
Advanced Studies in Pure Mathematics 40, 2004 
Representation Theory of Algebraic Groups and Quantum Groups 
pp. 17-25 

Heeke algebras with a finite number of 
indecomposable modules 

Susumu Ariki and Andrew Mathas 

Abstract. 

Recently, there has been progress in determining the representa
tion type of the Heeke algebras of finite Weyl groups. We report on 
these results. 

§1. Introduction 

Recall that an Artin algebra A has finite representation type if A 
has finitely many isomorphism classes of indecomposable modules; oth
erwise, A has infinite representation type. In this short article, we report 
on a criterion for when the Heeke algebra of a finite Weyl group has finite 
representation type. 

Let W be a finite Weyl group, K be an algebraically closed field and 
let q be a non-zero element of K. The K-algebra 1-lw(q) is the Heeke 
algebra associated with W. 

First assume that q = 1. Then 1-lw(q) is the group algebra KW. 
Let l be the characteristic of K. It is well-known that if G is a finite 
group then the group algebra KG has finite representation type if and 
only if Sylow l-subgroups of G are cyclic; see [13] and [7]. In the case 
where W is a Weyl group, this implies the following. 

Theorem 1. [4, Theorem 2] Let W be a finite Weyl group. Then 
KW has finite representation type if and only if l 2 does not divide the 
order ofW. 

Thus, we may assume that q =f:. 1 in the rest of the paper. A criterion 
for 1-lw(q) to have finite representation type was conjectured by Uno [16]. 
To explain this, we recall the Poincare polynomial of W. 
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Definition 2. Let W be as above and let x be an indeterminate 
over K. Then the Poincare polynomial Pw(x) of W is the polynomial 

Pw(x) = L xl(w) E K[x], 
wEW 

where l(w) is the length of wE W. 

The following is the conjecture of Uno's. 

Conjecture 3. (Conjecture-Theorem) Letq =f. 1 and1iw(q) be as 
above. Then 1iw(q) has finite representation type if and only if (x- q) 2 

does not divide Pw(x). 

Uno's conjecture is now a theorem when W does not have a com
ponent of exceptional type. If W does have a component of exceptional 
type then the conjecture is known to be true under a mild assumption 
on the field K. 

Let us explain the strategy used to prove the conjecture. Using the 
notion of complexity, we can reduce to the case where W is an irreducible 
Weyl group; see [4, Proposition 8]. We now proceed with a case-by-case 
analysis. When W is of type A the conjecture was already confirmed by 
Uno [16]. Uno also proved his conjecture for 1iw(q) whenever W is a 
finite Coxeter group of rank two. For exceptional types, the conjecture 
has been proved by Miyachi [15] under the assumption that the charac
teristic of K is not too small; this uses computational results which had 
been obtained by Geck, Lux et al. 

We now consider the cases where W is of type B or type D. Then, 
as is explained in [4], the conjecture is a corollary of [6, Theorem 1.4] 
(Theorem 4 below); see [4] and [6] for the details. Note that we excluded 
the case q = -1 in [6]. However, as we show below, a similar argument 
works in this case also and the main theorem [6, Theorem 1.4] is true 
when q = -1. In the next section, we explain the proof of this main 
theorem taking the case q = -1 as an example. 

§2. Theorem 1.4 of [6] and the case q = -1 

Recall that we are assuming that q =f. 1. Let Wn be the Weyl group 
of type Bn- Fix a non-negative integer f and let 1in = 1iwn (q, -qf) be 
the K -algebra with generators T0 , T1 , ... , Tn-l and relations 

(To- 1)(T0 - qf) = 0, (Ti + 1)(Ti - q) = 0, for 1 :::; i :::; n- 1, 
ToT1ToT1 = T1ToT1To, TiHTiTi+l = TiTi+1n for 1 :::; i :::; n- 2, 

TiTj = TjTi, for 0 :::; i < j - 1 :::; n- 2. 
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We are really considering the two parameter Heeke algebra of type B 
here; by a Morita equivalence argument the general two parameter case 
for type B reduces to considering the algebras above. 

By renormalizing To if necessary (see [6]) we may assume that q is a 
primitive eth root of unity, where e ~ 2, and that 0 ~ f ~ ~· The main 
result of [6] asserts that the following is true. 

Theorem 4 ([6, Theorem 1.4]). Suppose that K is an algebraically 
closed field, e ~ 2 and that 0 ~ f ~ ~. Then 'Hn is of finite representa
tion type if and only if n < min( e, 2f + 4). 

