left(t+t^{-1}\right) \gamma$ then $s \in \tau(l)$ if $f_{l} \neq 0$.
Proof. Using (3) we see that it suffices to prove that if $f_{l}=0$ for all l with $s \in \tau(l)$ then $f_{l}=0$ for all l. This follows from (2).
1.7. Proposition. Let $x \in W, l \in \Lambda$. Then

$$
b_{x} \gamma_{l}=\sum_{m \in \Lambda} g_{x, l, m} \gamma_{m}
$$

where the $g_{x, l, m}$ lie in $\mathbb{Z}\left[t, t^{-1}\right]$ and have non-negative coefficients. Moreover, they are invariant under the map $t \mapsto t^{-1}$.
Proof. The first part follows from the sheaf-theoretic construction of the product, using the decomposition theorem and the fact that the eigenvalues of Frobenius on the stalks of the cohomology sheaves of the perverse sheaves $A_{\xi, v}$ are powers of q (see [MS2, 7.1.2]). For a similar result see [MS1, 4.2.6]. The last point is a consequence of the relative hard Lefschetz theorem.

2. Cells.

2.1. We define a preorder relation \leq on Λ as follows: $m \leq l$ if $g_{x, l, m} \neq 0$ for some $x \in W$, where $g_{x, l, m}$ is as in 1.7. An equivalent definition is: γ_{m} occurs with a non-zero coefficient in some element of $\mathcal{H} \gamma_{l}$.
Since the $b_{s}(s \in S)$ generate \mathcal{H}, it follows that the relation can also be defined to be the one generated by the elementary relations $\leq_{s}(s \in S)$, where $m \leq_{s} l$ if $s \notin \tau(l)$ and γ_{m} occurs in $b_{s} \gamma_{l}$ with a non-zero coefficient. By (2) the latter condition is equivalent with: $s \in \tau(m)$ and $\mu(m, l) \neq 0$.
We define an equivalence relation \sim on Λ by $l \sim m$ if $l \leq m$ and $m \leq l$. The equivalence classes are the cells of Λ. These definitions are similar to the well-known definition of cells in W, due to Kazhdan and Lusztig. For the results about such cells in W we refer to $[\mathrm{Cu}, \mathrm{Ch}$. II, III].

Let Γ be a cell in Λ. Write $m \leq \Gamma(m<\Gamma)$ if $m \leq l$ (respectively, $m \leq l$ and $m \nsim l$) for some $l \in \Gamma$. The γ_{l} with $l \leq \Gamma$ (respectively, $l<\Gamma$) span a submodule \mathcal{M}_{Γ} (respectively, $\mathcal{M}_{\Gamma}^{\prime}$) of \mathcal{M}. Put

$$
\mathcal{N}=\mathcal{N}_{\Gamma}=\mathcal{M}_{\Gamma} / \mathcal{M}_{\Gamma}^{\prime}
$$

This is a free \mathcal{H}-module, with basis $\delta_{l}=\gamma_{l}+\mathcal{M}_{\Gamma}^{\prime}(l \in \Gamma)$. We define an integer $a=a(\Gamma)$ by

$$
a=\max _{x \in W ; l, m \in \Gamma}\left(\operatorname{deg} g_{x, l, m}\right)
$$

Clearly $a \geq 0$. For $x \in W, l, m \in \Lambda$ all Laurent polynomials $g_{x, l, m}$ have degree $\leq a$. Let $c_{x, l, m}$ be the coefficient of t^{a} in $g_{x, l, m}$. It is an integer ≥ 0.

In the proof of the next lemma the notations are as in [loc. cit., no. 6]: the $h_{x, y, z}$ are the structure constants of \mathcal{H} for the Kazhdan-Lusztig basis $\left(b_{x}\right), a(z)=\max _{x, y}\left(\operatorname{deg} h_{x, y, z}\right)$ is Lusztig's cell invariant and $\gamma_{x, y, z}$ is the coefficient of $t^{a(z)}$ in $h_{x, y, z}$.
We shall also use Lusztig's asymptotic ring, which we denote by \mathcal{J}, see [loc. cit., no. 9]. It is a free abelian group with basis $j_{z}(z \in W)$, the $\gamma_{x, y, z}$ being the corresponding structure constants. By [loc. cit., 9.2] we may view \mathcal{J} as a subring of $\mathbb{Q}(t) \otimes_{\mathbb{Z}[t]} \mathcal{H}$, such that for $x \in W$

$$
\begin{equation*}
b_{x}=\sum_{d \in \mathcal{D}, a(d)=a(z)} h_{x, d, z} j_{z}, \tag{4}
\end{equation*}
$$

where $\mathcal{D} \subset W$ is the set of Duflo involutions in W (introduced in [loc. cit., 6.8 (ii)]).
2.2. Lemma. If $a(x)>a$ then $b_{x} \mathcal{N}=0$.

