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§1. Introduction 

The Weyl algebra Wn is the associative algebra generated over C 
by u, v with the fundamental relation u * v- v * u = -ni where n is 
a positive constant. ( u, v) is called a canonical conjugate pair. This is 
one of the simplest algebra which appears in the theory of deformation 
quantization [BFLS]. 

In such a noncommutative algebra, the ordering problem may be 
viewed as the problem of expressing elements of the algebra in a unique 
way. In the Weyl algebra, three kind of orderings; normal ordering, 
anti-normal ordering, and Weyl ordering, are mainly used. The nor­
mal ordering expression is the way of writing elements in the form 
E am,nUm * vn by arranging u to the left hand side in each term. The 
anti-normal ordering is in the form Eam,nVm * un. The Weyl ordering 
is in the form E am,n urn 0 vn by using the symmetric product 0 defined 
by u 0 v = !( u * v + v * u) etc. (See [OMY] for the detail of symmetric 
product.) 

Through such an ordering, one can linearly identify the algebra with 
the space of all polynomials. 

In other words, the Weyl algebra can be viewed, through each order­
ing mentioned above, as a non commutative associative product struc­
ture defined on the space C[u, v] of all polynomials with the ordinary 
commutative product. Product formulas are given respectively as fol­
lows: (We denote the ordinary commutative product by o, •, · in order 
to distinguish what ordering expression is used.) 
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(1.1) 

(1.2) 

(1.3) 
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• In the normal ordering expression: the product * of the Weyl 
algebra is given by the ll!DO-product formula as follows: 

;-- ---7 

f( u, v) * g(u, v) = f exp{ni(8v o 8u)}g. 

• In the anti-normal ordering expression: the product * of the 
Weyl algebra is given by the ll!DO-product formula as follows: 

;-- ---7 

f(u, v) * g(u, v) = f exp{ -ni(8u • 8v)}g. 

• In the Weyl ordering expression: the product * of the Weyl 
algebra is given by the Moyal product formula as follows: 

Iii ;-- 0 ---7 

f(u,v) * g(u,v) = fexp 2{8v 1\ 8u}g 

;-- 0 ---7 ;-- ---7 ;-- ---7 

where 8v/\8u = 8v·8u -8u ·8v. Every product formula yields U*V-V*U = 
-Iii, and hence defines the Weyl algebra. Here, commutative products 
o, •, · play only a supplementary role to express elements in the unique 
way. We distinguish these to indicate what ordering expression is used. 

Remark that we can change generators. For every A E SL(2, C), let 

(:)=A(:), A E SL(2,C). 

Then, it is obvious that [u',v']* =-Iii, and hence u', v' may be viewed 
as generators. The replacement (pull-back) A* of u, v by u', v' gives 
an algebra isomorphism of Wn. Thus, we may consider the ordering 
problem by using u', v' instead of u, v. 

Moreover, using a suitable canonical conjugate pair u, v, we can 
extend the algebra by using one of the above product formulas. 

Let Hol(C2 ) be the space of all entire functions on C2 with the com­
pact open topology. In the case that the parameter n is treated as a 
formal parameter, which has been the usual attitude in the theory of 
deformation quantization (cf. [O,el.2]), the product * extends associa­
tively in any ordering expression to the space Hol(C2)[[n]] of all formal 
power series of n with coefficients in Hol(C2 ). This is because product 
formulas mentioned above are bidifferential operators of total order 2k 
at the level of the coefficients of nk. (See [Om], §13 for more general 
treatment.) 

However, it is obvious that n should be a positive parameter in a 
true quantum theory. 

In this paper, we treat n is a positive parameter. Since all product 
formulas are given by concrete forms, these extend to the following: 
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• f * g is defined if one of J, g is a polynomial. 
• For every polynomial p = p( u, v), the left-(resp. right-) mul­

tiplication P* (resp. *P) is a continuous linear mapping of 
Hol(!C2 ) into itself under the compact open topology. 

We call such a system a (!C[u, v]; * )-bimodule. 

Proposition 1. In every product formula mentioned above, 
(Hol(!C2 ),!C[u,v],*) is a (!C[u,v];*)-bimodule. 

By the polynomial approximation theorem, the associativity 
f * (g *h) = (!*g) * h holds if two of J, g, h are polynomials. We 
refer this as 2-p-associativity. 

On the other hand, it is easy to see that the set of all quadratic forms 
in Wn is closed under the commutator bracket [ , ]*, hence it forms a 
L . a1 b X _ 1 2 y _ 1 2 H _ i h _ + ni £ te ge ra. - fiu , - fiv , - fiuv, w ere uv- u * v 2 , orm 
a basis of the Lie algebra .s[(2, !C): We see 

X, Y, H generate an associative algebra in the space !C[u, v] of all 
polynomials. This is an enveloping algebra of .s[(2, !C). 

The Casimir element C = H 2 +(X* Y + Y *X), that is 

is given by 

fi2 
= u2 * v2 + v2 * u2 - 2u * v * u * v - 2niu * v + -. 

2 

Hence, C = - 136 • This means that our enveloping algebra is constrained 
in the space C = - 136 • 

In a (!C[u,v];*)-bimodule with an ordering expression mentioned 
above, we can consider the differential equation 

d 
dtft(u,v) = p(u,v) * ft(u,v), fo(u,v) = f(u,v) 
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for every polynomial p(u,v). If p(u,v) = u 2 + (*v)2 , this equation is 
viewed as that of standard harmonic oscillator. If the complex variable 
t is considered, the existence of the solution for arbitrary initial function 
does not hold, but a real analytic solution in t is unique, if exists. If 
the real analytic solution exists, then we denote this by e;v(u,v) * f(u, v), 

where e!p(u,v) is the solution with initial condition 1. 
The purpose of this paper is to investigate the group generated by 

e~H+bX+cY. It is obvious that the obtained group should be SL(2, C) or 
SL(2,C)/Z2. 

However, we have to use several ordering expressions to define 
e~H+bX+cY for all a, b, c E <C. This is just like a 2-sphere can not 
be covered by one coordinate sheet. We need at least three ordering 
expressions to cover SL(2, <C). The precise meaning of the "union" will 
become clear in the proof. 

Moreover we see that the *-product eaH+bX+cY * ea'H+b'X+c'Y is 
' * * defined in general with an ambiguity of ±-sign of.,;-:, and the ambiguity 

can not be eliminated. Since the group structure is considered by using 
*-multiplication and the addition is not used, we can calculate the group 
operation with ± ambiguity. We show the following in this paper: 

Theorem 2. There is no (<C[u,v];*)-bimodule with an ordering 
expression containing e~H+bX+cY for all a, b, c E <C. 

However, if we use several (<C[u, v]; * )-bimodules with ordering 
expressions and forget about the ambiguity of ..;-:, then the group gen­
erated by { e~H +bX +cY; a, b, c E <C} is embedded in the union of such 
bimodules, and the image is SL(2, C). 

