
Advanced Studies in Pure Mathematics 38, 2004 
Operator Algebras and Applications 
pp. 65-84 

Extensions of quasidiagonal C* -algebras 
and K-theory 

Nathania} P. Brown and Marius Dadarlat 

Abstract. 

Let 0 --> I --> E --> B --> 0 be a short exact sequence of C*
algebras where E is separable, I is quasidiagonal (QD) and B is 
nuclear, QD and satisfies the UCT. It is shown that if the boundary 
map 8: K1(B)--> Ko(I) vanishes then E must be QD also. 

A Hahn-Banach type property for Ko of QD C* -algebras is 
also formulated. It is shown that every nuclear QD C* -algebra has 
this Ko-Hahn-Banach property if and only if the boundary map 
8 : K1 (B) --> Ko(I) (from above) always completely determines when 
E is QD in the nuclear case. 

§1. Introduction 

Quasidiagonal (QD) C*-algebras are those which enjoy a certain fi
nite dimensional approximation property. (See [Vo2], [Br3] for surveys of 
the theory of QD C*-algebras.) While these finite dimensional approxi
mations have certainly lead to a better understanding of the structure of 
QD C* -algebras, there are a number of very basic open questions. For 
example, assume that 0 --+ I --+ E ~ B --+ 0 is a split exact sequence 
(i.e. there exists a *-homomorphism cp: B--+ E such that 1r o cp = idB) 
where both I and B are QD. It is not known whether E must be QD 
(and, in fact, it is not even clear what to expect). 

In this paper we study the extension problem for QD C* -algebras 
and it's relation to some natural questions concerning K-theory of QD 
C* -algebras. Our techniques rely heavily on Kasparov's theory of ex
tensions and thus we will always need some nuclearity assumptions. 

For example, adapting techniques found in [Sp] we will show (Theo
rem 3.4) that if 0 --+ I --+ E --+ B --+ 0 is short exact where E is separable, 
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I is QD, B is nuclear, QD and satisfies the Universal Coefficient Theorem 
(UCT) and the boundary map a: K 1 (B)----> K 0 (I) vanishes then E must 
be QD also. It follows that if K 1 (B) = 0 then E is always QD, which 
generalizes work of Eilers, Loring and Pedersen ([ELP]). As another 
application we observe that in the case that I is the compact operators 
our result implies that E is QD if and only if the (class of the) extension 
is in the kernel of the natural map Ext(B)----> Hom(K1(B),Z), where 
Ext(B) denotes the classical BDF group (recall that we are assuming B 
is nuclear and hence Ext(B) is a group). Also, we verify a conjecture 
of [BK], stating that an asymptotically split extension of NF algebras is 
NF, under the additional assumption that the quotient algebra satisfies 
the UCT of [RS]. 

We then study the general extension problem. Now let 0 ----> I ----> 

E----> B----> 0 be exact where E is separable and nuclear, I is QD and B 
is QD and satisfies the UCT. Based on previous work of Spielberg ([Sp]) 
it is reasonable to expect that in this case E will be QD if and only 
if a(K1 (B)) n K;j(I) = {0}, where K;j(I) = {0} denotes the positive 
cone of K 0 (I). Though we are unable to resolve this question we do 
show that it is equivalent to some other natural questions concerning 
the K-theory of QD C*-algebras and that in order to solve the general 
extension problem it suffices to prove the special case that B = C('ll') 
(see Theorem 4.11). 

The first equivalent K-theory question is: If A is nuclear, separable 
and QD and G C K 0 (A) is a subgroup such that G n K;j(A) = 0 then 
can one always find an embedding p : A ~ C where C is QD and 
p* (G) = 0? The condition G n K;j (A) = 0 is easily seen to be necessary 
and hence the question is whether or not it is sufficient. The second 
K-theory question asks whether every nuclear QD C*-algebra satisfies 
what we call the K 0 -Hahn-Banach property (see Definition 4.7). Roughly 
speaking this K 0-Hahn-Banach property states that if x E K 0 (A) and 
±x ¢:. K;j(A) then one can always find finite dimensional approximate 
morphisms (i.e. "functionals") which separate x from K;j(A). (Due 
to possible perforation in Ko(A) this statement is not quite correct, 
but it conveys the main idea.) Determining whether every nuclear QD 
algebra satisfies the K0-Hahn-Banach property is of independent interest 
as our inability to understand how well finite dimensional approximate 
morphisms read K-theory has been a major obstacle in the classification 
program. 

In section 2 we review the necessary theory of extensions and prove 
a few simple results needed later. In section 3 we handle the case when 
a : K 1 (B) ----> K 0 (I) vanishes. In section 4 we turn to the general 
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extension problem and show equivalence with the K-theory questions 
described above. 

The present work is related to work of Salinas [Sal], [Sa2] and 
Schochet [Sch]. Those authors study the quasidiagonality of extensions 
0 ---+ I ---+ E ---+ B ---+ 0 (i.e. the question of whether or not I contains 
an approximate unit of projections which is quasicentral in E) whereas 
we study the QD of the C* -algebra E. The two questions are different 
even if I is the compact operators. Indeed, while the quasidiagonality of 
0---+ JC ---+ E---+ B ---+ 0 does imply the QD of E, the converse implication 
is false (see Section 3). 

§2. Preliminaries and Trivial Extensions. 

Most of this section is devoted to reviewing definitions, introduc
ing notation and recalling some standard facts about extensions of C*
algebras. However, at the end we prove a few simple facts which will be 
needed later. The main result states that quasidiagonality is preserved 
in split extensions provided that either the ideal or the quotient is a 
nuclear C*-algebra (see Proposition 2.5). 