Proof. If j_{z} occurs in the right-hand side of (4) with a non-zero coefficient then $z \leq_{R} x$, whence $a(z) \geq a(x)$ by [loc. cit., 6.9 (ii)]. Hence in order to prove the lemma it suffices to show that $j_{x} \mathcal{N}=0$ for $a(x)>a(\mathcal{N}$ being viewed as a subset of $\mathbb{Q}(t) \otimes \mathcal{N})$. Putting

$$
b=\max \left\{a(x) \mid j_{x} \mathcal{N} \neq 0\right\}
$$

this amounts to proving that $b \leq a$.
Let $j_{x} \mathcal{N} \neq 0$ and $a(x)=b$. Let d be the Duflo involution in the left cell of x (see [loc. cit., 6.11]). Then by [loc. cit., 9.5 (i)] we have $j_{x}=j_{x} j_{d}$,
whence $j_{d} \mathcal{N} \neq 0$, and $a(d)=a(x)=b$. So we may assume that $x=d$. Let tr be the trace function on $\mathbb{Q}(t) \otimes \mathcal{H}$, acting on $\mathbb{Q}(t) \otimes \mathcal{N}$. By (4)

$$
\operatorname{tr}\left(b_{d}\right)=\sum_{e \in \mathcal{D}, a(e)=a(z)} h_{d, e, z} \operatorname{tr}\left(j_{z}\right)
$$

The non-zero $h_{d, e, z}$ in the right-hand side are such that $a(z) \geq a(d)=b$. Our assumption implies that we can restrict the summation to the z with $a(z)=b$. Then $\operatorname{deg}\left(h_{d, e, z}\right) \leq b$. If equality holds we must have $\gamma_{d, e, z} \neq 0$, which can only be if $d=e=z$, by [loc. cit., 6.10 (i), 6.8 (ii)]. This implies that $\operatorname{tr}\left(b_{d}\right)-h_{d, d, d} \operatorname{tr}\left(j_{d}\right)$ is a Laurent polynomial of degree $<b$ (notice that all $\operatorname{tr}\left(j_{z}\right)$ are algebraic integers). Since $j_{d}^{2}=j_{d}$ we have $\operatorname{tr}\left(j_{d}\right)>0$. Hence $\operatorname{tr}\left(b_{d}\right)$ is a Laurent polynomial of degree b. Now

$$
\operatorname{tr}\left(b_{d}\right)=\sum_{l \in \Gamma} g_{d, l, l}
$$

from which we see that there is $l \in \Gamma$ with $\operatorname{deg}\left(g_{d, l, l}\right) \geq b$. This implies that $b \leq a$, which we had to prove.

For $x \in W$ define $\tau(x)=\{s \in S \mid s x<x\}$.
2.3. Lemma. Let $x \in W, l, m \in \Gamma$ and assume that $c_{x, m, l} \neq 0$.
(i) $\tau(x)=\tau(l)$;
(ii) For any $l^{\prime} \in \Gamma$ there exists $x^{\prime} \in W$ such that $x^{\prime} \leq_{L} x$ and $c_{x^{\prime}, m, l^{\prime}} \neq 0$.

Proof. Assume that $l, l^{\prime} \in \Gamma$ and $l^{\prime} \leq_{s} l$ for some $s \in S$. Then $s \notin \tau(l)$. We have the associativity relation

$$
\left(b_{s} b_{x}\right) \gamma_{m}=b_{s}\left(b_{x} \gamma_{m}\right)
$$

If $s x<x$ we have $b_{s} b_{x}=\left(t+t^{-1}\right) b_{x}$ by [$\left.\mathrm{Cu}, 5.1\right]$, whence $b_{s}\left(b_{x} \delta_{m}\right)=$ $\left(t+t^{-1}\right)\left(b_{x} \delta_{m}\right)$. From 1.6 we infer that this is impossible, since δ_{l} occurs in $b_{x} \delta_{m}$ with a non-zero coefficient. It follows that $\tau(x) \subset \tau(l)$.
Now assume that $s x>x$. Writing out the associativity relation and comparing coefficients of l^{\prime} on both sides we obtain, using [loc. cit.] and 1.5,

