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Differential Algebra and Differential Geometry 
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§1. Introduction 

There are now two theories devoted to partial differential equations 
in the algebraic or analytic domain: 

On one side, the theory of involutive differential systems, based 
on the Cartan-Kii.hler theorem, and developed namely by Matsushima, 
Kuranishi, Guillemin-Singer-Sternberg, Quillen, Goldschmidt. This the
ory is of constant use in differential geometry, f.i. in the study of the 
"equivalence problems" in the sense of E. Cartan. 

On the other side, the "differential algebra" of Ritt, Kolchin, and 
others, which studies the differential ideals and their properties of finite
ness, dimension, etc. cf. [Ri 1], [Ko]. There is a nice application by 
Buium [Bu] to some problems of algebraic geometry on functions fields. 
A part from this application, this theory seems to have had practically 
no contact with geometry, especially with differential geometry; compare 
f.i. the bibliographies of [Ko] and [B-C-G 3]: their intersection is empty; 
see however [Po]. 

It seems to me that a mutual interaction should be useful for both 
theories. For instance, with the help of the ideas of Ritt, one can prove 
rather easily the "generic involutiveness" of analytic systems of p.d.e. 's; 
see a precise statement in §3. Hopefully, the result could be useful in 
several contexts, namely in the theory of Lie groupoids and in differential 
Galois theory; I will develop this point elsewhere. 

On the opposite side, I mention only the following fact: differential 
algebraists use classically Riquier-Janet theory of "passive orthonormic 
systems" rather than Cartan involutiveness. But it seems that they are 
now becoming aware of this last theory; see f.i. [Se]. 
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§2. D-varieties 

(2.1).- For a general theory of analytic p.d.e.'s, one needs a con
text generalizing both analytic spaces and D-modules (which correspond 
to the linear case). Here, I will describe the formalism adopted in [Ma 1]; 
later, I discuss briefly some other possibilities. 

A few words of informal explanations: we are interested to systems 
of equations of the form fk(xi,aa.yj) = 0, 1 :::; i :::; n, 1 :::; j :::; p, 

a= (al,···,an), iai::::: l with, as usual ai = &~,, aa. = 8f1 ···8~n, 
iai = a1 + · · · +an; the fk are supposed analytic in all the variables, 
which we denote Xi, Yj. 

In the course of the study, one has to differentiate the equations, with 
the usual derivations: Dd = g;, +I; !}J"' yj+e;, Ei = (0, ... , 1, ... , 0). 

J 

We note the following fact: suppose f of order :::; k, i.e. the yj occuring 
in f verify iai :::; l. Then, when we differentiate f as many times as we 
want, the yj, Ia I 2: l + 1 occur only in polynomial form. Now, by the 
usual trick of adding some derivatives as new functions, we can suppose 
that all our equations are polynomial in the yj, Ia I 2: 1. 

This is the point of view adopted by Ritt himself in [Ri 2]. However, 
he considers only local situations, and we want global objects; this 
explains the definitions below. 

In this pages, as in [Ma 1], I will call (analytic) variety what is called 
in the literature C-analytic space in the sense of Grothendieck [Gr]; 
a priori, I will not suppose a variety smooth, and not even reduced 
( = without nilpotent elements). However, in the applications to differ
ential equations, only the reduced case will be really interesting. 

Let Y be a variety; I note IYI the underlying topological space, and 
Oy the structural sheaf. By definition, an affine variety Z over Y is 
defined by the ringed space (IYI,A), with A and Oy-algebra of locally 
finite presentation, i.e. verifying the following property: over a small 
open set U C 1Y I, one has 

A= Oy[fi, ... , tnl/(h, ... , fm), with fiE f(U, Oy[t1, ... , tn]). 