Several anomalous phenomena relating this theorem will be also 
discussed in this paper. Especially, we discuss how the associativity 
breaks down in the calculation of extended *-product. 

§2. Extensions of product formula 

In this section, we mainly use the Weyl ordering expression. The 
following is the most useful property of Moyal product formula (1.3): 

Proposition 3. For every A E SL(2, q, let <I>* be the replacement 
(pull-back) of u, v into u', v' by the combination of the linear transfor­
mation by the matrix A and the parallel displacement: 

Then, <I>* is an isomorphism in both *-product and ·-product. 
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Remark that other expressions do not have such a property. It is easily 
seen that 

(au+bv)~ = (au+bv)~, but (au+bv)~ "1- (au+bv):" for ab "1- 0. 

For the proof of Proposition 3, we have only to remark the following 
identity: 

+- ---t +--- --t 
Ov 1\ Ou = Ov1 1\ Ou'· 

It is clear that if A = diag{ A, A - 1 }, then the replacement <I>* of 
( u, v) by ( u', v') which is given by 

(::)=A(:)+(~), A E C*, (a,/3) E C2 , 

gives an isomorphism in both *-product and a-product or m both 
*-product and •-product. 

Starting from a (C[u,v]; *)-bimodule, *-product extends to a wider 
class of functions. For every positive real number p, we set 

(2.1) £p(C2 ) = {f E Hol(C2 ) 111/llp,s =sup lfle-slelv < oo, Vs > 0} 

where 1~1 = (lul 2 + lvl 2 ) 112 . The family {II llp,s}s>O induces a topology 
on £p(C2 ) and (£p(C2 ), ·)is an associative commutative Frechet algebra, 
where the dot · is the ordinary multiplication for functions in £p(C2 ). 

Thus, · may be replaced by o or • to indicate ordering of expression. It 
is easily seen that for 0 < p <rp', there is a continuous embedding 

as commutative Frechet algebras (cf. [GS]), and that £p(C2 ) is 
SL(2, C)-invariant. 

It is obvious that every polynomial is contained in £p(C2 ) and C[u, v] 
is dense in £p(C2) for any p > 0 in the Frechet topology defined by the 
family {II llp,s}s>O· 

Every exponential function e~u+,Bv is contained in £p(C2 ) for any 

p > 1, but not in £1(C2 ), and functions such as e~u2 +bv2+2cuv are con­
tained in £p(C2 ) for any p > 2, but not in £2 (C2 ). Functions such as 
I: (n!)l/p uk is contained in £q(C2 ) for any q > p, but not in £p(C2 ). 

Hol(C2 ) is a complete topological linear space under the compact 
open topology. 

The following theorem is the main result of [OMMY]: 1 

1In [OMMY), the proof is given in the case of Weyl ordering expression, 
but the same proof works for other orderings. 
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Theorem 4. Any product formula (1.1), (1.2), (1.3) extend to give 
the following: 

(i): For 0 < p ~ 2, the space (£p(C2), *) forms a topological asso­
ciative algebm. 

(ii): For p > 2, every product formula gives a continuous bi-linear 
mapping of 

for every p' such that ~ + -? ;::: 1. 

We remark here about the statement (ii). Since p > 2, p' must 
be p' < 2, hence the statement (i) gives that (£p' (C2 ); *) is a F'n~chet 
algebra. So the statement (ii) means that every £p(C2), p > 2, is a 
topological t'p' (C2 )-bimodule. . 

We remark also that if n > 0, then e:±=(l/n)(au2 +bv2 +2cuv) E £p(C2) 

for every p > 2. Remark also that such an element does not appear in 
the theory of formal deformation quantization. 

Let £2+(C2) = nP>2 £p(C2). £2+(C2) is a Frechet space under 

the natural intersection topology, e±(l/li)(au2 +bv2 +2cuv) is continuous in 
£2+(C2) with respect to (a,b,c) E C3 . 

The following are examples of elements of £2+(C2) which play impor­
tant role in the later sections: 

100 _1_e(tanht)uv dt 
_ 00 cosht ' 

~(1 _ e(2i/li)uv), 
u 

~ (1 _ e-(2i/li)uv). 
v 

2.1. Intertwiner, or coordinate transformations 
We have three kind of (C[u, v]; *)-bimodules according to normal 

ordering expressions, the anti-normal ordering expression and the Weyl 
ordering expression. 

Let e!u, e;v be *-exponential functions defined by e!u = I: Jh ( su) k 

or equivalently by the solution of ft ft ( u) = u * ft ( u) with fo ( u) = 1. By 
each product formula, e!u * e;v is computed as follows: 

• e!u * e;v = e~u+tv in the wDO-product formula, 
• e!u * e;v = e-liiste!u+tv in the W"DO-product formula, 
• e!u * e;v = e-(liist/2)e~u+tv in the Moyal product formula, 

where a, •, · indicate the commutative product used in each expression. 
We have also 

• e':u+f3v = e':u+f3v in the Weyl ordering expression, but 
• e':u+f3v = e(lii/2)af3 e~u+f3v in the normal ordering expression 

with respect to ( u, v). 
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Thus, we must identify e~u+tv, e-liiste!u+tv, e-(1iistf2)e~u+tv through 
linear transformations. These are obtained by the following 

Thus we define intertwiners as follows: 

We consider also the intertwiner between normal ordering expression 
with respect to ( u, v) and the normal ordering expression with respect to 
(u',v') when (u,v) and (u',v') are related by u' = au+bv, v' = cu+dv 
such that ad - be = 1. 

The principle of making the intertwiner is that the *-exponential 
functions e<;u+f3v and e';' u' +f3' v' coincide if ( u, v) and ( u', v') are canoni­
cal conjugate pairs related linearly by each other and au + (3v = a' u' + 
(3'v'. 

Lemma 5. If u' = au+ (3v, and v' = "(U + 8v is a canonical 
conjugate pair, then e~u' = e~'f' in the normal ordering expression with 
respect to ( u', v'). 

Applying Lemma 5 to a canonical conjugate pair (u', v'), we take 
the normal ordering expression with respect to ( u', v'): 

ea'u'+f3'v' = e(lii/2)a 1{3 1 ea'u'+f3'v' 
* 0 

Suppose au+f3v = a'u' +f3'v' and u' = au+bv, v' = cu+dv, ad-be= 1. 
Then, we must identify e(lii/2)af3 e:;-u+f3v with e(lii/2)a' f3' e';' u' +f3' v'. 

Hence, we have to define the intertwiner I~ as a linear mappings: 

(2.4) 

Precisely speaking, if ( u, v) and ( u', v') relate by 

u' =au+ bv, v' = cu + dv, ad- be= 1, 

we first consider the exponential of the operator 

8u'8v'- 8u8v = -bd8~ +(ad+ be -1)8u8v- aca; 

and then we replace the variable ( u, v) by ( du'- bv', -cv' + av') to obtain 
I~ f( u, v ). That is, if 

e-bd8~+(ad+bc-1)8u8v-aca; f(u, v) = g(u, v), 

then we set I: f(u, v) = g(du'- bv', -cv' + av'). 
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These are first defined on the space C[u, v], and these give different 
expressions to a same element written by using *-product via different 
commutative algebras. 