$$
\begin{equation*}
\sum_{s x^{\prime}<x^{\prime}} \mu\left(x^{\prime}, x\right) g_{x^{\prime}, m, l^{\prime}}=\left(t+t^{-1}\right) g_{x, m, l^{\prime}}+\sum_{n, s \notin \tau(n)} g_{x, m, n} \mu\left(l^{\prime}, n\right) \tag{5}
\end{equation*}
$$

In the left-hand side of $(5), \mu\left(x^{\prime}, x\right)$ is the usual Kazhdan-Lusztig coefficient.
If $c_{x, m, l} \neq 0$ and $\mu\left(l^{\prime}, l\right) \neq 0$, the right-hand side contains a non-zero
multiple of t^{a}. Since all Laurent polynomials occurring in (5) have coefficients ≥ 0, the left-hand side also contains a non-zero multiple of t^{a}. We conclude that there is $x^{\prime}<_{L, s} x$ with $c_{x^{\prime}, m, l^{\prime}} \neq 0$ (where $<_{L, s}$ is the elementary preorder relation on W defined by s, i.e. $s x^{\prime}<x^{\prime}, s x>x$ and $\mu\left(x^{\prime}, x\right) \neq 0$, cf. $\left.[\mathrm{Cu}, 5.2]\right)$. (ii) follows in the case that $l^{\prime} \leq_{s} l$. The general case is a consequence.
Again, let $s x>x$ and consider (5) with l^{\prime} arbitrary such that $s \notin \tau\left(l^{\prime}\right)$. Since the left-hand side has degree $\leq a$ we must have $c_{x, m, l^{\prime}}=0$. This implies that $\tau(l) \subset \tau(x)$ if $c_{x, m, l} \neq 0$ and (i) follows.
2.4. Lemma. Let $l, m \in \Gamma$ and $x \in W$ be such that $c_{x, l, m} \neq 0$.
(i) $a(x)=a$;
(ii) In 2.3 (ii) we have $x^{\prime} \sim_{L} x$.

Proof. From the asssociativity relation $\left(b_{x} b_{y}\right) \gamma_{n}=b_{x}\left(b_{y} \gamma_{n}\right)(x, y \in$ $W, n \in \Gamma$) we obtain for $m \in \Gamma$

$$
\begin{equation*}
\sum_{z \in W} h_{x, y, z} g_{z, n, m}=\sum_{p \in \Gamma} g_{x, p, m} g_{y, n, p} \tag{6}
\end{equation*}
$$

Let $c_{x, l, m} \neq 0$, then $g_{x, l, m}$ has degree a. By 2.3 (ii) there exists $y \leq_{L} x$ such that $\operatorname{deg}\left(g_{y, l, l}\right)=a$. Take $n=l$ in (6). The right-hand side has degree $2 a$. If in the left-hand side of (6) we have $g_{z, l, m} \neq 0$ then $b_{z} \mathcal{N} \neq 0$ and $a(z) \leq a$, whence $\operatorname{deg}\left(h_{x, y, z}\right) \leq a$. Since the right-hand side has degree $2 a$ there is $z \in W$ with $\operatorname{deg}\left(h_{x, y, z}\right)=a(z)=a$. Then $\gamma_{x, y, z} \neq 0$. By $[\mathrm{Cu}, 6.10]$ we have $x \sim_{R} z$ and $a(x)=a(z)=a$, proving (i).
(ii) is a consequence of (i) and [loc. cit.].
2.5. Lemma. For $x, y \in W$ and $m, n \in \Gamma$ we have $\sum_{z \in W} \gamma_{x, y, z} c_{z, n, m}=$ $\sum_{l \in \Gamma} c_{x, l, m} c_{y, n, l}$.

Proof. We use (6). From the proof of 2.4 we see that all structure constant occurring in (6) are Laurent polynomials of degree $\leq a$. The asserted identity then follows by comparing coefficients of $t^{2 a}$ in both sides of (6).