For a comprehensive introduction to the aspects of extension theory 
which we will need we recommend looking at [Bl, Section 15]. For any 
C*-algebra I we will let M(I) be it's multiplier algebra and Q(I) = 

M(I)II be it's corona algebra. Let 1r: M(I) ---+ Q(I) be the quotient 
map. 

If E is any C* -algebra containing I as an ideal and B = E I I then 
there exists a unique *-homomorphism p: E---+ M(I) such that p(I) =I 
and hence an induced *-homomorphism 1 : B ---+ Q(I). The map 1 is 
injective if and only if p is in injective if and only if I sits as an essential 
ideal in E. Conversely, given a C*-algebra B and a *-homomorphism 
1 : B ---+ Q(I) we can construct the pullback which, by definition, is the 
C*-algebra 

E(r) = {x EBb E M(I) EBB: 1r(x) = 1(b)}. 

This gives a short exact sequence 0 ---+ I ---+ E ( 1) ---+ B ---+ 0. Moreover, 
if B = E I I with induced map 1 : B ---+ Q(I) then there is an induced 
*-isomorphism <I> : E---+ E(r) with commutativity in the diagram 

0 -------+ I -------+ E -------+ B -------+ 0 

II II 
0 -------+ I -------+ E ( 1) -------+ B -------+ 0. 
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Hence there is a one to one correspondence between extensions of I by 
B and *-homomorphisms '"Y : B ---+ Q(I). As is standard, we will refer 
to a *-homomorphism '"Y: B---+ Q(I) as a Busby invariant and freely use 
the above correspondence between Busby invariants and extensions. 

When I is stable (i.e. I~ K.0I, where K. denotes the compact oper
ators on a separable infinite dimensional Hilbert space) there is a natural 
way of adding two extensions which we now describe. Any isomorphism 
M2(C) 0 K. ~ K. induces an isomorphism M2(C) 0 K. 0 I ~ K. 0 I 
which then gives isomorphisms Mz(C) 0 M(K. 0 I) ~ M(K. 0 I) and 
M2(C) 0 Q(K. 0 I) ~ Q(K. 0 I). Thus if we are given two Busby invari
ants '"'(1, '"Yz : B ---+ Q(K. 0 I) we can define a new Busby invariant '"Y1 EB '"'(2 
by 

Of course the Busby invariant '"'(1 EB '"Yz constructed in this way will 
depend on the particular isomorphism M 2 (C) 0 K. ~ K.. To remedy this 
we say that two Busby invariants '"'(1 , '"'(2 are strongly equivalent if there 
exists a unitary u E M(J) such that Adn(u)('"Y1 (b)) = n(u)'"Y1(b)n(u*) = 

'"Yz(b), for all b E B, where 1T : M(I) ---+ Q(I) is the quotient map. 
Note that if '"'(1 and '"Y2 are strongly equivalent then E('"YI) and E('"Yz) 
are isomorphic C* -algebras. Indeed, the map E('"YI) ---+ E('"Y2), x EB b f--+ 

uxu * EB b is easily seen to be an isomorphism. Since any isomorphism 
M2 ( q 0 K. ~ K. is implemented by a unitary we see that '"Y1 EB '"Y2 is 
unique up to strong equivalence. In particular, the isomorphism class of 
the C* -algebra E( '"'(1 EB'"'(2 ) does not depend on the choice of isomorphism 
M2(C) 0K. ~ K.. 

A Busby invariant 7 is called trivial if it lifts to a *-homomorphism 
if!: B---+ M(I) (i.e. 1T o 'P = 1). A Busby invariant '"Y: B---+ Q(K. 0 I) is 
called absorbing if'"'( EB 7 is strongly equivalent to '"'( for every trivial 7. 

Note that if '"Y is absorbing then so is i' EB '"Y for any ,:Y. In particular if 
'"'( is absorbing then '"'( is injective. Note also that if 7 1 and 7 2 are both 
trivial and absorbing then 71, 71 EB 7z and 72 are all strongly equivalent. 
Thus we get the following fact. 

Lemma 2 .1. If 71, 72 : B ---+ Q ( K. 0 I) are both trivial and ab
sorbing then E(71) ~ E(72). 

Another simple fact we will need is the following. 

Lemma 2.2. If'"'(, 7 : B ---+ Q(K. 0 I) are Busby invariants with 
7 trivial then there is a natural embedding E('"Y) '----+ E('"Y EB 7). 
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Proof Let cp B ---+ M(I) be a lifting o~ T. Define a map E(1') ---+ 
E('Y EEl T) by 

X EEl b f-t ( ~ cp~b) ) EEl b. 

Evidently this map is an injective *-homomorphism. 0 
The following generalization of Voiculescu's Theorem, which is due 

to Kasparov, will be crucial in what follows. 

Theorem 2.3. {[Bl, Thm. 15.12.4]} Assume that B is sepamble, 
I is a-unital and either B or I is nuclear. Let p : B ---+ B(H) be a 
faithful representation such that H is sepamble, p(B) n JC(H) = {0} and 
the orthogonal complement of the nondegenemcy subspace of p(B) (i.e. 
H 8 p(B)H) is infinite dimensional. Regarding B(H) ~ B(H) Q9 1 C 

M(IC Q9 I) as scalar operators we get a short exact sequence 

0 ---+ /C Q9 I---+ p(B) Q9 1 + /C Q9 I ---+ B ---+ 0. 

If T denotes the induced Busby invariant then T is both trivial and ab
sorbing. 