In fact, in [6] Theorem 4 is proved only for the cases withe~ 3; or, 
equivalently, when q =!= ±1. We first discuss the main ideas behind the 
proof of [6, Theorem 1.4]. We then illustrate how we use them in the 
argument by giving a proof of Theorem 4 in the case q = -1. 

To prove that 'Hn has finite representation type if n < min(e, 2f +4) 
we used the combinatorics of path sequences together with the Jantzen
Schaper sum formula [14] for 1-ln. Note that the case q = -1 (which was 
not considered in [6]), corresponds toe = 2; therefore, if q = -1 then 
n < min(e, 2f + 4) only if n = 1. Thus, when e = 2 it is automatic that 
'Hn has finite representation type if n < min(e, 2f + 4). 

We now consider the converse. To prove that 'Hn has infinite repre
sentation type when n ~ min(e, 2f + 4) we rely on two theories. One is 
the Specht module theory developed by Dipper, James and Murphy [9]. 
The other is the description of the decomposition numbers of 'Hn as 
the coefficients of the canonical basis elements of a certain level 2 Fock 
space [1, 5]; we call this Fock space theory. 

The Specht module theory provides us with a set of 'Hn-modules, 
called Specht modules, indexed by bipartitions. Let A= (.X(l), .x<2>) be a 
bipartition of n and let s>. be the corresponding Specht module. Then 
each s>. is equipped with an invariant bilinear form. Let rad(S>.) be the 
radical of the bilinear form and set D>. = s>. frad(S>. ). Then the non
zero D>. form a complete set of pairwise non-isomorphic 'Hn-modules. 
Define p>. to be the projective cover of D>. =!= 0. 

Let [> be the dominance ordering on the set of bipartitions of n. 

Proposition 5. [6, 3.12,3.13] 

1. If D>. =/= 0 then s>. is an indecomposable 'Hn -module and D>. is 
the unique head of s>.. 

2. Each projective 'Hn -module P has a Specht filtration; thus, there 
exist bipartitions v1 , ... , Vk and a filtration 

p = pk > pk-1 > ... > pl > pO = 0 
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such that pi/ pi-l ~ 8"•, for 1 < i :5: k, and i < j whenever 
Vi I> Vj· 

3. Suppose that P = P~-' for some bipartition JJ with D~-' =F 0. Then 
the Specht filtration of (2) can be chosen so that 

In particular, if A is maximal in the dom1inance ordering such 
that d>.~-' =/:- 0 then P~-' has a submodule isomorphic to s>.. 

The non-zero D>. were classified by the first author in [2]. 
Now we turn to the Fock space theory. We begin by recalling the 

following theorem; see [3, Theorem 12.5] or [1], [5]. For the statement, let 
A0 , ..• , Ae-l be the fundamental weights for the Ka.c-Moody Lie algebra 
U(;Ie) and, for a dominant weight A, let L(A) be the corresponding 
integrable highest weight module. 

Theorem 6. Fori= 0, 1, ... , e- 1 there ex1ist exact functors 

such that the operators induced by these, and suitG~bly defined operators 
d and hi, fori = 0, 1, ... , e- 1, give !Co = ffin>O ICo(1in-proj) ®z Q 

the structure of a U(;Ie)-module. Moreover, IC~ ~ L(Ao + AJ) as a 
U(;Ie)--module and if K is a field of characteristic zero then the princi
pal indecomposable 1in -modules correspond to elements of the Lusztig
Kashiwara canonical basis of L(Ao + A1) under this isomorphism. 

As a consequence of this result, when K is a field of characteristic 
zero the decomposition numbers of 1in can be computed using the canon
ical basis of a certain v-deformed Fock space :Fv = :Fv(Ao + A1 ); see [3] 
for details. In our case, the set of bipartitions form a basis of :Fv. Let 
Uv(;Ie) be the quantum group of U(;Ie); then :Fv is a Uv(;Le)-module. 
Let Lv(Ao +A,) be the integrable highest weight module for Uv(;Ie) 
of highest weight Ao + A 1. Then, by definition, the canonical basis of 
L(A0 + A1) is the canonical basis of Lv(Ao + A1) :>pecialized at v = 1. 

