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Extremal weight modules of quantum affine algebras 

Hiraku Nakajima 

Abstract. 

Let g be an affine Lie algebra, and let U q @) be the quantum 
affine algebra introduced by Drinfeld and Jimbo. In [11] Kashiwara 
introduced a Uq(g)-module V(.X), having a global crystal base for an 
integrable weight .X of level 0. We call it an extremal weight module. 
It is isomorphic to the Weyl module introduced by Chari-Pressley [6]. 
In [12, §13] Kashiwara gave a conjecture on the structure of extremal 
weight modules. We prove his conjecture when g is an untwisted 
affine Lie algebra of a simple Lie algebra g of type AD E, using a 
result of Beck-Chari-Pressley [5]. As a by-product, we also show that 
the extremal weight module is isomorphic to a universal standard 
module, defined via quiver varieties by the author [16, 18]. This result 
was conjectured by Varagnolo-Vasserot [19) and Chari-Pressley [6] in 
a less precise form. Furthermore, we give a characterization of global 
crystal bases by an almost orthogonality propery, as in the case of 
global crystal base of highest weight modules. 

§1. Introduction 

In the conference, I gave a survey on quiver varieties and finite 
dimensional representations of quantum affine algebras. Since I already 
wrote a survey article [17] on this subject, I will discuss a different one 
in this paper. But it is related to my talks since I will study extremal 
weight modules which turn out to be isomorphic to universal standard 
modules, which was one of the main objects in my talk. 

Let us describe Kashiwara's conjecture [12, §13] on extremal weight 
modules when g is the untwisted affine Lie algebra of a simple Lie algebra 
g of type AD E. The notation will be explained in the next section. 

Let >. be a dominant integral weight of g. We write >. = Eiei mttvi, 
where tii'i is the i-th fundamental weight of g. We consider >., wi as 
level 0 weights ofg by identifying them with>.- Ei mia{ Ao, Ai- a{ Ao, 
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where c = L:i a'( hi is the central element, and Ai is the ith fundamental 
weight of g. Let V(>.) be the extremal weight module of extremal weight 
>.with a global crystal base (.c(>.),B(>.), vz(>.)) (see §2.5 for definition). 
Let us define a Uq(g)-module 

V(>.) d,g. Q9v(wi)®m,, 
iEl 

where we take and fix any ordering of I to define the tensor product. It 
has U~(g)-module automorphisms zi,v (i E I, v = 1, ... , mi) (see §3.2). 

Set E(.>.) d,g. ®iEI.c(wi)®m,, uA d,g. ®iEiu~:";· Let Bo(>.) be the 
connected component of the crystal ®iEI B( wi)®m, containing uA mod 

ql(>.). There is a (subset of) global base {G(b) I b E 8 0 (.>.)} (see 

§3.2). Let B(>.) d~. {s(z)b I b E B0 (.>.), s E (Z~g)(.>.)} where s(z) = 
TiiEI SA(iJ (zi,l, ... , Zi,mJ runs over the set (Z~g)(i) of products of Schur 
functions. -

There exists a unique Uq(g)-linear homomorphism 

~A: V(.>.) -tV(>.) 

sending uA to uA (see §3.2). 

Theorem 1. (I) ~A is injective. 
(2) ~A(.c(.>.)) c E(>.). 

Let~~ be the induced map .c(>.)jq.c(>.)--> E(>.)jql(>.). 
(3) ~~ gives a bijection between B(>.) and B(>.). 
(4) ~A maps the global crystal base {G(b) I bE B(.>.)} to {s(z)G(b) I 

bE Bo(.>.), s E (Z~g)(.>.)}. 

While the author was preparing this article, he learned that Kashi
wara also noticed that his conjecture follows from [5] when g is of type 
ADE. In fact, some arguments (the proof of the injectivity of ~A' the 
definition of ( , ), etc.) has been improved from the original form after 
the discussion with him. After the author posted the first version of this 
paper to the network archive, he was informed that Jonathan Beck also 
proved a part of Kashiwara's conjecture [4]. 

§2. Preliminaries 

2.1. Affine Lie algebra 

Let us fix notations for the untwisted affine Lie algebra g. (For a 
moment we do not assume that g is of type ADE.) 
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{ 1) f : the index set of simple roots, 
{2) {o:ihEf : the set of simple roots; {hi}iEf : the set of simple 

coroots, 
- def - -{3) P* =· ffiiETZhiE9Zd: the dual weight lattice; P = Homz(P*, Z) 
: the weight lattice, 
~def ~ 

(4) ~ =· P* ®z Q: the Cartan subalgebra, 
(5) the simple root O:i E P defined by (hi,O:j) = aij,(d,aj) == l5oj, 

where aii is the Cartan matrix of g, 
(6) the fundamental weight Ai E P defined by (hi, Aj) = 15ij, (d, Aj) 

=0. 
(7) Q d,g. ffiiEfZo:i : the root lattice; ijv d,g. ffiiEfZhi : the coroot 

lattice, 
~ def. ~ def. ~ . ~ 

(8) Q+ = EiEfZ~oo:i; P+ = {A E P I (hi, A) ;::: 0 for all t E I} : 
the set of integral dominant weights, 

(9) the unique element c = EiEfa¥hi (a¥ E Z~o) satisfying 

{hE Qv I (h, O:j) = 0 for all j E f} = Zc, 

(10) the unique element 15 = EiEfaiO:i (ai E Z~o) satisfying 

{A E Q I (hi, A) = 0 for all i E f} = Z8, 

(11) the symmetric bilinear form ( , ) on~*, uniquely characterized 

by (hi, A) = 2a~:~: , (c, A) = (15, A), for A E ~*, 
(12) h d,g. EiEfai : the Coxeter number; hv d,g. EiEfaY : the dual 

Coxeter number. 

The symmetric bilinear form ( , ) is known to be nondegenerate, 
and defines an isomorphism v: ~-+~*by (h,A) = (v(h),A) for A E ~*. 
For example, v(c) = 15. This coincides with one in [9, §6]. 

For {3 E ~* with ({3, {3) =f. 0, we set pv d,g. (J~). We have v(hi) = a{. 

We have an element 0 E f such that { o:i I i =f. 0} is the set of simple 
roots of g. It is known ati = a0 = 1 for the untwisted affine Lie algebra 
g. We denote I\ {0} by I. 