We define an equivalence relation on the set of Bubsy invariants 
B ---+ Q(IC Q9 I) by saying 1' is related to i' if there exist trivial Busby 
invariants T, f such that 1' EEl T is strongly equivalent to i' EEl f. Taking 
the quotient by this relation yields the semigroup Ext(B, /C Q9 I). The 
image of a map 1': B---+ Q(ICQ9I) in Ext(B,ICQ9I) is denoted [1']. Note 
that all trivial Busby invariants give rise to the same class denoted by 
0 E Ext(B, /C Q9 I) and this class is a neutral element (i.e. identity) for 
the semigroup. Note also that if [1'] = 0 E Ext(B, /C Q9 I) then it does 
not follow that 1' is trivial. However, it does follow that if T is a trivial 
absorbing Busby invariant then so is 1' EEl T. 

We are almost ready to prove the main result of this section. We 
just need one more definition. 

Definition 2.4. If 0 ---+ I ---+ E ---+ B ---+ 0 is an exact sequence 
with Busby invariant 1' then we let ')' 8 : /C Q9 B ---+ Q(JC Q9 I) denote 
the stabilization of 1'· That is, ')' 8 is the Busby invariant of the exact 
sequence 0 ---+ /C Q9 I ---+ /C Q9 E ---+ /C Q9 B ---+ 0. 

Note that there is always an embedding E ~E('Y) <---t E(1'8 ). 

Proposition 2.5. Let 0---+ I---+ E ---+ B ---+ 0 be exact with Busby 
invariant 1'· If both I and B are QD, B is separable, I is a-unital, either 
I orB is nuclear and [1'8 ] = 0 E Ext(JC ® B, /C Q9 I) then E is also QD. 
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Proof. Since quasidiagonality passes to subalgebras, it suffices to show 
that if T: IC®B ____, Q(IC®I) is a trivial absorbing Busby invariant (which 
exists by Theorem 2.3) then E(r) is QD. Indeed, by Lemmas 2.1, 2.2 
and the definition of Ext(JC Q9 B, JC Q9 I) we have the inclusions 

To prove that E(r) is QD we may assume (again by Lemma 2.1) 
that r arises from the particular extension described in Theorem 2.3. 
However for that extension it is easy to see that E(r) <-t (p(B) +!C) ®i, · 
where i is the unitization of I. But since p(B) n JC = {0} it follows that 
p(B) + JC is QD ([Br3, Thm. 3.11]). Hence (p(B) +!C) &dis also QD as 
a minimal tensor product QD C*-algebras ([Br3, Prop. 7.5] ). D 

Note that the above proposition covers the case of split extensions 
(i.e. when"( is trivial). 

§3. When 8 : K 1 (B) ____, K 0 (I) is zero. 

The main result of this section (Theorem 3.4) states that if the 
boundary map 8 : K1 (B) ____, K 0 (I) coming from an exact sequence 
0 ----; I ____, E ____, B ----; 0 is zero then E will be QD whenever I is QD and 
B is nuclear, QD and satisfies the Universal Coefficient Theorem (UCT) 
of Rosenberg and Schochet ([RS]). The main ideas in the proof are 
inspired by work of Spielberg ([Sp]). We also discuss a few consequences 
of our result, including generalization of work of Eilers-Loring-Pedersen 
( [ELP]) and a partial solution to a conjecture of Blackadar and Kirchberg 
[BK]. 

Definition 3.1. An embedding I <-t J is called approximately 
unital if it takes an approximate unit of I to an approximate unit of J. 

In this case there is a natural inclusion M(I) <-t M(J) which induces 
an inclusion Q(I) <-t Q(J) [Pe, 3.12.12]. Hence for any Busby invariant 
"( : B ____, Q(I) there is an induced Busby invariant 'fJ : B ____, Q(J) with 
commutativity in the diagram 

0 ------+ I ------+ E ("f) ------+ B ------+ 0 

1 1 II 
0 ------+ J ------+ E ( 'fJ) ------+ B ------+ 0. 

Moreover, the two vertical maps on the left are injective. 
There are two ways of producing approximately unital embeddings 

which we will need. The first is I <-t I Q9 A, for some unital C* -algebra 
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A. If { e.A} is an approximate unit of I then, of course, ex ® lA will be 
an approximate unit of I ® A. The other is to start with an arbitrary 
embedding I '---"* J' and define J to be the hereditary subalgebra in 
J' generated by I. That is, define J to be the closure of U.Ae>-J'e>-. 
One easily checks that J is then a hereditary subalgebra of J' and the 
embedding I '---+ J is approximately unital. 

In the theory of separable QD C* -algebras there are some nonsep
arable algebras which play a key role. The first is the direct product 
ITiMn; (C) for some sequence of integers { ni}· This algebra is the multi
plier algebra of the direct sum EBiMn; ( q. If H is any separable Hilbert 
space then we can always find a decomposition H = EBiCn; and then 
we have natural inclusions EBiMn; (C) '---+ K(H), ITiMn; (C) '---+ B(H) 
and Q(EBiMn;(C)) '---"* Q(K(H)). Another algebra which we will need is 
IIiMn;(C) +K(H). 

Lemma 3.2. Let J C ITiMn, (C)+K(H) be a hereditary subalgebra 
containing K(H). Then K 1 (J) = 0. 

Proof. Letting 1r : B(H) ___, Q(H) be the quotient map we have that 
n:(J) is a hereditary subalgebra of Q(EBiMn,(C)) (use the fact that if 
0:::; a E J,b E Q(EBiMn,(C)) and 0:::; b:::; n:(a) then there exists 
0 :::; c E IIiMn,(C) + K(H) such that c :::; a and n:(c) = b; [Da, Cor. 
IX.4.5]. Also, the exact sequence 0 ___, K(H) ___, J ___, n:(J) ___, 0 is 
a quasidiagonal extension (i.e. K(H) contains an approximate unit of 
projections which is quasicentral in J). Hence [BD, Thm. 8], states that 
we have a short exact sequence 

Thus it suffices to show that K1 (X) = 0 for any hereditary subalgebra 
X of Q(EBiMn, (C)). 