The action of U(;Ie) on the Fock space is the specialization at v = 1 
of the action of Uv(;Ie) on :Fv. In order to describe this let x and y 
be nodes of a bipartition A= (A<1>,A<2>). We say that xis above y if 
either (i) x E A(l) and y E A(2), or (ii) x and y a.re both in the same 
component of A (i.e. in A(l) or in A<2>), and xis above y. (We follow the 
English convention for describing partitions as Young diagrams.) For 

each i E 'll.je'll., write A ~ J.L if J.L can be obtained by adding a single 
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i-node to >.; see [6). Then the action of the Chevalley generator fi 
of Uv(;te) on :Fv is given by 

fi>. = L VN:(p./ >.) J-t, 

,_.,>.,_2__.,_. 

where Nf(J-t/>.) is the number of addable i-nodes below the node J-t/A 
minus the number of removable i-nodes below the node J-t/ >.. (The action 
of fiE U(;te) on the Fock space is given by setting v = 1.) 

The submodule of :Fv generated by the empty bipartition is iso
morphic to Lv ( A0 + A f) - the corresponding integrable highest weight 
module of Uv(;te); this module becomes L(Ao + Af) when we spe
cialize v to 1. Denote the empty bipartition in :Fv by VAo+AJ; then 

Lv(Ao + AJ) ~ Uv(;te)VA0+Ar 

Corollary 7. [6, Corollary 3.16) Suppose that D~-' =f. 0 and that, 
in characteristic zero, [P~'] corresponds to an element of the canonical 
basis which has the form fi~'"'.) ... fi~m,)VAo+AJ under the isomorphism 
of Theorem 6. Then P~-' has the same Specht filtration in positive char
acteristic as in characteristic zero. 

This corollary, together with the characterization of the canonical 
basis, implies that if 

fi~'"'.) · · · fi~'"'!)VA0+A1 E >. + L vZ[v]J-t 
,.. 

in the Fock space :Fv then the column of the decomposition matrix of 
1-ln corresponding to >. does not depend on the characteristic of the base 
field K. Thus, the corollary gives us a way of applying Theorem 6 to 
compute decomposition numbers of 1-ln when K is a field of positive 
characteristic. 

Using this, and the properties of the Specht modules listed above, we 
can prove that if n ~ min(e, 2f + 4) then 1-ln has infinite representation 
type. The reader can experience the flavour of the arguments of [6) from 
the following two lemmas which extend Theorem 4 to the case q = -1. 
Note that we only have to consider the cases f = 0,1 since 0 :$ f :$ ~-

Lemma 8. Assume that q = -1, f = 1 and n ~ 2. Then 1-ln has 
infinite representation type. 

Proof. By [6, Lemma 2.5) we may assume that n = 2. The defining 
relations of 11.2 are 
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Let A1 = ((0), (1 2 )) and A2 = ((1), (1)). The Fock space has highest 
weight A0 + A1 and the decomposition matrix is as follows. 

A1 A2 

((0), (1 )) 1 0 
((0), (2)) 1 0 
((1), (1)) 1 1 
( (12 ), (0)) 0 1 
( (2), (0)) 0 1 

If M is a finite dimensional Hn-module let [M] denote the cor
responding equivalence class in the Grothendieck group of 1in and let 
Rad(M) denote the radical of M. By the decomposition matrix above, 
we have [P>-1 ] = 3[D>-1 ] + [D>-2 ] and [P>-2 ] = [D>-1 ] + 3[D>.2 ]. Observe 
that s>-2 is indecomposable with head n>-2 and socle n>- 1 • Since its dual 
module is indecomposable with head DA1 and socle n>-2 ' so that n>-2 

must appear in Rad(P>.1 )/ Rad2 (P>.1 ). On the other hand, Rad(P>. 1 ) 

has a Specht filtration whose successive quotients are S((o),(2)) = D>-1 

and s>-2 • Thus D>.1 must appear in Rad(P>.1 )/Rad2 (P>-1 ). 

Using a similar argument we can prove that n>- 1 and n>-2 must 
appear in Rad(P>.2 )/Rad2 (P>-2). 

Considering the separation diagram, we conclude that the 1{2 has 
infinite representation type; see [6, Theorem 2.7]. 0 

Lemma 9. Assume that q = -1, f = 0 and n;::::: 2. Then 1in has 
infinite representation type. 

Proof. As before we may assume that n = 2. This time the defining 
relations of 1i2 are 

Let A = ( ( 0), ( 12 )). The element of the canonical basis corresponding 
to A is given by 

( ( 0), ( 12 )) + v ( ( 0), ( 2)) + v ( ( 12 ), ( 0)) + v2 ( ( 2), ( 0)). 