Theorem 6. The intertwiners defined above extend to continuous 
linear isomorphisms of t'p(C2) onto itself for every 0 < p :S 2, and to 
give algebra isomorphisms of (t'p(C2); *) onto (t'p(C2); *)· 

However, these do not extend to the space £2+(C2). 

Just like a coordinate transformation, the intertwiner is defined only 
on a part of £2+(C2) onto a part of another £2+(C2). 

In spite of this, it is remarkable that the patching property, that 
is, I~' I~ (f) = I~' (f) holds for f E £2 (C2 ), and this hold also for 
f E £2+(C2) if both sides are defined. This is proved by the approx­
imation by elements of £2 (C2). Intertwiners have the property of gluing 
maps of bimodules. 

By the above observation we see in particular: 

Lemma 7. The anti-normal ordering expression with respect to 
(u,v), and the normal ordering expression with respect to (-v,u) coin­
cides. 

By the observation as above, we have to consider the differential 
equations 

(2.5) 

The solution with initial function eau+bv is given by eniabteau+bv, 

e1ia2teau+bv. To obtain the solution with the initial function 
e"'u2+!3v2+2'1'uv, we set f = s(t)e<l>l(t)u2+</>2(t)v2+</>3(t)2uv. Then, the equa-
tions in (2.5) are rewritten respectively as systems of ordinary differential 
equations: 

(2.6) 

(2.7) 

s'(t) = 2/tis(t)¢3(t), ¢~(t) = 4/ti¢I(t)¢3(t), 

c/J~(t) = 4/tic/J2(t)c/J3(t), cP~(t) = 2/ti(c/JI(t)¢2(t) + cP3(t?). 

s1(7) = 2/ti¢1(7)s(7), ¢~(7) = 4/ti¢1(7)2, 

¢~(7) = 4/ti¢3(7)2, ¢~(7) = 4/ti¢1(7)¢3(7). 

Through the solutions, we can patch exponential functions of qua­
dratic forms together, and although the domain and the region are not 
clearly stated, intertwiners give patching identities of t'p(C2)-bimodules 
for p < 2, to define a certain t'p(C2)-bimodule as a patched object. 
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§3. Vacuums, half-inverses and the break down of the associa­
tivity 

A direct calculation using the Moyal product formula (1.3) shows 
that the coordinate function v has a right inverse V0 = ~(1- eC2ifn)uv), 

and a left inverse v• = ~(1- e-(2ifn)uv) in £2+(C2), i.e, 

V * V 0 = 1 = v• * v, V 0 * v = 1- 2e(2i/li)uv, v * v• = 1- 2e-(2ifn)uv. 

If the associativity holds, then these should be the same genuine 
inverse. Hence we must set ~ sin ~uv = 0. Since this is impossible 
(cf. [O,el.l]), we loose the associativity in £2+(C2 ). This is one of the 
most basic phenomenon which breaks the associativity. That is, coordi­
nate functions have both left- and right-inverses. 

3.1. Star-exponentials of quadratic forms in the Weyl 
ordering expression 

These strange phenomena are deeply related to the *-exponential 
function such as e~tfn)u·v defined by the equation ft ft ( u, v) = * ( u · v) * 
ft ( u, v), fo ( u, v) = 1. Recall again that such an element can not appear 
in the formal deformation theory. 

For every point (a, b, c; s) in C4 , consider a curve s(t) exp{ *(a(t)u2 + 
b(t)v2 + 2c(t)uv)} starting at the point s expU(au2 + bv2 + 2cuv)} then 
the tangent vector of this curve is given as 

( ~ (a'u2 + b'v2 + 2c'uv )s + s') e(1/n)(au2+bv2+2cuv). 

On the other hand, consider the *-product 

:!_I e(tfn)(a'u2+b'v2+2c'uv) * se(1fn)(au2+bv2+2cuv). 
dt t=O 

This is computed as follows: 

.!.(a'u2 + b'v2 + 2c'uv) * se(1fn)(au2+bv2+2cuv) 
n 

= .!.(a'u2 + b'v2 + 2c'uv)se(lfn)(au2+bv2+2cuv) 
n 

2i + n{(b'v + c'u)(au + cv)- (a'u + c'v)(bv + cu)} 

X se(lfn)(au2+bv2+2cuv) 

1 
- 2fi {b'(na + 2(au + cv)2)- 2c'(!ic + 2(au + cv)(bv + cu)) 

+ a'(!ib + 2(bv + cu)2)}se(1/n)(au2+bv2+2cuv) 
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This may be written as 

(3.1) 

1 
-(a' b' c') n , , 

X se(lfn)(au2 +bv2 +2cuv). 

H. Omori 

-b2, -b(c + i), 
-(c- i) 2 , -a(c- i), 
2b(c- i), 1+ab+c2 , 

We denote this matrix by M(a, b, c; s), and by M(a, b, c) the subma­
trix of first three columns. 

Remark that 

(3.2) detM(a, b, c)= (c2 - ab + 1)3 . 

The feature of this matrix is that the radial direction is the direction 
of eigen vector: 

(3.3) (a, b, c)M(m, Tb, Tc) = (1 + (c2 - ab)T2)(a, b, c), 

holds for every (a, b, c). 
If c2 - ab + 1 = 0, then we can write 

au2 + bv2 + 2cuv = 2i(au + f3v)(l'u + 8v), a8- f3'Y = 1. 

Clearly, [au+ f3v, "fU + 8v] = -Iii. Hence, setting u' = au + f3v, 
v' = "(U + 8v, (u',v') is a canonical conjugate pair, and hence by Propo­
sition 3, we easily see by (1.3) that 

(3.4) (l'u + 8v) * e(2i/n)(au+f3v)(-yu+6v) = 0, for a8- f3'Y = 1. 

It follows that 

(l'u + 8v)~ * e(1/n)(au2 +bv2 +2cuv) = 0, 

(au+ f3v) * (l'u + 8v) * e(1/n)(au2 +bv2 +2cuv) = O. 

The second identity yields (a, b, c)M(a, b, c)= 0, if~ -ab+1 = 0, which 
corresponds to (3.3), and the first one yields 

(1'2,82,"(8)M(a,b,c) = 0, c2 - ab+ 1 = 0. 