But if XC Q(EBiMn;(C)) is a hereditary subalgebra then we can 
find a quasidiagonal extension 

where Y C ITiMn, (C) is a hereditary subalgebra. Applying [BD, Thm. 
8] again it suffices to show that every hereditary subalgebra of ITiMn, (C) 
has trivial K 1-group. 

But, if Y C ITiMn, (C) is a hereditary a-unital subalgebra then Y 
has an increasing approximate unit consisting of projections, say {en} 
([BP]). Hence 
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since Y = limeniTiMn;(C)en (by heredity). But, for each n, it is clear 
that eniTiMn;(C)en is isomorphic to ITiMk;(C) for some integers {ki} 
and consequently KI(eniTiMn;(C)en) = 0. D 

Proposition 3.3. Let I be a separable QD C* -algebra. Then there 
exists an approximately unital embedding I~ J, where J is a a-unital 
QD C*-algebra with K 1(J) = 0. 

Proof. Let p: I----> B(H) be a nondegenerate faithful representation such 
that p(I)nK(H) = {0}. By [Br3, Prop. 5.2], there exists a decomposition 
H = EBiCn; such that p(I) C ITiMn; (C) +K(H). Let J be the hereditary 
subalgebra of ITiMn; (C) + K(H) generated by p(I). The conclusion 
follows from the previous lemma. D 

For the remainder of this section we will let U = 0nMn(C) be the 
Universal UHF algebra (i.e. the UHF algebra with Ko(U) = Q). For 
any Busby invariant 'Y : B ----> Q( J) we let 'YQ! denote the Busby invariant 
coming from the short exact sequence 

0----> J 0 U----> E('Y) 0 U----> B 0 U----> 0. 

Theorem 3.4. Let 0 ----> I ----> E ----> B ----> 0 be a short exact se
quence where E is separable, I is QD and B is nuclear, QD and satisfies 
the UCT. If the induced map 8 : K 1 (B) ----> Ko(I) is zero then E is QD. 

Proof. Let 'Y be the Busby invariant of the exact sequence in question. 
By the previous proposition we can find an approximately unital embed
ding I~ J, where J is QD with K 1 (J) = 0. By the remarks following 
Definition 3.1 we have an inclusion E ~ E(ry) where rJ : B ----> Q(J) is 
the induced Busby invariant. By naturality we then have that both in
dex maps 8: K 1 (B)----> K 0 (J) and 8: K 0 (B)----> K 1(J) are zero. Hence 
the index maps arising from the stabilization rJ 8 : B 0 K ----> Q( J 0 K) 
are also zero. 

Now, if it happens that Ko( J) is a divisible group then the Universal 
Coefficient Theorem would imply that [rJ8 ] = 0 E Ext(B 0 K, J 0 K) 
and so by Proposition 2.5 we would be done. Of course this will not be 
true in general and so may have to replace rJ8 with (ry8 )Q!. But applying 
naturality one more time, both boundary maps on K-theory arising from 
(rys)IQ! will also vanish. Hence the theorem follows from the inclusions 
E ~ E(ry) ~ E(ry8 ) ~ E((TJ8 )Q!) together with Proposition 2.5 applied 
to ( rJ8 )Q!. D 

In the case that the ideal is nuclear and the quotient is an AF 
algebra, the next result was obtained by Eilers, Loring and Pedersen 
([ELP, Cor. 4.6]). 
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Corollary 3.5. Assume that B is a separable nuclear QD C*
algebra satisfying the UCT and with K1 (B) = 0. For any separable QD 
C* -algebra I and Busby invariant '"'( : B -+ Q(I) we have that E('-y) is 
QD. 

This corollary actually extends to the case where K1 (B) is a torsion 
group since we can tensor any short exact sequence with U and K 1 (B 0 
U) = 0 in this case. For example, this would cover the case that B = 
C0 (IR.) 0 On, (2 :<:::: n :<:::: oo), where On denotes the Cuntz algebra on 
n generators. Similarly, it is clear that Theorem 3.4 is valid under the 
weaker hypothesis that 8(K1 (B)) is contained in the torsion subgroup 
of Ko(I). 

Definition 3.6. For any two QD C*-algebras I, B let Extqv(B, 
JC 0 I) C Ext(B, JC 0 I) denote the set of classes of Busby invariants '"Y 

such that E('-y) is QD. 

It is easy to check that if ['"Y] = [')-] E Ext(B, JC 0 I) then E('-y) is 
QD if and only if E(i') is QD and hence Extqv(B,JC 0 I) is well de
fined. It is also easy to see that Extqv(B, JC 0 I) is a sub-semigroup 
of Ext(B, JC 0 I). Finally, we remark that in the case I= C we do not 
get the semigroup Extqd(B, JC) defined by Salinas; it follows from Corol
lary 3.7 below, however, that we do get what he called Extbqt(B, JC) in 
this case (see [Sal, Definitions 2.7, 2.12 and Thm. 2.14]). One has 
Extqd(B, JC) C Extqv(B, JC). The elements of Extqv(B, JC) corre
sponds to C*-algebras E('-y) that are QD whereas ['"Y] E Extqd(B,JC) 
if the only if the extension 0 -+ JC -+ E( '"'() -+ B -+ 0 is QD i.e. the 
concrete set E('-y) C M(JC) is QD. 

Recall that there is a natural group homomorphism <I> : Ext(B, JC 0 
I)-+ Hom(K1 (B), K 0 (I)) taking a Busby invariant to the corresponding 
boundary map on K-theory. From Theorem 3.4 it follows that we always 
have an inclusion Ker(<I>) C Extqv(B,JC 0I), when B is nuclear, QD 
and satisfies the UCT. In general this inclusion will be proper, but we 
now describe a class of algebras for which we have equality. 