If we have two such varieties over Y; Z = (IYI, A) and Z' = (IYI, A'), a 
morphism Z ---+ Z' is, of course, a morphism of Oy-algebras: A' ---+ A; if 
Z' is affine over Y', one defines in the same way a morphism Z ---+ Z' over 
a morphism on Y ---+ Y'. I will write often Oz instead of A, although 
this is a little bit confusing (Oz is a sheaf on IYI); on the other hand, I 
denote zan the analytic space specan Z [Ho]. If n denotes the projection 
izanl ---+ IYI, one has a natural map 1r-10z ---+ Ozan. If we have a 
morphism Z ---+ Z' of affine varieties over Y, we say that "Z is an affine 
variety over Z'". As usual in algebraic geometry, we say that "Z ---+ Z' 
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is dominant" if the corresponding morphism of (sheaves of) rings is 
injective. Note that this does not imply that zan ---+ Z' an is surjective: 
this is only true generically, in an obvious sense. 

(2.2). ~ Now, let Y0 be a variety: a "projective system of affine 

varieties over Y0 " is a collection Yi ~ Yo of affine varieties over Yo 
(i = 1, 2, ... ), with a family of morphisms Yi ~ }i_1; one has 
'1/Ji-l'lfi = '1/Ji ( i ;:::: 1), and 'I/J1 = 1r1; we say that {Yi} is an affine provariety 
over Yo if the morphisms 'Pi are dominant. If we have two affine prova
rieties {Yi}, { Zi}, a strict morphism is defined by an analytic morphism 
uo : Yo ---+ Zo and morphisms ui : Yi ---+ Zi over u0 , with the condition of 
commutativity of the obvious diagram 

1 1 

(I use the word "strict", since there is a weaker notion of morphisms; 
cf. loc. cit., or below). 

(2.3). ~ Now, I can define a D-variety, as the object naturally 
associated to a system of analytic p.d.e's (including all its prolongations); 
it is defined by the following datas 

i) A variety X, which is supposed non singular (and, in particular, 
reduced) 

ii) A variety Y0 , may be singular, provided with a morphism 
p: Yo -+X 

iii) An affine provariety Y = (}i,1ri) over Yo; we note Oy = ~Oyi 
iv) A derivation (or "connection") D: Oy ---+ p- 1nJ.. 0p-10x Oy, 

where OJ.. denotes, the differential 1-forms over X. 

These datas are submitted to conditions which will be described 
below. Before to do it, we need a definition: if we have two such datas 
(X, Y, D) and (X, Z, D), with same X, a strict D-morphism is defined 
by a morphism u 0 : Yo ---+ Z0 of analytic varieties, commuting with the 
projections over X, and a strict morphism u: Y ---+ Z over u0 ; these 
datas should commute with the derivation D. 

Suppose now (X, Y, D) given; let X' (resp. Y~) an open subvariety 
of X (resp. Yo), with piY~I C IX'I; one defines in an obvious way the 
restriction (X', Y', D) of (X, Y, D) to (X', Y~). 

With these definitions, a D-variety is a system (X, Y, D) with the 
following property: for every y E IYol, one can find a pair (X', Y~), 
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with y E IY~I such that the restriction of (X, Y, D) a (X', Y~) is strictly 
isomorphic to a model which we will now describe. 

To do that, we give 

i) An open set u c en' of coordinates (xl' ... 'Xn) 
ii) An open set V c en, of coordinates (y1, ... , Yp). 

We put Ao = Ouxv, the sheaf of holomorphic functions on U x V. 
For l2:: 1, we put Az = Ouxv[yj], a= (a1, ... ,an), 1::; lal::; land 
A=limAz. 

---+ 
On A, one has a natural derivation D f = I:; dxi Q9 Dd, Di as 

in (2.1 ). 
Now, let :J be a sheaf of ideals of A, which is differential, e.g. stable 

by the Di 's and pseudocoherent, e.g. the .Ji = :1 n Az are coherent. 
Now the model is as follows: one takes X = U, Yo = the closed 

analytic subspace of U x V defined by :10 ; pis induced by the projection 
U x V ----+ U; for i 2::: 1, Yi is the affine variety over Yo defined by Az/ .Ji. 
Finally, Dis defined in the obvious way by the "D" given on A. 