3. A \mathcal{J}-module.

3.1. Let $\mathcal{K}=\mathcal{K}_{\Gamma}$ the free abelian group with basis k_{l} indexed by the elements of Γ. For $x \in W, l \in \Lambda$ define

$$
j_{x} k_{l}=\sum_{m \in \Gamma} c_{x, l, m} k_{m}
$$

and extend this to an additive $\operatorname{map} \mathcal{J} \otimes_{\mathbf{Z}} \mathcal{K} \rightarrow \mathcal{K}$. By 2.5 we have

$$
j_{x}\left(j_{y} k_{l}\right)=\left(j_{x} j_{y}\right) k_{l}
$$

This shows that we have defined a \mathcal{J}-module structure on \mathcal{K}. We have not yet established that \mathcal{K} is a unital module, i.e that the identity element

$$
\mathbf{1}=\sum_{d \in \mathcal{D}} j_{d}
$$

of \mathcal{J} acts as the identity on \mathcal{K}. We shall do this presently.
3.2. Proposition. For $z \in \mathcal{J}$ the traces $\operatorname{tr}\left(j_{z}, \mathcal{K}\right)$ and $\operatorname{tr}\left(j_{z}, \mathcal{N}\right)$ are equal.

Proof. It follows from (4) that for $z \in W$

$$
j_{z}=\sum_{w \in W} \xi_{z, w} t^{a(z)} b_{w}
$$

where $\left(\xi_{z, w}\right)$ is a matrix with entries in $\mathbb{Q}(t)$. Also, $\xi_{z, w}$ is defined at $t=0$ and $\xi_{z, w}(0)=\delta_{z, w}$ (cf. [Cu, p. 54]). Hence

$$
j_{z} \delta_{l}=\sum_{m \in \Gamma} \eta_{z, l, m} \delta_{m}
$$

with

$$
\eta_{z, l, m}=\sum_{w} \xi_{z, w} t^{a(z)} g_{w, l, m}
$$

By 2.4 we may assume that $a(z)=a$. Since $g_{w, l, m}$ is invariant under the $\operatorname{map} t \mapsto t^{-1}$ (see 1.7), it follows that $t^{a(z)} g_{w, l, m} \in \mathbb{Z}[t]$ and has value $c_{w, l, m}$ for $t=0$. We conclude that $\eta_{z, m, l}$ is a rational function in t which is defined at $t=0$ with value $c_{z, m, l}$.
We have

$$
\operatorname{tr}\left(j_{z}, \mathcal{N}_{\mathbb{Q}(t)}\right)=\sum_{l \in \Gamma} \eta_{z, l, l},
$$

a rational function of t which is defined at $t=0$. Since $\operatorname{tr}\left(j_{z}\right)$ is an algebraic integer for all z, this rational function must be constant and its value is the value at 0 , which is $\operatorname{tr}\left(j_{z}, \mathcal{K}\right)$. The proposition follows.

3.3. Corollary. \mathcal{K} is unital.

Proof. Put

$$
\mathcal{K}_{0}=\{k \in \mathcal{K} \mid 1 . k=0\}
$$

this is a direct summand of \mathcal{K}. We have a structure of unital \mathcal{J}-module on $\mathcal{K} / \mathcal{K}_{0}$, whence $\operatorname{tr}(\mathbf{1}, \mathcal{K})=|\Gamma|-\operatorname{rank}\left(\mathcal{K}_{0}\right)$. The proposition shows that $\operatorname{tr}(\mathbf{1}, \mathcal{K})=|\Gamma|$ and it follows that $\mathcal{K}_{0}=\{0\}$, i.e. that \mathcal{K} is unital.

We write $\mathcal{H}_{\mathbb{Q}(t)}=\mathbb{Q}(t) \otimes_{\mathbb{Z}[t]} \mathcal{H}$, and similarly for other objects obtained by extending coefficients. We know that $\mathcal{H}_{\mathbb{Q}(t)}=\mathcal{J}_{\mathbb{Q}(t)}$ (recall that \mathcal{J} is a subring of $\left.\mathcal{H}_{\mathbb{Q}(t)}\right)$. From 3.3 we see that $\mathcal{K}_{\mathbb{Q}(t)}$ is a $\mathcal{H}_{\mathbb{Q}(t) \text {-module }}$
3.4. Proposition. The $\mathcal{H}_{\mathbb{Q}(t)}$-modules $\mathcal{N}_{\mathbb{Q}(t)}$ and $\mathcal{K}_{\mathbb{Q}(t)}$ are isomorphic.