There is a natural semigroup Kit(I) C K 0 (I), called the positive 
cone, given by. 

Kit(I) = U {x E Ko(I): x = [p], for some projection p E Mn(J)}. 
nE!II 

When I is unital this semigroup generates Ko(I) but can also be trivial 
in general (e.g. if I is stably projectionless). The natural isomorphism 
K 0 (I) 9'! Ko(IC0I) induced by an embedding I= en0I C IC0I, where 
e11 is a minimal projection in JC, preserves the positive cones. We say 
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that K 0 (I) is totally ordered if for every x E K 0 (I) either x or -xis an 
element of Kt(I). 

Corollary 3.7. Assume I is separable, QD and K 0 (I) is totally 
ordered. For any separable, nuclear, QD algebra B which satisfies the 
UCT we have that ExtQD(B, K 0 I)= K er(<P). 

Proof. We only have to show ExtQD(B,K 0 I) C Ker(<P). So let 
[r] E Ext(B, K 0 I). If E(r) is a stably finite C*-algebra then a result 
of Spielberg (see Proposition 4.1 of the next section), together with the 
assumption that K 0 (I) is totally ordered, implies that [r] E Ker(<P). 
But since QD implies stably finite ([Br3, Prop. 3.19]) we have that if 
[r] E ExtQD(B, K 0 I) then [r] E Ker(<P). D 

The classic example for which K0 (I) is totally ordered is the case 
when I = K. In this setting the corollary above is very similar to a 
result of Salinas' which describes the closure of 0 E Ext(B, K) in terms 
of quasidiagonality ([Sal, Thm. 2.9]). See also [Sal, Thm. 2.14] for 
another characterization of ExtQD(B, K) in terms of bi-quasitriangular 
operators. For a K-theoretical characterization of Extqd(B, K) see [Sch, 
Theorem 8.3]. 

The class of NF algebras introduced in [BK] coincides with the class 
of separable QD nuclear C*-algebras. It was conjectured in [BK, Conj. 
7.1.6] that an asymptotically split extension of NF algebras is NF. We 
can verify the conjecture under an additional asumption. 

Corollary 3.8. Let 0 ---> I ---> E ---> B ---> 0 be an asymptotically 
split extension with I and B NF algebras. If B satisfies the UCT, then 
E is NF. 

Proof. Both index maps are vanishing since the extension is asymptoti
cally split. The conclusion follows from Theorem 3.4. D 

§4. Extensions and K-theory 

In this section we show that the general extension problem for nu
clear QD C*-algebras is equivalent to some natural K-theoretic ques
tions. 

We begin by recalling a result of Spielberg which solves the extension 
problem for stably finite C* -algebras and shows that it is completely 
governed by K-theory. 

Proposition 4.1. [Sp, Lemma 1.5] Let 0 ---> I ---> E ---> B ---> 0 be 
short exact where both I and B are stably finite. Then E is stably finite 
if and only if 8(K1 (B)) n Kt (I) = {0}, where 8 : K1 (B) ---> K 0 (I) zs 
the boundary map of the sequence. 
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In [BK, Question 7.3.1], it is asked whether every nuclear stably fi
nite C* -algebra is QD. Support for an affirmative answer to this question 
is provided by a number of nontrivial examples ([Pi], [Sp], [Brl], [Br2]). 
In fact, Corollary 3. 7 above also provides examples since the proof shows 
the equivalence of quasidiagonality and stable finiteness (in fact we did 
not even assume nuclearity of E in that corollary). Hence it is natural to 
wonder if Spielberg's criterion completely determines quasidiagonality in 
extensions as well. The following result gives some more evidence for an 
affirmative answer. If I is a C* -algebra, let SI = C0 (IR) ®I denote the 
suspension of I. Note that K 0 (SI)+ = {0} since SI ® JC contains no 
nonzero projections. 

Proposition 4.2. Let 0 ---+ SI ---+ E ---+ B ---+ 0 be exact, where I 
is O"-unital and B is separable, QD, nuclear. Then E is QD. 

Proof. The suspension SI of I is QD by [Vol]. We may assume that 
I is stable. Let a : SI '----) SI be a null-homotopic approximately 
unital embedding and let a : Q(SI) '----) Q(SI) be the corresponding 
*-monomorphism. Then for any Busby invariant '"Y : B ---+ M(SI), 
[a o '"!] = 0 E Ext(B, SI) by the homotopy invariance of Ext(B, SI) 
in the second variable [Kas]. It follows that E('"Y) '----) E(a o '"!) is QD by 
Proposition 2.5. 0 

Definition 4.3. Say that a QD C* -algebra A has the QD exten
sion property if for every separable, nuclear, QD algebra B which sat
isfies the UCT and Busby invariant '"Y : B ---+ Q(JC ®A) we have that 
E('"f) is QD if and only if E('"Y) is stably finite (which is if and only if 
8(K1 (B)) n K(i(JC ®A)= {0}, by Proposition 4.1). 

The QD extension property is closely related to a certain ·embedding 
property for the K-theory of A which we now describe. The interest in 
controlling the K-theory of embeddings of C* -algebras goes back to the 
seminal work of Pimsner and Voiculescu on AF embeddings of irrational 
rotation algebras ([PV]). Since then other authors have studied the 
K-theory of (AF) embeddings ([Lo], [EL], [DL], [Brl], [Brl]). 

Definition 4.4. Say that a QD C* -algebra A has the K 0 -embedding 
property if for every subgroup G C K0 (A) such that G n K[i(A) = {0} 
there exists an embedding p : A '----) C, where C is also QD, such that 
p.(G) = 0. 