A D-variety is reduced if all the Yi are reduced = the corre
sponding sheaves have no nilpotent element. If we have a D-variety 
(X, Y, D), Y = {Yi}, one defines naturally its "reduction" (X, yred, D), 
with yred = {Yrd}. Using the local model, the reader will find the 
following interpretation of a reduced D-variety, in terms of differential 
equations: the points of IYian I are the jets of order l of solutions, and the 
points of IYanl = ~ IYianl are the formal solutions. Note that the maps 
IYianl ----+ IYj':_n11 are only generically surjective; this explain the interest 
of the results of the next section. 

§3. Formal integrability and generic involutiveness 

To express these properties, it is simpler to work in a local model: 
so, let U, V, A and :1 as before, and suppose that :1 is reduced, i.e. the 
.Ji are equal to their radical. One has the following theorems 

Theorem 3.1. Let U' C U and V' C V be polycylinders relatively 
compacts in u and V; then there exists l 2::: 1 and f E r(U' X V'' Az) 
with the following properties 

i) On U' x V', f is injective on A/ :1. 
ii) Outside off= 0, .Ji is involutive, and the Jk, (k 2::: l + 1) are the 

prolongation of .Ji. 

For the notion of involutiveness (smoothness+formal integrability+ 
acyclicity), I refer f.i. to Goldschmidt [Go); I leave it to the reader to 
translate these notions in the present context; this translation can be 
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made in terms of ykan- {! = 0}, or more precisely in terms of A[f-1] 

and J[f-1]. 

Theorem 3.2. An increasing sequence of differential pseudocoher
ent and reduced ideals of A is stationary on every relatively compact 
U' XV' c u X v. 

The first theorem express the "generic involutiveness" of reduced 
differential ideals; the second theorem is the version in our context of 
the finiteness theorem of Ritt-Raudenbush. We note that (3.2) has been 
already proved by Ritt [Ri 2] in the case where we take germs at a point 
a E U XV. 

Theorems 3.1 and 3.2 are proved simultaneously; the main lines of 
the proof can be found in [Ma 2]; complete proofs will be given later. 
Roughly speaking, the idea is the following: we take for U' and V' closed 
polydiscs, instead of open ones; according to Cartan-Oka theorems, J is 
determined on U' x V' by its global sections; and, according to Frisch 
theorem, the r(U' X V'' Az) are noetherian rings; so, we have only to 
study reduced differential ideals p of r(U' x V',A); one proves succes
sively the following results, which imply easily (3.1) and (3.2): 

i) Theorem 3.1 is true when p is prime. 
ii) Any increasing sequence of reduced differential ideals pis station

ary. 
iii) Any such p is a finite intersection of primes. 

The main point is i). Then ii) follows by an argument of differential 
algebra to be found, f.i. in [Ka]. Finally, ii) ==> iii) is standard. 

§4. General morphisms 

In many problems, one has to consider two kinds of transformations 
which cannot be represented by the "strict morphisms" considered in §2. 

A) Transformations of the type Zk = fk(x, yj) [and, of course 

zJ: = D 01 fk(x, yj), Da =Dr'··· D~n ]. These transformations are called 
classically "Lie Backlund transformations". 

B) Change of independent variables, f.i. Legendre transformation 
where y' is taken as the new independent variable; this is more generally 
the case when the system is given as an exterior differential system "with 
independence condition" in the sense of [B-C-G 3]. 

Concerning A), let me first mention that these transformations are 
very simple to express in a more special context, the "affine D-varieties": 
they are given by families (X, Y, D), with X C-analytic smooth, and the 
system X <-- Yo <-- · · · <-- Yi <-- · · · an affine provariety over X; the local 
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models are given by pseudocoherent differential ideals :J of Ox[Yj], 
lal ~ 0. [In other words, these "varieties" represent differential systems 
which are polynomial in all the aayj. This context is sufficient for many 
applications; but, f.i. it would not contain the equation y' = eY.] 