--. -def-. 
Let cl: ~* -+ ~* jQ15 be the natural projection. Let ~*0 = · {A E ~*0 I 

-de£-- - """':' 
(c, A)= 0}, P0 =· Pn~*0 (level 0 weights). We identify c1(~*0) c ~* jQ8 
with the dual of the Cartan subalgebra ~ of the finite dimensional Lie al
gebra g, which is ffiiEJ Qhi. Similarly we identify cl(P0 ) with the weight 

lattice P of g. We define the root lattice of g by Q d,g. ffiiEJ Zai. For 

i E I, we set "Wi d,g. Ai -aY A0 E P0 . Then cl( wi) is identified with the ith 

fundamental weight of g. Let P0•+ d,g. {A E P0 I (hi, A) ;::: 0 for i E I} . 
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Its projection cl(P0•+) is the set of dominant integrable weights of g. 

Let pv d~. Homz(Q, Z). The fundamental coweights w'/ are defined by 
(w'/,a;) = 8ij for i,j E I. We extend w'f to a homomorphism Q---+ Z 
by setting (w'/, 8) = 0. 

Let~ (resp. ~+)be the set ofroots (resp. positive roots) of g. The 
set of roots 5i of g is given by 5i = 5i+ U 5i_, where 

~ {k8 +a I k 2:: 0, a E ~+} U {k81 k > 0} 
:R+ = ' u{k8- a I k > O,a E ~+}, 

The roots of the form k8 ±a (k E Z, a E ~)are called real roots, while 
roots k8 are called imaginary roots. The multiplicities of real roots are 
1, and those of imaginary roots are equal to the rank of g, i.e., #I. 

Set 

:R> d~. {k8 +a I k 2:: O,a E ~+}, :R< d~. {k8- a I k > O,a E ~+}, 

:Rod~. {k81 k > 0} xI, :R d~. :R> U :Ro U :R<. 

These are sets of roots, counted with multiplicities. 
For i E f, we define the reflection si acting on ~· by si(>.) = >.

(hi, >.)ai. Moreover, si acts also on ~ by si(h) = h - (h, ai)hi· The 
~ ~ ~ ~ 0 

actions of si preserve P, Q, qv and ~· . We have si8 = 8, sic = c. 
If i E I, the corresponding reflection Si preserves ~. P, pv and Q. 
The Weyl group W (resp. affine Weyl group W) of g (resp. g) is the 
subgroups of GL(~*) (resp. GL(~*)) generated by si for i E I (resp. 
i E f). We define the extended Weyl group Was the semidirect product 

W d~. W 1>< pv, using the W-action on pv. It is known that W is a 

normal subgroup of W, and the quotient 'J d,g. W jW is a finite group 
isomorphic to a subgroup of the group of the diagram automorphisms 
ofg, i.e., bijections -r: I---+ I. Moreover, W is isomorphic to 'J 1>< W. 

When we consider e E pv as an element of W, we denote it by tf.. 
We have te(>.) =A- (e, >.)8 fore E pv, A E ~*0 . 

Lemma 2.1. We have 
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Proof. From the above description of the root system :R+, we have 
~ 1 ~ 
~+ n t~i'(~-) = {,6 + n81 ,6 E .::l+,o:::; n < (ro£,,6)}. 

Therefore 

We consider the bilinear form on ~* defined by 

<P(,, TJ) d~. E (,a, ')(,a, TJ). 
,BELl+ 

By [9, Corollary 8. 7] it is equal to h v (', 1J) and we get the assertion. We 
give a proof since the corresponding equality for the second equation 
cannot be found there. 

From the definition, it is invariant under the Weyl group W. So 
there is a constant c such that <P(C TJ) = c(,, TJ). Let B = 8- a 0 be the 
highest root of g. Then we have 

(B,B) = (ao,ao) = 2. 

On the other hand, we have 

<P(B,B) = E (,B,B)(,B,B). 
,BELl+ 

If ,6 = Ei niO:i ELl+, we have 0:::; ni:::; ai. So we have 

(,B,B) =- Eni(o:i,o:o) > 0, 
i 

(,6, B)= (B, (})- L(ni- ai)(ai, o:o) :::; 2, 
i 

where the equality holds when ,6 = B. (Note that (o:i, o:0 ) = aoi is a 
negative integer.) Therefore 

~(B, B) = E (,6, B)+ 2 = 2(p, (}) + 2 
,BELl+ 

= 2 L ( 'Wi, B) + 2 = 2 L a'f + 2 = 2h v, 
iE/ iEI 

where pis the half sum of the positive roots of~' which is known to be 
equal to EiEI roi. Therefore we have c = h v and get the first equation. 
A similar calculation shows the second equation. 0 
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2.2. Quantum affine algebra 

Let Uq(g) be the quantum affine algebra. We follow the notation 
in [1, 12]. We choose a positive integer d such that (ai, ai)/2 E Zd-1 

for any i E f. We set q8 = q11d. (Later we assume g is of type ADE. 
Then d = 1 and qs = q.) Then the quantum affine algebra Uq(g) is the 
associative algebra over Q(q8 ) with 1 generated by elements ei, /i (i E f), 
qh (hE d-1 P*), q±c/2 with certain defining relations. As customary, we 
set qi = q(a;,a;)/2 , ti = q(a.;,a.;)h;/2, e~p) = ef/[p]q;!, fi(p) = frf[p]q)· 

Let U~(g) be the quantized enveloping algebra with cl(P) as a weight 

lattice. It is the subalgebra of Uq(g) generated by ei, fi (i E i), qh 
(hE d-1 ffiiZhi), q±c/2 . The quotient U~(:g)/(q±c/2 -1) is denoted by 
Uq(Lg) and called a quantum loop algebra in [16, 18]. 

Let Uq(g)+ (resp. Uq@-) be the Q(q8 )-subalgebra of Uq(g) gen
erated by elements ei's (resp. fi's). Let Uq(g)0 be the Q(q8 )-subalgebra 
generated by elements qh (hE d-1 P*). We have the triangular decom
position Uq(g) £:! Uq(g)+ ® Uq(g) 0 ® Uq(g)-. 

For ~ E Q, we define the root space U q (g) e by 

Let U~(g) be the Z[q8 , q_;- 1]-subalgebra of Uq(g) generated by ele-
t (n) J(n) h £ • J '71 h d-1p~* mens ei , i , q 10r z E , n E tu>o, E . 
Let us introduce a Q(q8 )-algebra involutive automorphism V and 

Q(q8 )-algebra involutive anti-automorphisms *and 'lj; of Uq(g) by 

e{ = fi, fiv = ei, (qh)v = q-h, 

e: = ei, ft = fi, (qh)* = q-h, 

'1/J(ei) = q:; 1t:;1 fi, '1/J(li) = q:; 1tiei, 'lj;(qh) = qh. 