It is not hard to see that if C is a stably finite C* -algebra and p E C 
is a nonzero projection then [p] must be a nonzero element of Ko(C). 
From this remark it follows that the condition G n K(i(A) = {0} is 
necessary. Hence the K 0-embedding property states that this condition 
is also sufficient. 
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A number of QD C* -algebras have the K 0-embedding property. 
For example, commutative C*-algebras, AF algebras ([Sp, Lem. 1.14]), 
crossed products of AF algebras by Z ([Brl, Thm. 5.5]) and simple nu
clear unital C* -algebras with unique trace. 

Our next goal is to connect the QD extension and K 0 -embedding 
properties. But we first need a simple lemma. 

Lemma 4.5. Let C be a hereditary subalgebra of a unital C*
algebra D. If C has an approximate unit consisting of projections and 
Ko(D) has cancellation then the inclusion C '----+ D induces an injective 
map K 0 (C) '----+ Ko(D). 

Proof. By cancellation we mean that if p, q E Mn(D) are projections 
with [p] = [q] in K 0 (D) then there exists a partial isometry v E Mn(D) 
such that vv* = p and v*v = q. 

Let x = [p]- [q] E K 0 (C) be an element such that x = 0 E K 0 (D). 
Since C has an approximate unit of projections, say { e>,}, we may assume 
that p and q are projections in (e.\ ® 1) C ® Mn ( CC) (e.\ ® 1) for sufficiently 
large n and .A. Since [p] = [q] in K 0 (D) and this group has cancellation 
we can find a partial isometry v E Mn(D) such that vv* = p and v*v = q. 

We claim that actually v E Mn(C) (which will evidently prove the 
lemma). To see this we first note that v = vv*(v)v*v = pvq and hence 

v = pvq = (e>- ® 1)pvq(e>- ® 1) = (e>- ® 1)v(e>- ® 1). 

Hence v E (e.\® 1)D ® Mn(CC)(e>- ® 1). But since Cis hereditary in D, 
C ® Mn(CC) is hereditary in D ® Mn(CC) and thus 

v E (e.\® 1)D ® Mn(CC)(e>, ® 1) C C ® Mn(CC). 

D 

Proposition 4.6. Let A be a separable QD C* -algebra. Then A 
satisfies the QD extension property if and only if A satisfies the Ko
embedding property. 

Proof. We begin with the easy direction. Assume that A has the 
QD extension property and let G C Ko(A) be a subgroup such that 
G n K{i(A) = {0}. Since abelian C*-algebras satisfy the UCT we can 
construct an extension 

0 ----+ JC ®A ----+ E ----+ EBNC('f) ----+ 0, 

such that 8(K1(EBNC('f))) = o(EBNZ) = G. But since A has the QD 
extension property E must be a QD C*-algebra. Thus the six-term K
theory exact sequence implies that A has the K 0-embedding property 
(i.e. the embedding into E will work). 
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Conversely, assume that A has the K 0-embedding property and let 

0 ---+ K: ® A ---+ E ---+ B ---+ 0 

be a short exact sequence where B is separable, nuclear, QD, satisfies 
the UCT and E is stably finite. 

Let G = 8(K1(B)) c K(K: ®A)~ K 0 (A). Since E is stably finite, 
G n K{i(A) = {0}. By the K 0-embedding property we can find a QD 
C*-algebra C and an embedding p: A'--* C such that p*(G) = 0. Since 
A is separable we may assume that Cis also separable. Indeed K 0 (A) 
(and hence G) is countable. Thus it only takes a countable number of 
projections and partial isometries in matrices over C to kill off p* (G). 
From this observation it is easy to see that we may assume that C is 
also separable. 

Let 1r : C '--* ITiMni (C) + K:(H) be an embedding (the existence of 
which is ensured by the separability of C) as in the proof of Proposi
tion 3.3. Let J C ITiMnJC) + K:(H) be the hereditary subalgebra gener
ated by 1r o p(A). Since ITiMni (C)+ K:(H) has real rank zero and stable 
rank one it follows from Lemma 4.5 that the inclusion J '--* ITiMni (CC) + 
K:(H) induces an injective map K0 (J) '--* K0 (ITiMni (C)+ K:(H)). Since 
G is in the kernel of the K-theory map induced by the embedding 
1r o p : A ---+ ITiMni (C) + K:(H) it follows that G is also in the ker
nel of the K-theory map induced by the embedding 1r o p: A---+ J. But 
the embedding into J is approximately unital by construction and so we 
get a commutative diagram 

0 ------> K: ® A ------> E ------> B ______. 0 

1 1 II 
0 ------> K: ® J ______. E( TJ) ______. B ______. 0, 

where TJ is the induced Busby invariant and the two vertical maps on 
the left are injective. 

Now we are done since naturality of the boundary map implies that 
the homomorphism 8: K 1 (B) ---+ K 0 (K: ® J) is zero and hence E(TJ) is 
QD by Theorem 3.4. D 

We now wish to point out a connection between extensions of QD 
C* -algebras and another very natural K-theoretic question. For brevity, 
we say a linear map cp : A ---+ B is ccp if it is contractive and completely 
positive ([Pa]). We recall a theorem of Voiculescu. 

Theorem 4.7. [Vol, Thm. 1] Let A be a separable C*-algebra. 
Then A is QD if and only if there exists an asymptotically multiplicative, 
asymptotically isometric sequence of ccp maps 'Pn : A ---+ Mkn (CC) for 
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some sequence of natural numbers kn {i.e. llct?n(ab)- ct?n(a)cpn(b)ll ---+ 0 
and llct?n(a)ll---+ llall for all a,b E A}. 

Given this abstract characterization of QD C* -algebras it is nat
ural to ask how well these approximating maps capture the relevant 
K-theoretic data. 