If we have another affine D-variety (X, Z, D), with the same basis X, 
a Lie-Backlund transformation or "morphism" (X, Y, D) ---t (X, Z, D) is 
simply given by a morphism of Ox-algebras u: Oz ___, Oy, commut
ing with D. In the interesting cases there will be an l ~ 0 such that 
u(Oz0 ) C OYz, and therefore u(Ozk) C 0y1+k' k ~ 0 (use commutation 
with D); we will say that "u is of order :::; l". One can express this in 
another way; call Y ( l) the affine system over X defined by Y ( l) k = Yk+l; 
then a morphism of order :::; l, (X, Y, D) ---t (X, Z, D) is simply defined 
by a strict morphism (X, Y(l), D) ---t (X, Z, D); if m ~ l, a morphism 
of order on (X, Y(m), D) ___, (X, Z, D) is identified with the preced
ing one if it is obtained by composition with the obvious morphism 
(X, Y(m), D)___, X, Y(l), D) given by the identity on the structure sheaf 
(note that both spaces have the same structure sheaf). 

In the context of D-varieties, I will copy the last procedure: I define 
Y(l) by Y(l) 0 = ytan, the "analytic spectrum" of Yi, and Y(l)k = 
ytan XYz Yi+k, the "analytisation up to order l" (see [Ma 1] for more 
details). Then the morphisms are defined as the previous morphisms 
of finite order. This analytisation procedure is a little bit unpleasant; 
but, due to the good properties of analytisation, things behave in a rea
sonable good way. For instance, one can prove that the characteristic 
variety is invariant, outside of the zero section, by general isomorphisms 
cf. [Ma 1]; this generalizes the well-known result of "independence of the 
filtration" of the characteristic variety in the linear case ( = in the theory 
of D-modules). 

Concerning B), the point of view of affine D-varieties is obviously 
irrelevant, since any change of the independent variables would destroy 
the affine structure. On the other hand, to include such changes, the 
category of D-varieties is "suitable" in the following sense: it has to be 
enlarged, but no new local model is needed; cf. [Ma 1], §4; this is the 
main reason for which I have adopted this point of view. 

Another point of view which is also adapted to A) and B) consists 
in a separation of "analytic" and "algebraic" variables in Y0 . More 
precisely, one takes Y~ analytic over X, and Yo affine over Y~, then 
Yi ---t • • • ___, Y1 ___, Yo ---t Y~ an affine provariety; the local models are 
made with such Y's, like in the preceding cases (I omit the details); here, 
Y(l) is defined in the following way: Y(l)~ = Y~; Y(l)k = Yi+k, k ~ 0; 
no analytisation is required. 
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One could improve also this model by taking Y0 algebraic over Y~, 
e.g. a relative schema in the sense of [Ha] (this is made by gluing affine 
models, as schemes are defined by gluing affine varieties or schemes; but 
here the "gluing" is more sophisticated, and require 2-categories; there
fore the simplicity of morphism is "compensated" by a greater difficulty 
of definition). Of course, as in local models, Yo --> Y~ is affine, and there 
is here nothing new locally; f.i. the results of §3 are still true. 

Generally speaking, it seems to me that the "good" definition of 
D-varieties one should take depends on the problem to be studied. 
I will give an example in a forth coming paper about "Lie groupoids", 
i.e. p.d.e's in the space of invertible jets X --> X, whose solutions form a 
groupoid (the invertibility of jets forces to change slightly the previous 
definitions). Here, the generic involutiveness shows that, at the general 
points, they coincide with the "infinite groups" of Lie and Cartan. But 
the consideration of singular points seems to me very important, and 
essentially overlooked in the literature. 
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