Proof. The algebra $\mathcal{H}_{\mathbb{Q}(t)}$ is split semi-simple (see [$\left.\mathrm{Cu}, 8.3\right]$). Using the orthogonality relations for its irreducible representations (cf. [MS1, 11.1.4]) it follows from 3.2 that the multiplicities of an irreducible representation of $\mathcal{H}_{\mathbb{Q}(t)}$ in $\mathcal{N}_{\mathbb{Q}(t)}$ and $\mathcal{K}_{\mathbb{Q}(t)}$ are the same. This proves 3.4.
3.5. Proposition. (i) For every $l \in \Gamma$ there is a unique Duflo involution d with $j_{d} k_{l}=k_{l}$;
(ii) The involutions of (i) lie in a unique two-sided cell of W.

Proof. By 3.3 we have

$$
\sum_{d \in \mathcal{D}} j_{d} k_{l}=k_{l}
$$

Now any product $j_{d} k_{l}$ is a positive integral linear combination of k_{m} 's. (i) follows from the observation that the left-hand side of the formula can contain only one non-zero term.
Let $d, e \in \mathcal{D}$ and $l, m \in \Gamma$ be such that $j_{d} k_{l}=k_{l}$ and $j_{e} k_{m}=k_{m}$. It follows from 2.3 (ii) and 2.4 (ii) that there is $x \sim_{L} d$ such that $j_{x} k_{l}$ contains k_{m} with a non-zero coefficient. Then $j_{e} j_{x} k_{l} \neq 0$, in particular $j_{e} j_{x} \neq 0$. This implies that $e \sim_{L} x^{-1}$ (see [Cu, 9.5 (ii)]). Then $e \sim_{R}$ $x \sim_{L} d$, whence $d \sim_{L R} e$, proving the proposition.

4. Complements and examples.

4.1. A bilinear form. Let $v \in V$. For $s \in S$ denote by $P_{s} \supset$ B the parabolic subgroup of semi-simple rank 1 associated to s. Let $m(s) v$ be the unique open orbit of B in $P_{s} v$. We recall the notion of a reduced decomposition $\mathbf{v}=\left(\left(v_{0}, \ldots, v_{l}\right), \mathbf{s}=\left(s_{1}, \ldots, s_{l}\right)\right)$ of v : the v_{i} lie in V and the s_{j} in S, v_{0} is a closed orbit, $v_{l}=v$ and $v_{i}=$ $m\left(s_{i}\right) v_{i-1} \neq v_{i-1}$ (see [RS1, 5.7, no. 7]). Then $d\left(v_{i}\right)=d\left(v_{i-1}\right)+1$ $(1 \leq i \leq l)$. Let $\lambda_{c}(v)\left(\lambda_{i}(v)\right)$ be the number of i such that s_{i} is complex (respectively, imaginary) for v_{i-1}. See [loc.cit., 4.3], the cases correspond
to the cases IIa (respectively, IIIa or IVa) of [MS2, 4.1.4]. It follows from the definitions, using [RS1, 3.7], that these numbers depend only on v, and not on the choice of the reduced decomposition (\mathbf{v}, \mathbf{s}).
Denote by U the unipotent part of B, so $B=T U$. It is known that $B \cap K(T \cap K)$ is a Borel subgroup (respectively, a maximal torus) of K. Let $v_{0} \in V$ be the closed orbit $B K / K$. It is isomorphic to $B / B \cap K$. In fact, this is true for any closed orbit $v_{0} \in V$, as follows from [$\mathrm{S} 1,6.6$]. If $v \in V$ we put

$$
d_{c}(v)=\lambda_{c}(v)+\operatorname{dim} U / U \cap K, d_{i}(v)=\lambda_{i}(v)+\operatorname{dim} T / T \cap K
$$

Then

$$
d(v)=d_{c}(v)+d_{i}(v)
$$

If $(x, \xi) \in \Lambda$ we put $d_{i}(l)=d_{i}(v), d_{c}(l)=d_{l}(v)$.
Denote by N be the normalizer of T. Let $v \in V$. There exists $x \in G$ with $x K \in v$ such that $x(\theta x)^{-1} \in N$ (see [loc.cit., 4.2]). Denote isotropy subgroups of x by a suffix x.
4.2. Lemma. (i) v is isomorphic as a variety to B / B_{x};
(ii) $B_{x}=T_{x} U_{x}$.
(iii) $\operatorname{dim} T / T_{x}=d_{i}(v), \operatorname{dim} U / U_{x}=d_{c}(v)$.