We define a Q-algebra involutive automorphism of Uq(g) by 

ei = ei, fi = /i, qh = q-h, 

a(qs)u = a(q; 1 )u for a(q8 ) E Q(qs) and u E Uq(g). 

In this article, we take the coproduct D. on U q (g) given by 

(2.2) 
A h h h A -1 1 t...J.q = q ® q , t...J.ei = ei ® ti + ® ei, 

D.fi = fi ® 1 + ti ® k 
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Let us denote by n the Q-algebra anti-automorphism * o o v of 
Uq(:g). We have 

A Uq(g)-module M is called integrable if 

(1) all ei, fi (i E I) are locally nilpotent, and 
(2) it admits a weight space decomposition: 

M = E9 M>., where M>. = {u EM I qhu = q(h,>.)u for all hE P*}. 
A.EP 

Let Uq(g) be the modified enveloping algebra [13, Part IV]. It is 
defined as 

Uq(g) d,g. E9 Uq(g)a>., 

>.EP 

Uq(g)a>. d,g. Uq(g) I~ Uq(g)(qh- q(h,>.)) . 

hEP* 

Here the multiplication is given by 

where a>. is considered as the image of 1 in the above definition of 
Uq(g)a>.. 

Let A, J-t E P+. Let V(A) (resp. V(-J-t)) be the irreducible highest 
(resp. lowest) weight module of weight A (resp. -J,-t) [13, §3.5]. Then 
there is a surjective homomorphism 

where U>. (resp. u_J.I) is a highest (resp. lowest) weight vector of V(A) 
(resp. V( -J,-t)). 

2.3. Braid group action 

For each w E W, there exists an Q(q)-algebra automorphism Tw [13, 
§39] (denoted there by T~, 1 ). Also, for any integrable Uq(g)-module 
M, there exists Q(q)-linear map Tw: M --> M satisfying Tw(xu) = 
Tw(x)Tw(u) for x E Uq@, u EM [13, §5]. We denote Ts; by Ti here
after. By [13, 39.4.5] we have 

(2.4) 
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Lemma 2.5. We have 

where 

N= (a,~), 

Proof. Let Tf'_ 1 be the automorphism defined in [13, §37]. A direct 
calculation shows '1/J o Ti o 1/J = Tf'_ 1 . By [loc. cit., 37.2.4] we have 
Tf'_ 1 (x) = ( -l)<hi,e>q-(<>i,e>ri-1(x) 'for x E Uq(g)e. Let w = si"' ... si1 

b~ a reduced expression of w. Then 

where 

NV = (hil + Sil hi2 + ... + Sil ... Si-m-1 hi"',~), 

N= (ai1 +si1C¥i2 +···+si1 ... si"'_ 1 ai,.,.,~). 

Since we have 9i+ nw-1 (9i_) = { Si1 • • • sik-l aik I k = 1, ... , m}, we are 
~~- 0 

As in [2, 5], the defini~n of the automorphism Tw of Uq(g) can be 

extended to the case w E W by setting 

Tei = eT(i)l Tji = !T(i)' Tqhi = qhT(i), Tqd = qd. 

2.4. Crystal base 
We shall briefly recall the notion of crystal bases. For the notion of 

(abstract) crystals, we refer to [11, 1]. 
For n E Z and i E f, let us define an operator acting on any inte

grable Uq(g)-module M by 

f (n+k) (k) n(t·) 
i ei ak • , 

k~max(O,-n) 

k-1 

where ak(ti) d~. (-1)kq;(l-n)tf IT (1- q;+2v). 

v=1 

A d t - def. p(-1) 1- def. p(1) 
n we se ei = i , i = i · 

These operators are different from those used for the definition of 
crystal bases in [10], but it gives us the same crystal bases by [12, Propo
sition 6.1]. 
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A direct calculation shows 

(2.6) 

Let Ao d,g. {f(qs) E Q>(qs) If is regular at Qs = 0}. 

Definition 2.7. Let M be an integrable Uq(g)-module. A pair 
(.C, B) is called a crystal base of M if it satisfies 

(1) .Cis a free Ao-submodule of M such that M ~ Q>(qs) 0Ao .C, 

(2) .C = EBAEP .C>. where .C>. = .C n M>. for .X E P, 
(3) B is a Q-basis of .C/q.C ~ Q> i8lA0 .C, 

( 4) ei.C C .C, h.C C .C for all i E f, 
(5) if we denote operators on .Cfq.C induced by ei, h by the same 

symbols, we have eiB c B u {0}, hB c B u {0}, 
(6) for any b, b' E B and i E f, we have b' = hb if and only if 

b=eib'. 

We define functions ci,cpi: B ---+ Z~o by ci(b) d,g. max{n 2': 0 I 
erb =f. 0}, cpi(b) d,g. max{n ;:::: 0 I irb =f. 0}. We set efaxb ~- ~;(b)b, 
J;,maxb d,g. J;,<p;(b) b. 

Let- be an automorphism of Q>(qs) sending Q8 to q; 1 . Let A 0 be 
the image of Ao under - , that is, the subring of Q>( Qs) consisting of 
rational functions regular at Qs = oo. 

Definition 2.8. Let M be an integrable Uq(g)-module with a 
crystale base (.C, B). Let - be an involution of an integrable Uq(g)
module M satisfying xu= xu for any x E Uq(g), u E M. Let Mz be 
a U~@-submodule of M such that MZ = Mz, u- u E (qs- 1)Mz for 
u E Mz. We say that M has a global base (.C, B, Mz) if the following 
conditions are satisfied 

(1) M ~ Q>(qs) 18lz[q.,q;l] MZ ~ Q>(qs) i8lA0 .C ~ Q>(qs) 0Ao E, 
(2) .c n En Mz---+ .C/qs.C is an isomorphism. 

As a consequence of the definition, natural homomorphisms 

are isomorphisms. 
Let G be the inverse isomorphism .C/qs.C ---+ .c n En Mz. Then 

{G(b) I bE B} is a base of M. It is called a global crystal base of M. 

The above conditions imply G(b) = G(b). 
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For a dominant weight .A E P+, the irreducible highest weight mod
ule V(.A) has a global crystal base [10]. If .A, p, E P+, then the tensor 
product V(.A) 0 V( -p,) also has a global crystal base. Moreover, Uq(g) 

has a global crystal base (qi:Jq(g)),B(Uq(g)), U~(g))) such that the 

homomorphism (2.3) maps a global base of Uq(g) to the union of that 
of V(.A) 0 V( -p,) and 0 [13, Part IV]. Furthermore, the global base is 
invariant under* [11, 4.3.2]. 