Hence we see that M(a, b, c) is rank 1 at the point c2 - ab + 1 = 0, but 
the rank of M(a,b,c;s) is 2 at such a point. 2e(2ifn)(au+f3v)('Yu+6v) and 
2e-(2i/n)(au+f3v)('Yu+<5v) are called vacuums. Remark that (au+ f3v) X 

( "(U + 8v) and ( "(U + 8v) (au + f3v) are distinguished in the expression of 
vacuums. 
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3.2. Horizontal distributions 
Using (3.1), we consider a holomorphic singular distribution D given 

by 
D(a,b,c;s) = {(a',b',c')M(a,b,c;s) I (a',b',c') E <C3 } 

on the space <C3 x <C*. Let 1r : <C3 x <C* ---+ <C3 be the natural projection. 
Let I: = { (a, b, c); c2 - ab+ 1 = 0}. I: x <C* is a 3-dimensional complex 

submanifold of <C3 x <C*. 
Though {D} is singular on I: x C, {D} is a strongly involutive 

distribution in the sense of [Om] p. 51, for { D} is given as an infinitesimal 
action of a Lie group. This gives an ordinary involutive distribution on 
(<C3 - I:) x <C* and hence there is the 3-dimensional maximal integral 
holomorphic submanifold M 3 through the origin (0, 0, 0; 1). 

A curve g(t) = (a(t), b(t), c(t); s(t)) is an integral curve of {D}, if 
-!ftg(t) E D(g(t)) for every t. For every curve c(t) in <C3 - I:, we have an 
integral curve g(t) such that 1r(g(t)) = c(t). g(t) is a lift of c(t). Remark 
that g(l) depends only on the homotopy class of curves joining (0,0,0) 
and c(l). 

Points of M 3 is given as the homotopy equivalence class of lift of 
curves in <C3 -I: starting at the origin (0, 0, 0). 

Every integral curve g(t) staring at a point of I: x <C* remains in 
this space. The maximal integral submanifold through a point of I: x <C* 
is a 2-dimensional complex submanifold M 2 such that 1r(M2 ) is a one 
dimensional submanifold of I:. Hence, I: x <C* is foliated by maximal 
integral submanifolds. 

3.3. *-exponentials and vacuums 

In this subsection we define the exponential function 
t(au 2 +bv 2 +2cuv) Set t(au2 +bv 2 +2cuv) ( ) e* . e* = F t, u, v , and consider 

the evolution equation 

(3.5) 
8 
otF(t,u,v) = (au2 + bv2 + 2cuv) * F(t,u,v), F(O, u, v) = 1. 

The right hand side of (3.5) is computed by the Moyal product 
formula (1.3) as follows: 

(au 2 + bv2 + 2cuv) * F(t, u, v) 

= (au2 + bv 2 + 2cuv)F + ni{(bv + cu)8uF- (au+ cv)BvF} 

n2 2 2 } - 4 {bouF - 2c8v8uF + aovF 

This is a partial differential equation. If ab - c2 > 0, then this is the 
heat equation and the existence of solutions is not ensured in general. 
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This implies that the mapping f( u, v) -+ e~t/h)(au2 +bv2+2cuv) * f( u, v) is 
not always defined for c=-functions. 

However, we see that real analytic solution in t is unique, if 
. . H th t . t(au2+bv2+2cuv) . f t" f It exists. ence we assume a e* IS a unc 10n o 
au2 + bv2 + 2cuv; that is e~(au2 +bv2+2cuv) = ft(au2 + bv2 + 2cuv). Then, 
setting x = au2 + bv2 + 2cuv, we have 

(3.6) 

The right hand side is the Bessel operator. 
However, there is another method to treat this differential equation. 

We assume that 

t(au2+bv2 +2cuv) _ (t) a(t)u2+b(t)v2+2c(t)uv e* - s e , 

then we have only to solve the system of ordinary differential equations 

d 
(3.7) dt (a(t), b(t), c(t); s(t)) =(a, b, c)M(a(t), b(t), c(t); s(t)), 

(a(O),b(O), c(O); s(O)) = (0, 0, 0; 1). 

Lemma 8. The solution of (3.6) with the initial function 1 is 
given by 

ft(x) = 1 exp x tanh (nJ ab- c2 t). 
cosh(nJab-c2t) nJab-c2 

If ab - c2 = 0, then we set 

1 tanh (n../ab- c2 t) = t. 
nJab- c2 

This shows that e~uv cannot be defined for all t E C, if the equation 
ft}t ( uv) = ( uv) * ft ( uv) is considered in the Weyl ordering expression. 

We shall show that such singularities appear also in the other order­
ing expressions. Such an observation gives the first half of Theorem 2. 
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By Lemma 8, we have 
(308) 

exp* { ~(au2 + bv2 + 2cuv)} 

1 

cosh( vab- c2 t) 

xexp{(au2 +bv2 +2cuv)( 1 tanh(\l'ab-c2 t))} 
nvab- c2 

1 

cos( Vc2 - abt) 

xexp{(au2 +bv2 +2cuv)( 1 tan(\l'c2 -abt))} nvc2 - ab 

( cfo same formula is seen also in [MS]o) Remark here that 

e~(au2 +bv2+2cuv) E M 3
0 Though the ambiguity of ±vab-c2 makes no 

difference for the result, the difference of the periodicity of cos and tan 
gives that if c2 - ab f. 0, then 

(309) 1r-11r{e~(au2 +bv2 +2cuv);t E C} = {±e~(au2 +bv2 +2cuv);t E C}o 

Since tanB = v/c2 - ab gives co;2 e = c2 - ab + 1, (308) is equivalent 
with 

Vc2 - ab + 1 exp { ~(au2 + bv2 + 2cuv)} 
(3010) 

= exp* { 1 (arctan J c2 - ab) (au2 + bv2 + 2cuv)} 0 

nv/c2 - ab 

Using this, we have the following: 

Proposition 9. If c2 - ab + 1 f. 0, then ±v c2 - ab + 1 x 
exp{ k ( au2 + bv2 + 2cuv)} are elements of M 3 

0 Conversely, if n( Q) = 

exp{ k ( au2 + bv2 + 2cuv)} with c2 - ab + 1 f. 0 for some Q E M 3 , then 

Q = J c2 - ab + 1 e(l/li)(au2+bv2+2cuv) or 

- J c2 - ab + 1 e(lfli)(au2+bv2+2cuv) 0 

These are written as *-exponential functions written in the form 

except the case Q = -e(tfli)(au2+bv2+2cuv)' c2 - ab = Oo 
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By (3.8), we have in particular, if c2 # ab, then exp*{li~ X 

(au2 +bv2 +2cuv)} = -1, but exp*{ 21i~(au2 +bv2 +2cuv)} diverges 
in the Weyl ordering expression. 

Let II0 be the subset defined as follows: 

II = {( b ) E tr'3. (1/li)(au2+bv2+2cuv) o a, , c \L. , e* does not defined}. 