Proof. It is clear that there is a bijective morphism of homogeneous spaces $B / B_{x} \rightarrow v$. It is separable (see [MS2, 6.3]), hence is an isomorphism. This proves (i). (ii) and (iii) follow from [S1, 4.7].

We introduce the $\mathbf{Z}\left[t, t^{-1}\right]$-bilinear form β on \mathcal{M} with

$$
\beta\left(\epsilon_{l}, \epsilon_{m}\right)=\delta_{l, m}\left(t^{2}-1\right)^{d_{i}(l)} t^{2 d_{c}(l)}
$$

Clearly, it is symmetric and nondegenerate.
4.3. Proposition. For $x \in W, \mu, \nu \in \mathcal{M}$ we have

$$
\beta\left(e_{x} \mu, \nu\right)=\beta\left(\mu, e_{x^{-1}} \nu\right)
$$

Proof. It suffices to prove this in the case that x is a simple reflection s and $\mu=\epsilon_{l}, \nu=\epsilon_{m}(l, m \in \Lambda)$. Using the explicit formulas of [MS2, 4.3.1] for the products $e_{s} \epsilon_{l}$, the verification of the asserted formula is straightforward. It is left to the reader. (The explicit formulas in our special case are also described, somewhat differently, in [RS2, 7.3]).
4.4. Corollary. Let $l, m \in \Lambda$.
(i) $\beta\left(\gamma_{l}, \gamma_{m}\right)-\delta_{l, m} \in t^{-1} \mathbb{Z}\left[t^{-1}\right]$;
(ii) For $x \in W, l, m \in \Lambda$ we have $\operatorname{deg} g_{x, m, l}=\operatorname{deg} g_{x^{-1}, l, m}$;
(iii) Let Γ be a cell in Λ. For $x \in W, l, m \in \Gamma$ we have $c_{x, m, l}=c_{x^{-1}, l, m}$.

Proof. Inserting the expressions of (1) for γ_{l} and γ_{m} and using the degree estimates for the polynomials $P_{m, l}$ of (1), (i) readily follows.
Let M be the matrix $\left(\beta\left(\epsilon_{l}, \epsilon_{m}\right)\right)_{l, m \in \Lambda}$. For $x \in W$, multiplication by b_{x} in \mathcal{M} is given (relative to the basis $\left(\epsilon_{l}\right)$) by the matrix $M_{x}=\left(h_{x, m, l}\right)$. By the proposition, the matrix of $b_{x^{-1}}$ is given by the transpose of M_{x} relative to β, which is $M^{-1}\left({ }^{t} M_{x}\right) M$. Using (i) we see that $M^{-1}-I$ is a matrix with entries in $t^{-1} \mathbb{Z}\left[\left[t^{-1}\right]\right]$. (ii) then follows from (i) and this observation. (iii) also follows.
4.5. Corollary. Let $x \in W, l, m \in \Gamma$ and assume that $c_{x, m, l} \neq 0$.
(i) $\tau\left(x^{-1}\right)=\tau(m)$;
(ii) For any $m^{\prime} \in \Gamma$ there exists $x^{\prime} \in W$ such that $x^{\prime} \leq_{R} x$ and $c_{x^{\prime}, m^{\prime}, l} \neq$ 0.