2.5. Extremal vectors 

A crystal B over Uq(g) is called regular if, for any J £ I, B is 
isomorphic (as a crystal over U q (gJ)) to the crystal associated with an 
integrable U q (gJ )-module. (It was called normal in [11].) Here U q (gJ) 
is the subalgebra generated by ej, fi (j E J), qh (hE d- 1P*). By [11], 
the affine Weyl group W acts on any regular crystal. The action S is 
given by 

S .b= {J?;,wtb)b if(hi,wtb) 2:0, 
s, ei (h,,wt b) b if (hi, wt b) :::; 0 

for the simple reflection Si· We denote Ss, by si hereafter. 

Definition 2.9. Let M be an integrable Uq(g)-module. A vector 
u E M with weight .A E P is called extremal, if the following holds for 
all wE W: 

(2.10) {
eiTwu: 0 ~f (hi, w.A) 2: 0, 
fiTwu- 0 If (hi, w.A) :::; 0. 

In this case, we define Swu so that 

This is well-defined, i.e., Swu depends only on w. 
Similarly, for a vector b of a regular crystal B with weight .A, we say 

that b is extremal if it satisfies 

{~Swb: 0 ~f (hi, w.A) 2: 0, 
fiSwb - 0 If (hi, w.A) :::; 0. 

Lemma 2.11. Suppose that an integrable Uq(g)-module M has a 
crystal base (.C, B). If u E .C C M is an extremal vector of weight .A 
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· jy" b def. d r B h b · l d satzs ~ng = u mo qA..J E , t en ~s an extrema vector, an we 
have 

whereN+ = max ((a,>.), 0), and N":[_ is given by replacing 

Proof. The equation Swb = Swu mod q£., follows from the defini
tion of Sw. 

If v E Me satisfies eiv = 0 (resp. fiv = 0), we have 

where ~i = (hi,~). The rest of the proof is the same as that of Lemma 2.5. 
D 

The following follows from a formula for the crystal B(l\(9)) (see 
[12, App. B]): 

Lemma 2.12. Let >. E P 0 . The followings hold forb= b1 ® t>. ® 
u_00 E B(Uq@a>.) = B(oo) ® T>. ® B(-oo) with wtb1 E Z8: 

eib = 0 or hb = 0 if and only if c:i(bi) ::; max( -(hi,>.), 0). 

For>. E P, Kashiwara defined the Uq(g)-module V(>.) generated by 
u.x with the defining relation that U>. is an extremal vector of weight >. 
[11 P. It is written as 

I def. ).. = 
bEB(U q(g)a_,.) \.5(>.) 

Q(q)G(b), 

where B(>.) d~. {b E B(Uq(g)a>.) I b* is extremal}. Thus V(>.) has a 
crystal base (£.,(>.), B(>.)) together with a U~(g)-submodule vz(>.) with 
a global crystal base, naturally induced from that of Uq(g)a>.. If >. 
is dominant or anti-dominant, then V(>.) is isomorphic to the highest 
weight module or the lowest weight module. So there is no fear of the 
confusion of the notation. 

1He denoted it by vrnax(A.). 
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2.6. Drinfeld realization 

The quantum affine algebra Uq(g) has another realization, due to [8, 
2]. It is isomorphic to an associative algebra over Ql(q8 ) with generators 

xtr (i E I, r E Z), qh (hE d- 1P*), ht'"' (i E I, mE Z \ {0}) with 
ce~tain defining relations (see [2, §4]). The isomorphism depends on the 
choice of o: I-t {±1}, and is given by 

where 

By (2.4) we have 

fl(xtr) = x~-r' fl(hi,m) = hi,-m for i E I, r E Z, m E Z \ {0}. 

2. 7. The crystal base of Uq(g)+ 

Let us recall results in [5]. We assume g is of type ADE hereafter. 
We choose a reduced expression si1 • • ·siN of 2p = 2 LiE! Wi in a suitable 
way (see [loc. cit.] for detail), and consider a periodic doubly infinite 
sequence( ... , i_l> io, i1, ... ) of I by setting ik = ikmodN· Let 

We have 

(2.13) 

We define 

if k ~ o, 
if k > 0. 

1{> = {!3k I k ~ o}, 1{< = {!3k I k > o}. 

if k ~ 0, 

if k > 0. 

We denote E1~ by Ef3k· These are root vectors for 1{> and 1{<· By [13, 

40.1.3] we have Ef3(n) E Uq(g)+. Explicit relations among Ef3(n) and xtr 
k k , 

can be found in [5, Lemma 1.5]. 
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We define Pm,i (m > O, i E J) by 

1 ~ n . m _ (- ~ (o(i)qcf2uYhi,r) + L...,rm,U -exp L..., . 
m>O ' m>O [r]q; 

We also define Pm,i E Uq(g)+ by replacing hi,r by -hi,r· These are root 
vectors for :Ro. We also set P-m,i = .fl(Pm,i) (m > 0, i E J). 

Let c: :R --+ Z;:::o be a map .such that c(a) = 0 except for finitely 
many a. We denote its restrictions to :R>, :R>, :Ro by c>, c<, c0 respec
tively. We define Ee>,Ee< E Uq(g)+ by 

Next, given c0, we associate an /-tuple of partitons (.X(i))iEJ as 

_x(i) d~. (1e0 (6,i)~e0 (26,i) ... ke0 (k6,i) ... ). 

As in [15] we denote it also in another notation: 

\(i) = ('(i) di) ) 
A Al , A2 , · • · · 

We define the corresponding Schur function 

def. II (- ) Se0 = det P.>.(i)_k+l. , 
k •• l<k l<t iEJ - '-

where t ~ l(.X(i)) and t_x(i) means the transpose partition of _x(i)_ Note 

that Pm,i corresponds to an elementary symmetric function, while Pm,i 
corresponds to a complete symmetric function, up to sign. 

Now a main result of [5] says that 

(1) Bed~. Ee> · Seo · Ee< is contained in .c(oo) nU~(g)+, 
(2) {Be mod q.c(oo) IcE Z~0} is the crystal base of Uq(g)+. 

Set (Z~g)(.X) d~. {co E z~g ll(.X(i)) ~ (hi, .X) for all i E I}, where 

(.XCi))iEJ is the /-tuple of partition corresponding to c0 as above. 
We apply V to the above crystal base to get 
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2.8. Extremal weight modules and the Drinfeld realization 

Extremal weight modules are defined in terms of Chevalley gener
ators. We shall rewrite the definition in terms of Drinfeld generators, 
and derive several easy consequences in this subsection. 

The following is a consequence of [12, Theorem 5.3]. 