Remark that Proposition 9 shows that 1r: M 3 ---+ <C 3 - ~ is surjective, 
but the difference of period of cos and tan, and the ambiguity of the 
sign of V c2 - ab + 1 of ( 3.10) shows that 1r gives a double cover. Hence 
we have the following result: 

Proposition 10. exp*: <C3 - II0 ---+ <C3 - ~ is a holomorphic map­
ping such that 

exp* ( <C3 - IIo) 

= M3- { -e(l/li)(au2+bv2+2cuv); c2- ab = 0, (a, b, c) # (0, 0, 0)}. 

The element -1 is on a *-exponential function as exp*(]j;2uv) = -1. 

By the uniqueness of analytic solutions, the exponential law 

holds where both sides are defined. 

Lemma 11. For s, a E <C such that 1 + sa(ab- c2 ) # 0, we have 

exp { * ( au2 + bv2 + 2cuv)} * exp { * ( au2 + bv2 + 2cuv)} 

1 { s+a 2 2 } 
= ( b 2) exp n( ( b 2)) (au + bv + 2cuv) . 1 + sa a - c 1 + sa a - c 

Thus, we have idempotent elements 

2exp{± 1 (au2 +bv2 +2cuv)} 
nvab- c2 

* 2 exp {± 1 (au2 + bv2 + 2cuv)} 
nvab- c2 

= 2exp {± 1 (au2 + bv2 + 2cuv)}. 
nvab- c2 

Recall 2 exp{ li~ ( au2 + bv2 + 2cuv)} is a vacuum. 
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Corollary 12. Vacuums are obtained as the limit point of 
*-exponential functions: 

2exp { 1 (au2 + bv2 + 2cuv)} 
nvab- c2 

= lim exp {itV ab- c2} exp* { t (au2 + bv2 + 2cuv)} 
t-+oo nvab - c2 

is a vacuum. 

This shows that vacuums may be regarded as certain equilibrium 
states (cf. [BL]). 

The following lemma is useful in the computation, and is proved by 
that both quantities satisfy the same partial differential equation with 
the same initial condition: 

Lemma 13 (Bumping lemma). 

3.4. Anomarous phenomena 

We easily see by the Moyal product formula (1.3) that 

v * e(2i/li)uv = 0 = e(2i/li)uv * u, u * e.,-(2ijli)uv = 0 = e-(2i/li)uv * v. 

We call 2e(2i/li)uv a vacuum and 2e-(2i/li)uv a bar-vacuum and denote 
these by ro0 ,0 , and ro0 ,0 respectively. By the Moyal product formula and 
the 2-p-associativity, we see easily 

( uv - ~i) * e(2i/li)uv = u * v * e(2i/li)uv = 0. 

However, uv-ni/2 = U*V has the inverse i J0
00 e-;(itfli)u*v dt in £2+(C2). 

Thus, the associativity fails in £2+(C2): 

(3.11) 

( ( uv _ ~i) -1 * ( uv _ ~i)) * e(2i/li)uv 

¥ ( uv _ ~i) -1 * ( ( uv _ ~i) * e(2i/li)uv). 

Furthermore, we see that 

r= 1 { i ( t ) } . Jo cosh(t/2) exp h, tanh 2 2u · v dt, 

[
0

00 
cosh~t/2) exp {~(tanh~) 2u · v} dt 
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exist in the space £2+(C2). It follows that u · v has two different inverses 
as follows: 

( . )-1 __ ·100 (it/1i)u·v dt u v +iO- z e* , 
0 

.( )-1 _ ·1° (it/1i)u·v dt u · v -io - z e* . 
-00 

The difference is given as 

(3.12) ( . )-1 _ ( . )-1 __ ·100 
(it/1i)u·v dt 

U V +iO U V -iO - Z e* . 
-00 

Since the right hand side of (3.12) can be viewed as the *-Fourier 
transform of 1, this may be written as the *-delta function -i8*(u · v) 
(cf. [OMMY]). Hence the associativity must break down again, and it 
holds ( u · v) * 8* ( u · v) = 8* ( u · v) * ( u · v) = 0. 

Thus, it is impossible to treat (u · v)+Io and (u · v)=io in the same 
associative algebra. In spite of this, the right hand side of (3.12) has the 
expression as follows by using Hansen-Bessel formula: 

100 
(it/1i)u·v 100 1 { i ( t) } 

-oo e* dt = -oo cosh(t/2) exp fi tanh "2 2u. v dt 

=~Jo(~u·v). 
Hence, -i8*(u·v) is expressed as an entire function by the Weyl ordering 
expression. 

Several fancy relations to Sato's hyper functions [M] can be seen, 
since (u · v ± z)±io is defined as a holomorphic function with respect to 
z on the upper half plane, and -i8* ( u · v) is viewed as the difference 
(u · v + z)+Io- (u · v- z)=Io· These will be discussed in another paper. 

3.5. Several product formulas 

Every quadratic form Q( u, v) is written in the form 

• (au+ (3v) 2 , if ab- c2 = 0, 
• .X( au+ (3v)('Yu + 8v) with a8- f3'Y = 1, if ab- c2 =J 0. 

By Proposition 3, the general product formula for quadratic exponential 
functions can be obtained from only the two cases as follows: 

By solving the system of ordinary equations (3.7) with the general 
initial condition 

(a(O), b(O), c(O); s(O)) =(a, b, c; 1), 
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we see that the first one is written as 

(3.13) 

exp* { ~u2 } * exp { ~(au2 + bv2 + 2cuv)} 

1 

v'1 + bt 

x exp {n(1 ~ bt) {(a+ (ab- c2 - 2ci + 1)t)u2 + bv2 + 2(c- ibt)uv}}. 

The ambiguity of ±v'1 + bt can not be eliminated for all t, b. 
The formula (3.13) yields several results for the *-product. Remark 

first that e~t/li)u2 = e(t/li)u2 • 

Lemma 14. For exp{ku2 }, Q E M 3 such that 1r(Q) 
expH(au2 + bv2 + 2cuv)} and bt =/= -1, the product exp{ku2 } * Q is 
defined as an element of M 3 written as 

c2 -ab+1 
1 +bt 

x exp {n(1 ~bt) {(a+(ab- c2 - 2ci + 1)t)u2 + bv2 + 2(c- ibt)uv}}. 

Similar to (3.13), we have 

(3.14) 

exp* { ~v2 } * exp { ~(au2 + bv2 + 2cuv)} 

1 

v'1 +at 

xexp { n(1~at) {au2 +(b+(ab- c2 + 2ci + 1)t)v2 + 2(c + iat)uv}}, 

and hence we have the similar result as Lemma 14. 
Remarking e~t/li) 2uv = v'1 + s2 e(s/li) 2uv, and solving carefully the 

system of ordinary equations (3. 7) with the general initial condition, we 
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have 
(3.15) 

exp { ~2uv} * exp { ~(au2 + bv2 + 2cuv)} 

1 

y'1- 2cs + (c2- ab)s2 

xexp{ 1 
n(1- 2cs + (c2 - ab)s2) 

x (a(1+is) 2u2 + b(1- is)2v2+(c- (c2 - ab- 1)s- cs2)2uv)}. 