The other element of the canonical basis corresponding to ( ( 1), ( 1)) is 

((1), (1)) = /~2)((0), (0)). Thus, [P>.] = 4[D>-]. Looking at the defining 
relations, we can define a representation of 1{2 by 

(
1 0 a) 

To= 0 1 b, 
0 0 1 

~)-
-1 
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We choose a, b, c, d E K so that ad - be =/:. 0. Then this representa
tion gives an indecomposable module with head D>. and socle D>. E9 D>.. 
Therefore, End?-£2 (P>.) 7:- K[x]j(xm) for any m 2: 0 (it has two indepen
dent generators); so we conclude that the 1i2 has infinite representation 
type by [6, Lemma 2.6]. D 

§3. A result of Erdmann and Nakano 

In this section, we assume that W has type An-I· Let e be the 
multiplicative order of q as before. Recall that an e-core is a partition 
which does not contain a removable e-hook. Then the blocks of 1iw(q) 
are labelled by e-cores such that n- IKI is divisible by e. We denote 
by B,. the block labelled by an e-core K. 

Artin algebras fall into three categories; finite, tame and wild. Erd
mann and Nakano [10] have determined the representation type of the 
block algebras B,.. 

Recall that if K is an e-core then the e-weight of K is 

Theorem 10. [10, Theorem 1.2] Maintain the notation above. 

(1) B,. is semisimple if and only if w(K) = 0. 
(2) B,. has finite representation type (and is not semisimple) if and 

only if w(K) = 1. 
(3) B,. has tame representation type if and only if e = 2 and w(K) = 

2 . 
. (4) B,. has wild representation type if and only if either e 2: 3 and 

w(K) 2: 2, ore= 2 and w(K) 2: 3. 

Generalization of this theorem to other types remains open. 

§4. Appendix 

The aim of the paper [6] was to determine when the two parameter 
Heeke algebra 1in(q, Q) of type B, which is defined by 

(To- 1)(To + Q) = 0, (Ti + 1)(Ti- q) = 0, for 1 ~ i ~ n- 1, 
T0T1T0T1 = T1ToT1To, Ti+ 1TiTi+l = Ti1iHTi, for 1 ~ i ~ n- 2, 

TiTj = TjTi for 0 ~ i < j - 1 ~ n- 2, 

has finite representation type. The Morita equivalence theorem of Dip
per and James [8] implies that it is enough to consider the algebras 
1in = 1in(q, -qf) of section 2, where f E Z. Recall that we assumed 
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q f. 1 in section 2; however, as we now show, it is easy to determine 
when 1ln(1, Q) has finite representation type. 

Assume that q = 1. Then, as an algebra, 1ln(1, Q) is isomorphic 
to the semidirect product of the commutative algebra Cn and the group 
algebra of the symmetric group KSn, where 

Cn = (K[L]/(L2 - (Q- 1)£- Q))®n 

and Sn acts on Cn by conjugation in the natural way. 
If Q = -1 and n = 2 then £ 2 = (K[L]/(L + 1)2 )®2 is the Kronecker 

algebra and 1£2 (1,Q) = C2 Ef7 C2T1C2. Thus, 1ln(1,-1) has infinite 
representation type when n ~ 2. Hence, we have proved the following. 

Proposition 11. Suppose that K is a field. Then 1ln(1, -1) has 
finite representation type if and only if n = 1. 

If Q f. -1 then the Dipper-James Morita equivalence theorem com
bined with Uno's proof of Conjecture 3 for type A gives the following. 

Proposition 12. Suppose that K is a field. Then 1ln(1, Q) with 
Q f. -1 has finite representation type if and only if n < 2l where l is 
the charocteristic of the base field. 

Remark 13. We can prove this statement without appealing to the 
Dipper-James Morita equivalence theorem. If l f. 2 then 

K[L]/(L2 - (Q -1)£- Q) ~ K Ef7 K ~ KC2 

and thus 1ln(1, Q) ~ KWn where Wn is the Weyl group of type Bn. 
Therefore, by Theorem 1, 1ln(1, Q) has finite representation type if and 
only if n < 2l. 

Next assume that l = 2. Since KSn is a factor algebra of 1ln(1, Q), 
Theorem 1 again implies that 1ln(1, Q) has infinite representation type 
when n ~ 4. Let Gn = Cg I 6n. To prove that 1ln(1, Q) has finite 
representation type when n < 4 it is enough to observe that there is a 
surjective homomorphism 

By the remarks before Theorem 1, KGn has finite representation type 
if n < 4; hence, 1ln(1, Q) has finite representation type when n < 4. 
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