Lemma 2.14. Let u be a vector of an integrable U~(g)-module M 

with weight A E pO,+. Then the following conditions are equivalent: 
(1) u is an extremal vector. 
(2) xtru = 0 for all i E J, r E Z. 

Remark 2.15. The extremal weight module V(A) is isomorphic to 
the Weyl module Wq(A) introduced by Chari-Pressley [6]. This result 
was refered as 'an unpublished work' of Kashiwara in [loc. cit., Propo
sition 4.5]. Let us give Kashiwara's proof here. Let A = L:;iEJ mi'Wi E 

P0 •+. Then Wq(A) is integrable and contains a vector W.>. of weight A 
which satisfies the above condition (2). Therefore, there is a unique 
Uq(g)-linear homomorphism V(A) --> Wq(A), sending V.>. to W,>.. (The 
integrablity of Wq(A) was proved via the isomorphism V(A) ~ Wq(A) in 
[loc. cit.]. So one must give another proof of the integrablity as sketched 
in [lac. cit.].) Since Wq(A) is generated by W.>. by definition, the homo
morphism is surjective. On the other hand, any integrable Uq(g)-module 
generated by a vector u of weight A satisfying the above condition (2) 
is a quotient of Wq(A) [loc. cit., Proposition 4.6]. Therefore V(A) and 
Wq(A) are isomorphic. 

Corollary 2.16. Let u be an extremal vector with weight A E 

P0 •+. Then S~u = s~ou = 0 for Co rJ. (Z~g)(A). 

Proof. It is enough to show the assertion for u = U.>. E V(A). We 
have a Q(q)-vector space isomorphism 

Therefore it is enough to show Sc0 U-.>. = O(Sc0 )u-.>. = 0. By [6, Propo
sition 4.3], which is applicable thanks to Lemma 2.14, we have 

(More precisely, we apply [loc. cit.] after composing an automorphism 
xtr ~---> -xl-r' hi,m ~---> -hi,-m·) Now the assertion follows from a 
standard result in the theory of symmetric polynomials. 0 
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§3. A study of extremal weight modules 

3.1. Fundamental representations 

By [12, §5.2] there is a unique U~(iJ)-linear automorphism zi of 
V(wi) with weight 8, which sends u,.; to u,.;+8· (Note that d.; in [12, 
§5.2] is equal to 1 for untwisted g.) 

P 't' 3 1 h (')( 1)1-h -hv ropos1 ton . . i,1u,.; = o z - q Ziu,.;. 

Proof. We have 

Let us write T,.'( = TTw with w E W. Then Lemma 2.11 implies 

where N~ = l::aE:R+nw-l(:Ji_) max((a, Siwi), 0) - max((a, wi), 0), and 

N~v is given by replacing a by av. Since ~+ n w- 1 (~-) = ~+ n 
t;t (~-) = {,8 + n8 I ,8 E 6.+, 0 ~ n < (wi, a)}, we have 

Therefore 

if a= ai, 

otherwise. 

where we have used Lemma 2.1. Similarly we have N~v = 1- h. Now 
the assertion follows from the definition of the Weyl group action S. D 

Remark 3.3. Let W(wi) d~. V(wi)/(zi -1)V(wi)· This is a finite 
dimensional irreducible U~(g)-module [12, §5.2]. The above proposition 
says that W(wi) has the Drinfeld polynomial 

P·(u) = {1 if j =I= i, 
1 1+o(i)(-1)hq-hvu ifj=i. 

Proposition 3.4. 
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Proof. Let us endow a new Uq(g)-module structure on V( -wi) by 

We denote it by V( -wi)v. Then there is a Uq(g)-module isomorphism 
V(wi) ~ V( -wi)v sending uw, to U-w,· Using this isomorphism, we 
can calculate (F±I,i)vuw; exactly as in the above proposition (in fact, 
more easily) to get the assertion. D 

3.2. Tensor product modules 

Let A = LiEI miwi E fio,+. We define a Uq(g)-module V(A), 
E(A), B(A), U;>.. as in the introduction. Let zi,v (i E I, v = 1, ... , mi) 
be the U~(g)-linear automorphism of V(A) obtained by the action of 
Zi: V( wi) --+ V( wi) on the v-th factor. Obviously they are commuting: 
Zi,vZj,JL = Zj,JLZi,v· Let 

V(A) d,g. Uq(g)[ztvliEl,v=l, ... ,rn;. U).., l(A) d~. E(A) n V(A), 

B(A) d,g. Q9B(wi)®m;, vz(A) d,g. ® (V(wi)z)®rn; n V(A). 
iEI iEI 

By [12, §8], the submodule V(>.) has 

(1) the unique bar involution satisfying 

xu= xu for X E Uq@[ztvliEI,v=l, ... ,rn;> u E V(A), 
(2) the crystal base (l(A), B(A)), and 
(3) the U~(g)-submodule vz(A) and the global crystal base {G(b) I 

bE B(A)}. 

The module V(A) contains the extremal vector U;>.. of weight A. 
Therefore there exists a unique U q (g)-linear homomorphism <I>>-. : V (A) --+ 

V(A) sending U>-. to u;>... The image is contained in V(A). 
Recall that a function c0 E ~0 --+ Z>o defines an I- tuple of partitions 

(A(i))iEI as §2.7. We define an endomo;phism of V(A) by 

where S;>..(i) is the Schur polynomial corresponding to the partition A(i). 
If l(A(i)) > mi, it is understood as 0. 

Proposition 3.5. <I>;>..(S;,u>-.) = Sc0 (z)·u>-., <I>>-.(S~0 U;>..) = Sc0 (z-1 )· 
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Proof. On level 0 modules, we have 

tlhi,±rn = hi,±rn 18l1 + 118l hi,±m + a nilpotent term 

by [7]. Up to sign, the transition between hi,rn's and Pk,i's is the same 
as that between power sums and elementary symmetric functions. The 
above equation means that tl coincides with the standard coproduct on 
symmetric polynomials modulo nilpotent terms [15, Chap. I, §5, Ex. 25]. 
Therefore we have 

k 

tlPk i = ""Psi l8l Pk-s i +a nilpotent term. 
' ~' ' 

s=O 

Using Corollary 2.16 and Proposition 3.4, we have the assertion. 0 

3.3. Detemination of extremal vectors 

Proposition 3.6. Suppose .X E fto,+. Consider Be= Fe> · S~ · Fe< 

with wtBe E Z8, and set b1 d~. Be mod q.G(oo) E B(oo) and b d~. 
b1 l8l t>. l8l u_ 00 E B(Uq(g)a>.). If b and b* are extremal, then we have 

c> = 0 = c< and co E (Z~g)(.X). 