The following identity is useful for the computation of discriminant D: 

(1- 2cs + (c2 - ab)s2)2 + (c- (c2 - ab- 1)s- cs2)2 

(3.16) - ab(1 + is)2(1- is)2 

= (c2 - ab + 1)(1 + s2)((c2 - ab)s2 - 2cs + 1), 

but the ambiguity of ±y'1- 2cs + (c2 - ab)s2 can not be eliminated. 
Using (3.15) and (3.10), we have several results as follows: 

Lemma 15. If Q1, Q2 E M 3 such that 1r( Q1) = eCsfn)2uv, 
1r( Q2 ) = eClfn)(au2 +bv2 +2cuv), then 

Ql = ±v'1 + s2 e(sfn)2uv, Q2 = ±v' c2 - ab + 1 e(lfn)(au2 +bv2 +2cuv) 

with 1 + s2 =f. 0, c2 - ab + 1 =f. 0. 
If 1 - 2cs + ( c2 - ab )s2 =f. 0, then the *-product Q1 * Q2 is defined 

as an element of M 3 by 

where D is the discriminant of the quadratic form 

1 

1- 2cs + (c2 - ab)s2 

x (a(1 + is)2u2 + b(1- is)2v2 + (c- (c2 - ab- 1)s- cs2)2uv). 
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Hence the right hand side is also an element of *-exponential function. 

By Lemmas 15, 14, we have the following: 

Theorem 16. M 3 forms a local group, which is locally isomorphic 
to SL( 2, C) and M 3 is embedded in [ 2+ ( C2 ) as 

M3 = { ±) c2 - ab + 1 e(lfn)(auz+bvz+2cuv>; c2- ab + 1 -=f. 0}. 
The open dense subset 

M 3- {-e(l/li)(au2+bv2+2cuv)., 2 b 0 ( b ) ../.. (0 0 o)} c - a = , a, , c -r- , , 

is covered by *-exponential functions { e~l/li)(au2 +bv2 +2cuv)}. 

§4. Star exponential functions in the normal ordering expres­
sion 

Although e;(1f/li)uv diverge in the Weyl ordering expression, we 
prove in this section that such elements make sense in the normal order­
ing expression. 

Since uv = u o v + (fii/2), we have au2 + 2cuv + bv2 = au2 + 2cu o 

v + bv2 + fici. In this section, we compute e-cite~t/li)(au2 +bv2+2cuv) 
e~t/li)(au 2 +bv2 +2cuov) by 1l!DO-product formula. Thus, we set 

(t/li)(au2+bv2+2cu*v) _ (t) (l/li)(a(t)u2 +b(t)v 2 +2c(t)uov) e* - s eo . 

We first compute 

~(alu2 + blv2 + 2clu 0 v) * e~l/li)(au2+bv2+2cuov) 

{ ~(a1u2 + b1v 2 + 2c1u o v) + ~(2b1v + 2c1u) o (2au + 2cv) 

+ -til ~ (2bl) ( (2au + 2bv )2 + 2afi)} o e~l/li)(auz+bvz+2cuov). 

This is 

( 4.1) 

1 ( I I I) fia,b,c [ 
1, 

-4a2 

4ai,' 

0, 
1+4ci-4c2 , 

0, 

0 se(lfli)(au2+bv2+2cuov) 
0 

0, 
2ai- 2ac, 

1 + 2ci, 
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Submatrix of first 3-columns is singular only at 1 + 2ci = 0, i.e. at 
e~l/n)iuov. This is in fact a vacuum computed by \lfDO-product formula 
(cf. Corollary 12 and (4.3) below). 

H tt. (t/n)(au2+bv2+2cuov) _ .!,(t) </>I(t)u2 +¢2 (t)v2 +2</>3(t)uov ence, se 1ng e* - 'I' eo , 

we have only to solve the system of ordinary differential equations 

(4.2) 

¢~ (t) = ~a+ 4ic¢1 (t) - 4M¢1 (t) 2 

1 
¢~(t) = hb + 4ib¢3 (t)- 4M¢3(t)2 

1 
¢;(t) = he+ 2ic¢3(t) + 2ib¢1 (t) - 4M¢1 (t)¢3(t) 

'1/J'(t) = - 2M¢1(t)'I/J(t) 

with the initial condition cPi(O) = 0 and '1/J(O) = 1. 

4.1. The case b = 0 as the simplest case 

(4.2) is easily solved if b = 0, and we have 

(403) (t/n)(au2+2cuov) _ (a/4cin)(e4 c"-l)u2 +(1/2in)(e2 cit_1)2uov 
e* -eo . 

In particular, limt---+oo e~it/n)uov = e~l/n)iuov. By Corollary 12, the limit 
is the vacuum woo. 

Note also that the case 1 + 2ci = 0 in ( 4.1) is written as follows: 

e~ljn)(au2 +bv 2+iuov) = (e~ljn)au2 *Woo)* e~ljn)bv 2 

= e~l/n)au2 *(woo* ePin)bv2). 

We have also the following remarkable fact: 

(404) ('rr/2n)(au2+2u*v) _ -(1/ni)2uov _ (1rjn)u*v 
e* -eo - e* 

h . (1rjn)(au 2+uov) d d d t at 1s, e* oes not epen on a. 
Using the exponential law we have the following: 

Proposition 17. In the normal ordering expression with respect 
to ( u, v), the exponential law holds 

(expo { 4~n (e4cis- 1)u2 + 2~n (e2cis- 1)2u o v}) 
* (expo { 4~n (e4cit- 1)u2 + 2~n (e2cit- 1)2u o v}) 

= expo { 4~n (e4ci(s+t)- 1)u2 + 2~n (e2ci(s+t)- 1)2u o v} 
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In particular, we have the exponential law: 

e(1/ni)(ei 8 -1)uov * e(1/ni)(ei'-1)uov = e(lfni)(ei(s+t)_1)uov 
0 0 0 

If we set C5 = eis - 1, T = eit - 1, then the exponential law gives the 
following product formula: 

(4.5) e(lfni)cruov * e(1jni)Tuov = e(lfni)(crT+cr+T)uov 
0 0 0 

Though the product has no singularity, the inverse has a singular point: 

(4.6) (e(lfni)cruov)-1 = e-(1/lii)(cr/1+cr)uov 
0 * 0 • 

The singular point e;;(lfni)uov is in fact the normal ordering expression 
of the vacuum wo,o· 

4.2. Several facts, concluded from the case a= 0 

If a= 0 in (4.2), then we have 

The same exponential law as in Proposition 17 holds. 
In particular, we see that 

(4.8) 

and this quantity does not depend on b. 
By (4.4), (4.8), we have the following remarkable fact: 

Lemma 18. In the normal ordering expression with respect to the 
canonical conjugate pair ( u, v), the identities 

hold for any a, b E <C. 