Definition 4.8. Say that a QD C* -algebra A has the K 0 -Hahn
Banach property if for each x E K 0 (A) such that Zx n K{i(A) = {0}, 
where Zx = {kx : k E Z}, there exists a sequence of asymptotically 
multiplicative, asymptotically isometric ccp maps ct?n : A ---+ Mkn (C) 
such that ( c,?n) * ( x) = 0 for all n large enough. 

It is easy to see that if y E K 0 (A) and there exists a nonzero integer 
k such that ky E K{i(A) then for every asymptotically multiplicative, 
asymptotically isometric sequence of ccp maps c,?n : A ---+ Mkn (C) we 
have (cpn)*(y) > 0 (if k > 0) or (cpn)*(y) < 0 (if k < 0), for all suffi
ciently large n. Hence this K 0-Hahn-Banaeh property states that one 
can separate elements x E K 0 (A) such that Zx n K{i (A) = { 0} from ( fi
nite subsets of) the positive cone using finite dimensional approximate 
morphisms. 

Another way of thinking about this property is that A has the K 0 -

Hahn-Banach property if and only if finite dimensional approximate 
morphisms determine the order on K 0 (A) to a large extent. A more 
precise formulation is contained in the next proposition (not needed for 
the rest of the paper). 

Proposition 4.9. The K 0 -Hahn-Banach property is equivalent to 
the following property: If x E Ko(A) and for every sequence of asymp
totically multiplicative, asymptotically isometric ccp maps 4?n : A ---+ 
Mkn(C) we have that (cpn)*(x) > 0 for all large n then there exists a 
positive integer k such that kx E K{i(A). 

Proof. We first show that the (contrapositive of the) second property 
above follows from the K 0-Hahn-Banach property. So assume we are 
given an element x E K 0 (A) and assume that there is no positive integer 
k such that kx E K{i(A). We must exhibit a sequence of asymptotically 
multiplicative, asymptotically isometric ccp maps c,?n : A ---+ Mkn (C) 
such that ( c,?n) * ( x) :::; 0 for all sufficiently large n. There are two cases. 

If there exists a negative integer k such that kx E K{i(A) then 
for every sequence ct?n : A ---+ Mkn(C) we have (cpn)*(x) < 0 for all 
sufficiently large n (see the discussion following definition 4. 7). The 
second case is ifZx n K(i(A) = {0}. This case is obviously handled by 
the K 0-Hahn-Banach property. 
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Now we show how the second property above implies the K 0-Hahn
Banach property. So let x E K 0 (A) be such that Zx n K(i(A) = {0}. 
Since no positive multiple of x is in K(i (A) the second property implies 
that we can find some sequence 'Pn: A____, Mkn(C) such that (cpn).(x)::; 
0 for all sufficiently large n. Similarly, since no positive multiple of 
-x is in K(i(A) we can find a sequence 'l/Jn : A ____, Mjn (C) such that 
('l/Jn).(x) 2: 0 for all sufficiently large n. If either of {cpn} or {'l/Jn} 
contains a subsequence with equality at 0 then we are done so we assume 
that (cpn).(x) = -sn < 0 and ('l/Jn).(x) = tn > 0 for all (sufficiently 
large) n. It is now clear what to do: we simply add up appropriate 
numbers of copies of 'Pn and 'l/Jn so that these positive and negative 
ranks cancel. More precisely we define maps 

tn Sn 

cl>n = (EBcpn) EEl (EB'l/Jn) 
1 

and regard these maps as taking values in the (tnkn+SnJn)x(tnkn+sn]n) 
matrices. D 

Proposition 4.10. If a separable QD C*-algebra A has the QD 
extension property or, equivalently, the K 0 -embedding property then A 
also has the K 0 -Hahn-Banach property. 

Proof. Assume that A has the Ko-embedding property and we are given 
x E K 0 (A) such that Zx n K(i(A) = {0}, where Zx = {kx : k E Z}. 
By the K 0 -embedding property we can find an embedding p: A '----7 C, 
where C is QD and p. ( x) = 0. As in the proof of Proposition 4.6 we may 
assume that C is also separable. But then take any asymptotically mul
tiplicative, asymptotically isometric sequence of contractive completely 
positive maps 'Pn: C ____, Mkn(rc) and we get that (cpn o p).(x) = 0 for 
all sufficiently large n. D 

We do not know if the converse of the previous proposition holds. 
However our final result will complete the circle for the class of nuclear 
C* -algebras. Moreover, the next theorem also states that in order to 
prove that every separable, nuclear, QD C* -algebra has any of the prop
erties we have been studying, it actually suffices to consider very special 
cases of either the QD extension problem or Ko-embedding problem. 

Theorem 4.11. The following statements are equivalent. 

1. Every separable, nuclear, QD C* -algebra has the QD extension 
property. 

2. Every separable, nuclear, QD C* -algebra has the Ko-embedding 
property. 
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3. Every sepamble, nuclear, QD C* -algebm satisfies the K 0 -Hahn
Banach property. 

4. If A is any separable, nuclear, QD C*-algebra and x E K 0 (A) 
is such that Zx n K{i (A) = { 0} then there exists an embedding 
p : A ~ C, where C is QD {but not necessarily separable or 
nuclear), such that p*(x) = 0. 

5. If A is any separable, nuclear, QD C*-algebra and x E Ko(A) 
is such that Zx n K{i (A) = { 0} then there exists a short exact 
sequence 0 ~ K 18> A ~ E ~ C('ll') ~ 0 where E is QD and 
x E 8(K1(C('ll'))) = 8(/l). 