Proof. Assume c> =/=- 0 and take the largest number k :S 0 satisfying 
c(f3k) =/= 0. Let w = Si0 Si_ 1 · · · Sik+l. 

Since b* is extremal, we can consider bas an element of B(.X). We 
have 

b = BeU>. mod q£,(.\). 

By Lemma 2.11, we have 

for some integers Nv, N. By [11, 8.2.2] there exists a Uq(g)-linear 
isomorphism 

respecting the crystal bases. Therefore we have 

(In fact, this is equal to S:V_ 1 Sw-lb.) Let us denote this by b~ 18ltw-l>.i8lb~. 
We have 
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It is clear that T~ 1 (Fc<) E Uq(g)- nTik Uq(g)-. We also have T~ 1 (S.;) 
E Uq(g)- n Tik Vq(g)- by [3, Lemma 2]. (More precisely, we apply [lac. 
cit.] after composing- oV. Note that T~1 =- oVoTwo- oV by [13, 
39.4.5].) Moreover, by our choice of k, we have 

T: ("lf:) = f(c(f3k)) T:· (f(c(f3k-1))) ... E f(c(f3k)) (U (~g)- n T:· U (~g)-). 
W C> 'k 'k 'k-1 'k q 'k q 

Therefore we have 

where the last equality follows from [13, 38.1.6]. Since bi ~tw-1>. ~U-oo 
is extremal, Lemma 2.12 implies 

(3.7) 

However, we have (hik' w- 1 ..\) = (we<, .A) ~ 0 for..\ E P0•+, because 

waik E ~> by (2.13). So the right hand side of (3.7) is 0, and this 
contradicts with the choice of k. Therefore c> = 0. Applying *, we 
similarly get c< = 0. Now the last assertion is a consequence of Corol
lary 2.16. D 

Proof of Theorem 1. We first prove (2), (3), (4) and then (1). 
(2) Recall that any vector b E B(.A) is connected to an extremal 

vector [11, 9.3.3]. Moreover, an extremal vector can be mapped by hmax 
to an extremal vector of the form b1 ~ t>. ~ u_00 • (See [12, Proof of 
Theorem 5.1]). Therefore 

B(..\) = { Xz ... xls.; mod q£.,(A) I Co E (Z~g)(.A), XJ.L is ei or 1:} \ {0} 

by Proposition 3.6. Then£..,(..\) is spanned by {X1 · · · X 1S.;} over A0 , 

by Nakayama's lemma. Note that <I>>. commutes with the operators ei, 
h and .C ( ..\) is invariant under ei, h. Therefore it is enough to show 

that <I>.>.(S.;) E .C(.A). But this follows from Proposition 3.5. 
(3) By Proposition 3.5, we have 

for c0 E (Z~g)(.A). 

As in the proof of (1), we conclude that <I>~(B(.A)) C B(..\) U {0}. From 
the definition, it is obvious that the image contains B(.A). Consider 

Ker <I>~ nB(.A). It is invariant under ei, ]:. Since any vector is connected 
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to an extremal vector, Ker!ll~ n B(A) contains an extremal vector if 
it is nonempty. But we already checked that every extremal vector is 
mapped to a nonzero vector. Hence Ker Ill~ nB(A) = 0. Now suppose b1, 
b2 E B(A) satisfy !ll~(bi) = !ll~(b2). We want to show b1 = h Applying 

ei, h's, we may assu_:ne b1 = S~ mod q.C(A). By [12, §5.1] b2 is also 
extremal. Applying Jrax's if necessarily, we may assume b2 is of form 

b2 0 t;.. 0 u_00 , and hence b2 = s-, mod qL(A). By this process, b1 
Co 

may be changed, but still is of form bi 0 t>. 0 u_00 , so we may assume 

bl = s~ mod q.C(A) after we change Co. By Proposition 3.5, we have 
sc0 (z) · U>. = !ll~(bi) = !ll~(b2) = sc0(z) · U>.. This implies co= c~ and 
hence b1 = b2. 

(4) By the uniqueness, Ill>. respects the bar involutions on V(A) and 
V(A). Since vz(A) = V~(g)u>., we have lll>.(vz(A)) c vz(A). Therefore 
we have 

Now the assertion follows from (3). 
(1) It is easy to see that B(A) is linearly independent. Therefore 

Ill~: L(A)jqL(A)---> 'E(A)jql(A) is injective. 
Let {G(b)} be the global crystal base ofV(A). Let 0 # 'Lfb(q)G(b) E 

Ker Ill>.. Multiplying a power of q, we may assume !b(q) E A 0 for all b 
and fb0 (0) # 0 for some bo. Then 'Lfb(O)b E L(A)jq.C(A) is mapped to 
0 by Ill~. The injectivity of Ill~ implies that !b(O) = 0 for all b. This is a 
contradiction. 0 

Remark 3.8. Theorem 1 together with Proposition 3.5 implies that 
S~ U>. and 8~0 U>. are elements of the global base. 

3.4. Standard modules 

Let us briefly recall the properties of the universal standard module 
M(A) with a weight A= 'Lm(Wi E fJo,+ introduced in [16, 18]. (We 
do not review its definition, which is based on quiver varieties.) Let 

G >. d~ · It G Lm, ( q. Its maximal torus consisting of diagonal matrices 
is denoted by H>.. Their representation rings are denoted by R(G>.), 
R(H>.) respectively. They are isomrphic to ®i Z[xt,1, ... , xt,mJ 6 =, and 

®i Z[xt,1, ... , xtmJ respectively. The universal standard module M(A) 
is a U~Z(g) 0z R(G>.)-module which is integrable (in fact, it satisfies a 
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stronger condition 'l-integrability') and contains a vector [O]A with 

where ( )± denotes the expansion at u = 0 and oo respectively. (In 
fact, we have M(A) = u~z(g)[O].x by the proof of Theorem 1.) Moreover, 
M(A) is free of finite rank as an R(G.x)-module. And M(A) is simple if 
we tensor the quotient field of Z [ q, q-1] ® R( G .x). 

On the other hand, we have a ®iEI Z[zt1, ... , ztmJ5 =; -module 

structure on V(A) given by Sea (z)u.x = s;;., u.x and Sco(z-1 )u.x = s;o u.x by 
the above discussion. We make it a R(G.x) = ®iEI Z[xt1, ... , xtmJ'""'' 
-module structure by setting Xi,v = o(i)(-1)1-hq-hv Zi,v· 

Theorem 2. There exists a unique u~z(g)®zR(G.x) -isomorphism 
vz(A)---+ M(A) sending u.x to [O].x. 