A l t (1rjn)(au+,Bv)('"yu+8v) . (7r/n)(au+,Bv)*bu+8v) "th n e emen e* = ze* w1 
afJ - f3r = 1 is called a polar element. This element is computed in the 
normal ordering expression with respect to u' =au+ (3v, v' = !U + fJv. 
We denote the set of all polar elements by E00 • Obviously, 
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e~rr/n)uv ie~rr/n)u*v is a polar element. Though this is not 

computed in the Moyal product formula, this is computed m the 
wDO-product formula (1.1) as e~2i/n)uov. 

Note that u' = u, v' = au+ v gives a canonical conjugate pair. 
Hence, by Lemma 18 applied for u', v', we have 

in the normal ordering expression with respect to ( u', v'). 
Note that for every c -f. 0, 

(u' +bv') *V1 = (u+b(v+au)) * (v+au) = C: ab u + ~v) * (cau+cv). 

Thus, in a first glance, it looks very natural to set as 

hence we have 

{7r } {7r (1+ab b) } exp* hu * v = exp* h --c-u + ~v * (cau + cv) . 

However, such equalities are dangerous, because quantities of left and 
right members are computed separately by using different canonical con­
jugate pairs. Such two elements should be compared through intertwin­
ers mentioned in § 2.1. 

Although e;(rr/n)uv is defined only by normal ordering expression, 
the equality (3.15) gives also the following: 

Lemma 19. If c2 - ab -f. 0, then 

exp* { ±iuv} * exp { ~(au2 + bv2 + 2cuv)} 

1 { 1 2 2 } 
= Jc2- ab exp n(ab- c2) (au + bv + 2cuv) . 

Proof. Remark e;(t/n) 2uv = J1 + s 2 e(s/n) 2uv and if t ___, ±~, then 

s ___, oo. Multiplying J1 + s2 to the both sides of (3.15), and take 
s ___, oo. We have the lemma. Q.E.D. 

Since linearly related canonical conjugate pairs form an arcwise 
connected subset, polar elements look like forming connected complex 
2-dimensional manifold. In fact, however, we have the following: 
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Proposition 20. For every a, b E Eoo, we have a * b ±1, 
a* a= -1. Hence a= -a-1 and hence a= ±b by applying a-1 . Con­
sequently, Eoo forms a single point. 

Proof. By Lemma 8, we see easily that a * a 
a* b = ±1, we have only to compute 

-1. To prove 

in the Weyl ordering expression. By Lemma 19, this is rewritten as 

lim 2 • 
1
2 exp{-(~cot2 Vc2 -ab)(au2 +bv2 +2cuv)}. 

c2-ab-+ "4 Sln V C - ab 

Since cos f) = 0 implies sin f) = ±1, the above quantity tends to ±1. This 
shows a * b = ±1. 

Since the set a8 - f3'Y = 1 is connected, we see that { exp* {( n-j n) x 
(au+f3v)('Yu+8v)}} forms a single element and a*b = 1 in fact. Q.E.D. 

We denote the polar element by the same notation Eoo-

Remark. This is a little tricky, because ( -v, u) is also a canonical 
conjugate pair. Hence at the first glance the above result looks like 
insisting e~1rjn)u*v = e~1rjn)(-v)*u. If this were true, then since -v * u = 

-u * v - ni, we must have 

However, we have already seen that Eoo * Eoo = -1. This gives 
. e-;(1rjn)u*v = e~1rjn)u*v, and hence we have Eoo = -foo- This looks like 
a contradiction. Remark however, that Eoo = -Eoo does not necessarily 
imply 2Eoo = 0. 

In Lemma 23, we will see that Eoo is expressed as e~2i/n)uov and 
ei2i/li)( -v)•u by normal ordering expressions with respect to ( u, v) and 
( -v, u) respectively. Thus, we have to use the intertwiner between 
canonical conjugate pairs (u,v) and (-v,u) to compare e~1rjn)u*v and 

(1r/li)(-v)*u C l h (1rjn)u*v (1rjn)(-v)*u 
e* . onsequent y, we ave to set e* = -e* . 

Although Eoo forms a single element and Eoo * Eoo = -1, this does 
not imply that Eoo = i, because the following holds by the bumping 
Lemma 13: 
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Proposition 21. u * Eoo + Eoo * u = 0, v * Eoo + Eoo * v = 0. In 
particular, Eoo commutes with every even element. 

This suggests that Eoo has some super theoretic character [W]. There 
are several odd variables in our system, but a systematic treatment of 
these will be given some other paper [O,el.4]. 

On the contrary, the normal ordering expressions of Eoo with respect 
to the canonical conjugate pair ( u, v) is e~2i/1i)uov. Hence the nor-

1 d . . . f (7r/1i)u*v (7r/1i)u*(v+a'u) "th t t ma or enng expressiOn o e* = e* , w1 respec o 
(u, v + a'u) is ei2i/1i)uo(v+a'u). Similarly, the normal ordering expres-
. f (1r/1i)u*v (1rj1i) (u+b' v) *V • h ( b' ) · s1ons o e* = e* w1t respect to u + v, v IS 
(2i/1i)(u+b' v)o' v 

eo, . 
In the Weyl ordering expression, we have had 

exp* { ~(bv2 + 2cu o v)} = exp* { ~(bv2 + 2cu * v)} 
= exp{ -cliit} exp* { ~(bv2 + 2cu · v)} 
= exp - tan ct (bv2 + 2cuv) . exp{ -cnit} { ( 1 ) } 

coset 'lie 

Thus, we have 

Proposition 22. In the normal ordering expression with respect 
to ( u, v), the product 

· lld ,.(; d f t (t/1i)u2 +(b/4ci1i)(e4d-l)v2 +(1/21ii)(e2 d-1)2uov 
u~ ~~,M~ry ~~ . 

Recall this is defined only for 1 + bt =1- 0 in the Weyl ordering expression 
(cf. Lemma 14). 

4.3. The case ab =F 0, Proof of the first half of Theorem 2 

If ab =1- 0 in (4.2), there appear singularities in the *-exponential 
functions, and this gives the first half of Theorem 2. This is because that 
the exponential function e~H+bX+cY is not defined for all (a, b, c) E <C3 

under any ordering expression. 
The first equation of (4.2) is 

( ¢1(t)- !!!:___)' 
21ib 

ab-c2 ( ci) 2 

lib -41ib ¢1(t)-21ib 
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It follows 

ic J c2 - ab ( y' ) c/>1(t) = 2M- 2M tan2 c2 -ab(t+to) , 

where t0 is fixed by the initial condition ¢1 (0) = 0, i.e. 

y' c2 - ab (tan 2 V c2 - ab t0 ) = ic. 

The forth equation gives that 

:t 'lj;(t) = ( V c2 - ab (tan 2V c2 - ab ( t + t0 )) - ic) 'lj;( t). 