Proof. This follows from 4.4 (iii) and 2.3.
4.6. Examples. We briefly discuss two examples with $G=S L_{3}$. We take B and T to be the subgroups of upper triangular, respectively diagonal, matrices. The Weyl group is S_{3}.
The simple roots are the characters α_{1}, α_{2} of T sending $\left(a_{1}, a_{2}, a_{3}\right) \in T$ to $a_{1} a_{2}^{-1}$, respectively $a_{2} a_{3}^{-1}$. The corresponding simple reflections are the transpositions (12) and (23). The corresponding generators of the Hecke algebra \mathcal{H} are denoted by e_{1} and e_{2}.
(a) $\theta(g)=a\left({ }^{t} g\right)^{-1} a^{-1}$ where a is such that θ stabilizes B and T. Then $K \simeq S O_{3}$.
The set V of B-orbits in G / K has 4 elements $v_{0}, v_{1}, v_{1}^{\prime}, v_{2}$, of respective dimensions $3,4,4,5$, as follows from [RS1, p. 432-433]. One checks that the group \mathcal{L}_{v} of B-equivariant local systems on the orbit v is trivial except if $v \neq v_{2}$, in which case it is the character group of the subgroup of T of elements of order ≤ 2.
We abbreviate $\epsilon_{v_{0}, 0}$ to ϵ_{0}. Similarly, we have ϵ_{1} and ϵ_{1}^{\prime}. We have 4 basis elements $\epsilon_{v_{2}, \xi}$ denoted by $\epsilon_{20}, \epsilon_{21}, \epsilon_{22}, \epsilon_{23}$, where ϵ_{20} corresponds to the constant sheaf on v_{2}. We use similar notations for the Kazhdan-Lusztig elements γ_{l}.
The action of e_{1} and e_{2} on the basis elements is described in [RS2, p. 141] (in the first formula of line 6 of that page f_{1} should be replaced by
f_{1}^{\prime}).
We now deal with the duality operator D. It follows from 1.3 (c) that $D\left(\epsilon_{0}\right)=t^{-6} \epsilon_{0}$. By [loc. cit.] we have $e_{1} \epsilon_{0}=\epsilon_{1}^{\prime}, e_{2} \epsilon_{0}=\epsilon_{1}$. Then $D\left(\epsilon_{1}\right), D\left(\epsilon_{1}^{\prime}\right)$ can be determined from 1.3 (b). One checks that

$$
\gamma_{0}=t^{-3} \epsilon_{0}, \gamma_{1}=t^{-4}\left(\epsilon_{1}+\epsilon_{0}\right), \gamma_{1}^{\prime}=t^{-4}\left(\epsilon_{1}^{\prime}+\epsilon_{0}\right)
$$

have the properties of 1.4 and thus are the correct Kazhdan-Lusztig elements. Next, since G / K is smooth its intersection cohomology complex is the shifted constant sheaf $E[5]$, from which it follows that

$$
\gamma_{20}=t^{-5}\left(\epsilon_{20}+\epsilon_{1}+\epsilon_{1}^{\prime}+\epsilon_{0}\right)
$$

Since γ_{20} is D-invariant, this formula determines $D\left(\epsilon_{20}\right)$.
We have

$$
e_{2} \epsilon_{1}^{\prime}=\epsilon_{20}+\epsilon_{22}+\epsilon_{1}^{\prime}
$$

By 1.3 (b) one knows how D acts on the right-hand side. Using what is already known one finds $D\left(\epsilon_{22}\right)$, and similarly $D\left(\epsilon_{21}\right)$. Then

$$
\gamma_{21}=t^{-5}\left(\epsilon_{21}+\epsilon_{1}\right), \gamma_{22}=t^{-5}\left(\epsilon_{22}+\epsilon_{1}^{\prime}\right)
$$

satisfy the requirements of 1.4.
Finally, we claim that

$$
\gamma_{23}=t^{-10} \epsilon_{23} .
$$

To see this it suffices to show that $D\left(\epsilon_{23}\right)=t^{-5} \epsilon_{23}$. Now by the formulas of [loc. cit.], ϵ_{23} is annihilated by $e_{1}+1$ and $e_{2}+1$. By 1.3 (b) the same must be true of $\mu=D\left(\epsilon_{23}\right)$. Then μ must be orthogonal, with respect to the bilinear form β of 4.3 , to $\left(e_{1}+1\right) \mathcal{M}$ and $\left(e_{2}+1\right) \mathcal{M}$. The formulas of [loc. cit.] show that this can only be if μ is a multiple of ϵ_{23}. By 1.3 (c) we then must have $\mu=t^{-10} \epsilon_{23}$.