This result follows from Theorem 1 as explained in [18, 1.23]. The 
calculation of Drinfeld polynomial, which was not given there, is done 
in Proposition 3.1. 
Correction to [18]: 

Delete 6.x1 X · · · X 6.xn in Theorem 1.22. 
Replace R(G.x) in page 411, line 5 by R(H.x). 
Delete 'and forgetting the symmetric group invariance' in 

Remark 1.23. 
Replace 'the submodule above' in line 8, 'the submodule 

U~(Lg)[xk,v]kEl,v=1, ... ,.Xk ®kEI[O]~:k · 

§4. A bilinear form 

Kashiwara proved that the crystal base B(A) is an orthonomal base 
with respect to a natural bilinear form when A is dominant [10, 5.1.1]. 
We prove a similar result for A E f3o,+ in this section. This general
izes a result of Varagnolo-Vasserot [20, Theorem A] from fundamental 
representations to arbitray A. 
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Proposition 4.1 (Kashiwara). The extremal weight module V(.X) 
has a unique bilinear form ( , ) satisfying 

(4.2) 

(4.3) 

(u.x, G(b)) = {1 if G(b) _= u.x, 
0 otherwzse 

(xu,v) = (u,,P(x)v) forx E Uq(g), u,v E V(.X). 

Proof. We define a Uq(g)-module structure on Hom (V(.X), Q(q)) 
by 

(xf, u) d~. (!, ,P(x)u), x E Uq(g), f E Hom (V(.X), Q(q)), u E V(.X). 

This defines a Uq(g)-module structure since 1/J: Uq(g) --+ Uq(g)opp is an 
algebra homomorphism. Let u>- be the unique linear form such that 

(u\ G(b)} = {1 if G(b) .= u.x, 
0 otherwise. 

Then u>- has a weight A. We claim that u>- is an extremal vector. From 
the definition all elements in a weight space Hom (V(.X), Q(q))e vanish 
on V(.X)e· Since weights of V(.X) are contained in the convex hull of W.X 
[12, Theorem 5.3], the weights of V'(.X) also have the same property. 
Therefore u>- is an extremal vector. Now we have a Uq(g)-algebra ho
momorphism V(.X) --+ V'(.X) C Hom (V(.X), Q(q)) sending U>. to u>-. This 
defines a bilinear form satisfying the desired properties. The uniqueness 
follows from the uniqueness of the above homomorphism. 0 

Remark 4.4. The uniqueness holds even if ( 4.3) holds only for x E 
U~(g). In fact, this condition together with (4.2) automatically implies 
(4.3) for x = qd as follows. When u = U>., (4.2) implies (4.3) for x = qd. 
For a general case, we write u = xu.x with x E U~(g)e. Then 

(qdu,v) = q(d,e)(xqdu>.,v) = q(d,e)(qdu.x,'I/J(x)v) = q(d,e)(u.x,qd,P(x)v) 

= (u.x,,P(x)qdv) = (xu.x,qdv) = (u,qdv), 

where we have used ,P(x) E U~(g)-e-

Lemma 4.5. Let M be an integrable U~(g)-module with a bilinear 
form ( , ) satisfying (4.3) for x E U~(g). Then 

NV N -(Twu,v)=(-1) q (u,Tw-1v) forallwEW,uEMe,vEM, 
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where N and Nv are as in Lemma 2. 5. 

Proof. Let Tf 1 be the operator defined in [13, 5.2.1]. A direct 
calculation shows (Tiu,v) = (u,Tf 1v) for u E Me, v EM. (We may 
assume that v is contained in a w~ight space. Thanks to ( 4.3) for x E 
U~ (Jj), both hand sides are 0 unless the weight of v is Bi~ + m8 for some 
mE Z.) By [loc. cit., 5.2.3], we have Tf 1v = (-1)(h,,(.)q(a,,(.)Jiv. The 
rest of the proof is the same as that of L~mm.a 2.5. 0 

Lemma 4.6. Let M and ( , ) be as above. Let u, v E M be 
extremal vectors. Then 

Proof. Let~ be the weight of u. Using Lemmas 2.11, 4.5, we have 

·where 

N= (a,~), max((a,~),O), 

aEi+nw-l(!JL) 

N~= max((a', w~), 0), 

and Nv, N"f-, N"f-' are defined in similar ways. Noticing a' E ~+ n 
w(~-) <=? -w-1a' E ~+ n w- 1 (~-), we haveN= N+ + N~. Similarly 
we have Nv = N"f- + N"f-'. Therefore we have the assertion. 0 

In order to study ( , ) on V (A) we need to relate it to a bilinear 
form on the tensor product module V(.X). 

Lemma 4.7. We have (ziu, Ziv) = (u, v) for u, v E V(roi)· 

Proof. By the uniqueness, it is enough to show that (ziu, Ziv) sat
isfies (4.2, 4.3). The property (4.3) is clear. If x E U~(g), then it 
holds since Zi is U~(g)-linear. It also holds for x = qd thanks to 
Ziqdz;1 = q-a0 d,qd. 

Let us check (4.2). Since dim V(roi)..,, = 1 by [12, Proposition 5.10], 
it is enough to show that (ziu..,,, Ziu..,.) = 1. But this follows from the 
previous lemma. 0 
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We define a Q(q)[z!=]-valued bilinear form (( , )) on V(wi) by 

((u, v)) = {zf'(zi-mu, v) if wt(u? = wt(v) + md;8 formE Z, 
0 otherwise. 

Since Zi is U~(g)-linear, we have 

((xu,v)) = ((u,'!f;(x)v)) for x E U~(g), u,v E V(wi)· 

By Lemma 4. 7 we have 

(4.8) 

We define a Q(q)[ztvliEI,v=1, ... ,m;-valued bilinear form ((, )) on V(>.) 
by 

(( u, V )) d,g. II (( Ui,v, Vi,v )) , 
i,v 

where ui,v, vi,v is the v-th V(wi)-factor of u, v E V(>.). We define a 
bilinear form ( , )~ on V(>.) by 

(u,v)~ d,g. n ~i! [((u,v)) II (1- Zi,!Lz;))l ' 
•El wlv 1 

where [fh denote the constant term in f. 