Proof. The proof of Proposition 4.6 carries over verbatim to show the 
equivalence of 1 and 2. That proof also shows the equivalence of 4 and 
5. The previous proposition shows that 2 implies 3 and hence we are 
left to show that 3 implies 5 and 4 implies 2. 

We begin with the easier implication 4 ==> 2. So, let A be any 
separable, nuclear, QD C*-algebra and G C K 0 (A) be a subgroup such 
that G n K{i(A) = {0}. As in the proof of Proposition 4.6 we can 
construct a short exact sequence 

CX) 

0 ~ K®A ~ E ~ ffiC('ll') ~ 0, 
1 

such that 8(K1 (E9NC('ll'))) = 8(E9NZ) =G. We will prove that E is QD 

and, by exactness of EElNZ ~ K 0 (A) ~ K 1(E), this will show 2. 
For each n there is a short exact sequence 

n 

0 ~ K 18> A ~ En ~ EB C('ll') ~ 0, 
1 

where each En C E is an ideal and E = UnEn. Note also that each En 
is nuclear since extensions of nuclear algebras are again nuclear. Since 
a locally QD algebra is actually QD it suffices to show that each En is 
QD. Since E 1 is stably finite (being a subalgebra of E) we have that the 
boundary map 8: K 1 (C('ll')) ~ Ko(EI) takes no positive values. But 
then the proof of Proposition 4.6 shows that if we assume 4 then E 1 will 
be QD. Proceeding by induction we may assume that En-1 is QD. Since 
En is also stably finite, En-1 is an ideal in En and En/ En_ 1 = C('ll'), 
applying the same argument to the exact sequence 0 ~ En-1 ~En~ 
C('ll') ~ 0 we see that En is also QD. 

We now show that 3 ==> 5, which will complete the proof. So let A 
be any_separable, nuclear, QD C*-algebra and x E K 0 (A) be such that 
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Zx n K;i (A) = { 0}. Construct a short exact sequence 0 --+ JC Q9 A --+ 

E--+ C('IT') --+ 0 such that 8(1) = x. We will show that E must be QD. 
We can use the Ko-Hahn-Banach property to construct an embed

ding p : JC Q9 A --+ Q(EEliMn, (C)) such that p.(x) = 0. Let D C 
Q(EEliMn,(C)) be the hereditary subalgebra generated by p(JC Q9 A). 
Let 1r : C('IT') --+ B(H) be any faithful unital representation such that 
1r(C(1')) n JC(H) = {0}. We first claim that there is an embedding of E 
into (1r(C(1')) + JC(H)) Q9 D, where Dis the unitization of D. Indeed, 
since the embedding p : JC Q9 A --+ D is approximately unital we get a 
commutative diagram 

0 --------+ JC Q9 A --------+ E --------+ C (1') --------+ 0 

1 1 II 
0 --------+ D --------+ F --------+ C ('IT') --------+ 0, 

for some algebra F and the map E --+ F is injective. Since p. ( x) = 0 E 
K 0 (D) (by Lemma 4.5) and K 1 (D) = 0 (by the proof of Lemma 3.2) it 
follows that both boundary maps arising from the sequence 0 --+ D --+ 

F--+ C('IT') --+ 0 are zero. Hence we may appeal to the UCT, add on a 
trivial absorbing extension and eventually find an embedding of F into 
7r(C(1')) 01 + JC(H) Q9 D c (7r(C(1')) + JC(H)) Q9 D. 

Since E is nuclear it now suffices to show that every nuclear subalge
bra of (1r(C(1')) + JC(H)) Q9 Dis QD. Hence, by [Br3, Prop. 8.3] and the 
Choi-Effros lifting theorem ( [ CE]) it suffices to show that there exists a 
short exact sequence 

0 --+ J --+ C --+ ( 1r( C('IT')) + JC(H)) Q9 D --+ 0, 

where C is QD and J contains an approximate unit consisting of pro
jections which is quasicentral inC (i.e. the extension is quasidiagonal). 
However, this is now trivial since D C Q( EEliMn, (C)) implies that there 
is a quasidiagonal extension 

where R C ITiMnJC). But since X= 1r(C(1')) + JC(H) is nuclear the 
sequence 

is exact and since X is unital the extension is also quasidiagonal. 0 
Though Theorem 4.11 is stated for the class of nuclear QD C*

algebras a close inspection of the proof shows that this assumption was 
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only used in the proof of 4 ===? 2. Hence we also have the following 
result which applies to individual nuclear C* -algebras. 

Theorem 4.12. Let A be a separable nuclear QD C* -algebra and 
consider the following statements. 

1. A has the QD extension pmperty. 
2. A has the K 0 -embedding pmperty. 
3. A has the K 0 -Hahn-Banach pmperty. 
4. If x E K 0 (A) is such that Zx n Kri(A) = {0} then there exists 

an embedding p : A <---+ C, where C is QD {but not necessarily 
separable or nuclear}, such that p*(x) = 0. 

5. If x E K 0 (A) is such that Zx n Kri(A) = {0} then there exists a 
short exact sequence 0 ---> K ®A ---> E ---> C('Ir) ---> 0 where E is 
QD and x E 8(K1 (C('Ir))) = 8(Z). 

Then 1 {==} 2 ===? 3 {==} 4 {==} 5. 

Remark. There is another version of Theorem 4.11 where the class 
of nuclear C* -algebras is replaced by a class A of separable C* -algebras 
with the following closure property. If 0---> A®K ---> E---> B ---> 0 is exact 
with A E A and B separable abelian, then E E A. For instance A can be 
the class of all separable C* -algebras or the class of all separable exact 
C* -algebras. Then the statements 1-5 of Theorem 4.11 formulated for 
the class A (rather then for the class of nuclear C* -algebras) are related 
as follows: 1 {==} 2 {==} 4 {==} 5 ===? 3. 
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