It follows 

'lj;(t) = e-ict cos(2v'c2 - abto) ( )
1~ 

cos2v'c2 - ab (t + t 0 ) 

The third equation 

gives 

where A is fixed by the initial condition ¢3 (0) = 0, i.e. A 
cos 2y' c2 - ab t0 . 

The second equation is 

Hence 

2M A 2 ( . 1 ic ) ¢2 ( t) = - tan 2 v c2 - ab ( t + to) - . 
v'2-~ v'2-~ 

If c2 - ab = 0, then the first equation of ( 4.2) is 

( ¢1(t)- _5!j_)' = -4M (¢1(t)- _5!j_) 2 
2nb 2nb 

It follows 
ci 1 

¢ 1(t)- 2M = 1 + 4Mt. 

1 
2/ii X 
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'lj;(t) = e21it(1 + 41ibt)-1/(4b). 

Hence e(tf1i)(au2 +bv2 +Zcuv) with ab - c2 = 0 ab ....t. 0 is singular 
' * ' ;- ' 

at 1 + 4/ibt = 0 in the \liDO-expression, while this is computed as 
(t/1i)(au 2 +bv2 +2cuv) . th ur l d · · e. m e vvey or er1ng expressiOn. 

Some of *-products are easy to compute in the normal ordering 
. (t/1i)u2 (t/1i)u2 (t/1i)u2 

expressiOn. Note that e* = e. = eo and 

e<tf1i)u2 * e(lfn)(au2 +bv2 +2cuv) = e(lfn)((a+t)u2 +bv2 +2cuv) 
0 0 0 ' 

e<tfn)uov * e(lf1i)(bv2 +2cuv) = e(lfn)(t(1+2ic)u2 +bv2 +2cuv) 
0 0 0 

in the \liDO-product formula under the normal ordering expression with 
respect to the canonical conjugate pair ( u, v). Remark these are defined 
for all t. 

By these computations, we see also the following: 

Lemma 23. In the normal ordering expression with respect to 

( u, v ), e~'lr fZ1i)(au 2 +bv2 +cu*v) with c2 - ab = 1 is given identically as 
(2i/1i)uov 

eo . 

§5. Proof of Theorem 2 

We have already seen the first half of Theorem 2. To prove the 
second half, we consider the set obtained by gluing M 3 and Eoo * M 3 by 
the mapping Eoo*· We set 

M 3 _ { (1/1i)(au2 +bv2 +2cuv). 2 _ b _ O} 
0 - e* , c a - . 

Since Eoo commutes with every e(lfn)(au2 +bv2 +Zcuv), and EooZ = -1, 
Lemma 19 gives that Eoo* gives a diffeomorphism of M 3 - M& .onto 
itself, but this can not extend to the whole space: 

For a point P of MJ, the computation is represented by setting 
P = eau2

• Since 

e~tf1i)2uv * eau2 = J1 + s2 e(lf1i)(a(l+is) 2 u2 +2suv), tan t = s, 

this is written in the form of *-exponential function and hence this is a 
member of M 3 , if t =f. ±~. However, if t--+ ±~, then s --+ oo. Hence, 

we see that e~1rjn)uv * eau2 can not be a member of M 3 , but of Eoo * M 3 . 

We show the following in this section: 
For Q1, Qz E M\ if Q1 * Q2 is not defined in the Weyl ordering 

expression, then 
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is defined in the Weyl ordering expression as an element of M 3 . 

If Q1 * Qz is defined, then the product Q1 * (Eoo * Qz), (Eoo * Q1) * 
( Eoo * Qz) are defined by Eoo * ( Q1 * Qz), -Ql * Qz respectively. If Q1 * Qz 
is not defined in the Weyl ordering expression, then -Eoo*( Q 1 *(Eoo*Qz)) 
is defined. 

This shows that M 3 U (Eoo * M 3) forms a group. We already know 
that by Theorem 16, M 3 forms a local group, which is locally isomorphic 
to SL(2, q and M 3 is embedded in t'2+(C2 ) as 

M3 = { ±vc2 - ab + 1 exp { ~(au2 + bv2 + 2cuv); c2 - ab + 1 # 0}}. 
It is well known that SL(2; q is simply connected with the non-trivial 
discrete center { ± 1}. 

Since ±1 E M 3U(Eoo*M3), we see that M 3U(Eoo*M3) is isomorphic 
to SL(2,C). 

By the argument in the first paragraph of §3.5, the case that Q1 *Qz 
is not defined in the Weyl ordering expression is represented by the 
following two cases: Namely, 

e<tfn)u2 * J c2 _ ab + 1 e(lfn)(au2 +bv2 +2cuv), 

~ e<sfn)2uv * J c2 - ab + 1 e(lfn)(au2 +bv2 +2cuv) 

are not defined only for 1 + bt = 0, and 1 - 2cs + (c2 - ab)s2 = 0 
respectively. 

However using the polar element combined with Lemma 19, we show 
these are defined by Weyl ordering expressions. 

By the computation in Lemmal4, we remark first the following: 

Lemma 24. Under the condition 1 + bt =/:: 0, exp* { *u2 } * 
exp{ k ( au2 + bv2 + 2cuv)} is a vacuum, if and only if exp{ k ( au2 + bv2 + 
2cuv)} is a vacuum, i.e. c2 - ab + 1 = 0. 

Lemma 19 is used for the computation of 

e<tfn)u2 * J c2 _ ab + l e(l/n)(au2 +bv2 +2cuv), 

~ e<sfn)2uv * J c2 - ab + 1 e(lfn)(au2 +bv2 +2cuv) 

for 1 + bt = 0, and 1 - 2cs + ( c2 - ab) s2 = 0 respectively. 

Corollary 25. If 1 + bt = 0, then 

exp* { ±~uv} * exp { ~u2 } * J c2 - ab+l exp { ~(au2 +bv2 +2cuv)} 

= exp { n(c2 _ 1ab + 1) ((ci- 1?tu2 + bv2 + 2(c- ibt)uv)} 
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and the right hand side is written in the form e(l/n)(au+,6v) 2
• 

If 1- 2cs + (c2 - ab)s2 = 0, then remarking 

we have 

(c- (c2 - ab- 1)s- cs2 ) 2 - ab(1 + is) 2 (1- is)2 

= ((c2 - ab+ 1)(1 + s2)- ((c2 - ab)s2 - 2cs + 1)) 

x ((c2 - ab)s2 - 2cs + 1) 

exp* { ±~uv} * Jl+s2 exp { ~2uv} 

* Vc2 - ab + 1 exp { ~(au2 + bv2 + 2cuv)} 

exp { n(c2 - ab ~ 1)(1 + s2)} 

x (a(1 + is) 2 u2 + b(1- is) 2 v2 + (c- (c2 - ab- 1)s- cs2 )2uv). 

The discriminant of the right hand side vanishes, and hence it is written 
in the form e(lfn)(au+,6v) 2 • 

This completes the proof of Theorem 2. 
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