Lemma 4.9. Let c0 , c~ E (Z~g)(>.). Then (sc0 (z)u>., sc~(z)u>.)~ 
= 8co,c~ · 

Proof. Let f = f(z) and g = g(z) be polynomials in zi,v's (i E I, 
v = 1, ... ,mi)· By (4.8) we have 

(f(z)u>., g(z)u>.)~ = II ~i! [fg II (1- zi,~"z;) )] , 
iEJ !LoFV 1 

where g = g( . .. , z; ~, ... ) . Considered as a bilinear form on the Laurent 
polynomial ring, it coincides with one in [15, Chap.VI, §9] with q = t. 
The Schur functions give an orthogonal base with respect to that bilinear 
form. Therefore we have the assertion. D 

Proposition 4.10. Let u, v E V(>.). Then (u, v) = (ll>>.(u), 
ll>>.(v))~. 
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Proof. It is enough to show that (~>.(u), ~>.(v))~ satisfies condi
tions in Proposition 4.1. It is clear that the condition (4.3) holds for 
x E U~(g). By Remark 4.4, it is enough to check (4.2). From (4.3) 
for x E U~(g), it is enough to check (4.2) when cl(wt(b)) = cl(>.), i.e., 
wt(b) = >. + m6 for some m E Z. Since weights of V(>.) is contained in 
the convex hull of W>., b is an extremal vector. We have 

by Lemma 4.6. We take Bw as sufficiently many compositions of fia:x, 
we may assume Bwu>. = S~u>., BwG(b) = S~u>.. (Recall that S~u>. is 
an element of the global basis as we explained in Remark 3.8.) Then 

where we have used Proposition 3.5 and Lemma 4.9. 0 

From the proof of Proposition 4.10 the bilinear form ( , ) on V(>.) 
defined in Proposition 4.1 also has the following characterization: it 
satisfies (4.3) and (Bc0 U>., Bc~U>.) = Dc0 ,c~· Since these conditions are 
symmetric, we have the following: 

Corollary 4.11. The bilinear form ( , ) on V(>.) is symmetric, 
i.e., (u,v) = (v,u). 

Proposition 4.12. (1) (.C(>.), .C(>.)) C Ao. 
Let ( , )o be the Q-valued bilinear form on .C(>.)fq.C(>.) induced by 
( , )iq=O on .C(>.). 

(2) (eiu,v)o = (u,hv)o foru,v E .C(>.)fq.C(>.). 
(3) B(>.) is an orthonormal base with respect to (, )0 . In particular, 

( , )o is positive definite. 
(4) .C(>.) = {u E VI (u,u) E Ao}. 

Proof. We shall prove 

• there exist representatives b for all b E B(>.)e C .C(>.)efq.C(>.)e 
such that (b, b') = 6w mod qAo for b, b' E B(.X)e 

by the induction on (~, ~). Since .C(>.)e is spanned by b's over A 0 , this 
implies the above equations for any representatives b. It also implies (1) 
and (3). Recall Ceib, b') = (1- qi)(b, hb') by (2.6). Therefore the above 
assertion also implies (2). 

First suppose that b is extremal. Since we may assume that wt(b) = 
wt(b') by (4.3), we may assume b' is also extremal by [12, 5.3]. Then 
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we may assume b = Sc0 U)., b' = Sc~U>. by applying Sw for some wE W. 
But, in this case, the assertion has been already shown in Lemma 4.9 
and Proposition 4.10. 

Now we start the induction. Recall that(~,~) is bounded from above 
and bE B(.A) is extremal if (wt b, wt b) is maximal ([11, §9.3]). Therefore 
when ( ~, ~) is maximal, both b and b' are extremal. We have already 
proved the assertion this case. 

Now assuming the above for ~ such that (~, ~) > a, let us prove it 
for~ with(~,~)= a. ForiE I, suppose that (hi,~)~ 0. We consider 
eib. If eib -=!= 0, then we have 

Therefore we have 

mod qA0 

by the induction hypotheis. Hence the assertion holds if we replace the 
repre!entative b by anot~er rep~~entative heib. Similarly, if (hi,~) ::; 0 
and fib-=!= 0, we replace b by eifib to get the assertion. 

Since we may suppose that b is not extremal, there exists w E W 
such that Swb satisfies eiSwb -=/= 0 if (hi, w~) ~ 0 and hSwb -=/= 0 if 
(hi, w~) ::; 0. Then we have (heiSwb, Swb') or (eihSwb, Swb') is in 
8w + qA0 . Therefore we are done. 

The statement (4) follows from [13, 14.2.2]. 0 

The following result generalizes (20, Theorem A] from fundamental 
representations to arbitrary .A: 

Theorem 3. (1) {G(b)}bEB(>.) is almost orthonormal for ( , ), 
that is, (G(b), G(b')) = 8w mod qZ[q]. 

(2) {±G(b) I bE B(.A)} = { u E vz(.x) I u = u, (u, u) = 1 mod qZ[q]} . 

Proof. We claim 

(u,v) E Z(q,q- 1] for u,v E Vz(.A). 

The assertion is obvious for the special case u = U>. by (4.2). For gen
eral case, we may assume u = XU>. for x E U~(g). Then (xu>.,v) = 
(u>., '!f;(x)v). Since '!f;(x) E U~(g) and vz(.A) is stable under the action 
of U~(g), the assertion follows from the special case. 

Combining with Proposition 4.12, we have 

(G(b), G(b'))- 8w E Z(q, q- 1] n qA0 = qZ[q]. 
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This is the statement (1). The statement (2) follows from the argument 
of [13, 14.2.3]. 0 

Remark 4.13. Lusztig conjectures that the universal standard mod
ule M(.A), more precisely its tensor product of ®R(G:>o.)R(H>..), which is 
isomorphic to vz ().), has a signed base characterized by the almost 
orthogonality property Theorem 3(2), with respect to geometrically de
fined bilinear form and bar involution [14]. (See §3.4 for notations.) Re
cently Varagnolo-Vasserot [20] give a proof of the conjecture by showing 
that {G(b) I bE B(.A)} satisfies the property. They also conjecture that 
the global base {G(b) I bE B(.A)} of V(.A) satisfies the almost orthogo
nality property with respect to the geometric bilinear form and bar invo
lution. Their conjecture follows from Theorem 3(2) since the geometric 
bilinear form and bar involution coincide with ones used in this paper, as 
Varangnolo and Vasserot proved that the formers satisfy the conditions 
in Proposition 4.1 (more precisely (4.3) and (Sc0 U>..,Scbu;..) = Dc0 ,cb) 
and the equality xu = x u. Remark that these hold only after an ap
propriate normalization of universal standard modules so that we have 
Xi,v = ±zi,v· This is the normalization in [20] different from ours. This 
point is clarified during discussion with Varagnolo-Vasserot in Februrary 
2002. 

Added in Proof. Results of this paper are generalized to the case 
of arbitrary affine algebras in the paper "Crystal bases and two-sided 
cells of quantum affine algebras" by J. Beck and H. Nakajima, to appear 
in Duke Math. J. 
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