Let $c_{i}=c_{s_{i}}(i=1,2)$. The products $c_{i} \gamma_{l}$ which are not 0 or $\left(t+t^{-1}\right) \gamma_{l}$ are the following: $c_{1} \gamma_{0}=\gamma_{1}^{\prime}, c_{2} \gamma_{0}=\gamma_{1}, c_{1} \gamma_{1}=\gamma_{20}+\gamma_{21}, c_{2} \gamma_{1}^{\prime}=$ $\gamma_{20}+\gamma_{22}, c_{1} \gamma_{22}=\gamma_{1}^{\prime}, c_{2} \gamma_{21}=\gamma_{1}$. Using these formulas we see that the cells are: $\Gamma_{0}=\left\{v_{0}\right\}, \Gamma_{1}=\left\{v_{1}, \gamma_{21}\right\}, \Gamma_{1}^{\prime}=\left\{v_{1}^{\prime}, v_{22}\right\}, \Gamma_{3}=\left\{v_{20}\right\}, \Gamma_{0}^{\prime}=$ $\left\{v_{23}\right\}$. The index denote the a-value on the cell.
The two-sided cells in S_{3} are $\Delta_{0}=\{1\}, \Delta_{1}=\{(12),(23),(123),(132)\}$, $\Delta_{3}=\{(13)\}$. The two-sided cell in S_{3} attached to a cell in Λ is the one with the same suffix.
(b) $\theta(g)=a g a^{-1}$, where $a=\operatorname{diag}(-\zeta, \zeta, \zeta)$ with $\zeta^{3}=-1$. Now $K \simeq$ $G L_{2}$.
This case is discussed (more generally, for $S L_{n}$) in [RS1, 10.5]. We have three closed orbits v_{1}, v_{2}, v_{3} of dimension 2 , two orbits v_{12}, v_{23} of
dimension 3 and the open orbit v_{13} of dimension 4. The numbering is such that $v_{i} \leq v_{j k}$ if and only if $i=j$ or $i=k$.
One checks that all groups \mathcal{L}_{v} are trivial. Using [loc. cit.] and the formulas of [MS2, 4.3.1] or [RS2, 7.3] it is straightforward to determine the products $e_{i} \epsilon_{v}$. Proceeding as in the previous example one determines the various $D\left(\epsilon_{v}\right)$ and the Kazhdan-Lusztig elements γ_{v}.
It turns out that for all $v \in V$

$$
\gamma_{v}=t^{-\operatorname{dim} v} \sum_{w \leq v} \epsilon_{w}
$$

(which means that all orbit closures \bar{v} are rationally smooth). We can then determine the products $c_{i} \gamma_{v}$. The upshot is that the cells are $\Gamma_{0}=\left\{v_{2}\right\}, \Gamma_{1}=\left\{v_{1}, v_{12}\right\}, \Gamma_{1}^{\prime}=\left\{v_{2}, v_{23}\right\}, \Gamma_{3}=\left\{v_{13}\right\}$. Again, the suffixes denote the a-values.

References

$[\mathrm{Cu}] \quad$ C. W. Curtis, Representations of Hecke algebras, in: Orbites unipotentes et représentations I, Astérisque no. 168, p. 13-60, Soc. Math. de France, 1988.
[G] I. Grojnowski, Character sheaves and symmetric spaces, Thesis, MIT, 1992.
[H] A. Henderson, Spherical functions and character sheaves, preprint (2001).
[LV] G. Lusztig and D. A. Vogan Jr., Singularities of closures of K-orbits on flag manifolds, Inv. Math., 71 (1983), 365-379.
[MS1] J. G. M. Mars and T. A. Springer, Character sheaves, in: Orbites unipotentes et représentations III, Astérisque no. 173-174, p. 111198, Soc. Math. de France, 1989.
[MS2] J. G. M. Mars and T. A. Springer, Hecke algebra representations related to spherical varieties, Journal of Representation Theory 2 (1998), 33-69.
[RS1] R. W. Richardson and T. A. Springer, The Bruhat order on symmetric varieties, Geom. Dedic. 35 (1990), 389-436.
[RS2] R. W. Richardson and T. A. Springer, Combinatorics and geometry of K-orbits on the flag manifold, in: Contemporary Mathematics, vol. 153, p. 109-142, Amer. Math. Soc., 1993.
[S1] T. A. Springer, Some results on algebraic groups with involutions, in: Advanced Studies in Pure Mathematics, vol. 6, p. 525-543, Kinokuniya/North-Holland, 1985.
[V] D. A. Vogan Jr., Irreducible characters of semisimple Lie groups IV, Character-multiplicity duality, Duke Math. J., 49 (1982), 9431073.

Mathematisch Instituut
Budapestlaan 6
3584 CD Utrecht
the Netherlands
springer@math.uu.nl

