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Abstract. 

We give an explicit description of an extremal nbd X ~ C -::::: 11"1 

of type k2A. We also give a criterion for X to be a flipping contraction 
and an explicit description of the contraction and the flip. 

§1. Introduction 

In the three dimensional minimal model program, flips and divisorial 
contractions are the fundamental birational maps. Among them, flips 
are proved to exist [8]. This paper is concerned with the classification 
of flips. We give a brief background. 

Let f : X ---+ Y be a projective birational morphism from a threefold 
X with only terminal singularities to a normal threefold Y and Q E Y 
such that C = f~1 (Q) is a curve and -Kx is /-ample. 

We note that, in the context of the minimal model program, we of
ten assume that X is Q-factorial and put the condition p(X/Y) = 1 on 
the relative Picard number. In this paper, we do not assume these con
ditions, because they are not preserved when we work on the associated 
formal scheme. 

For an arbitrarily small open set U 3 Q, we call f~ 1 (U) ::) C ---+ 

U 3 Q an extremal neighborhood (or, an extremal nbd, for short). It 
is said to be flipping (resp. divisorial) if the exceptional set is a curve 
(resp. a divisor). An extremal nbd is said to be irreducible if C is 
irreducible. 

In [5], the irreducible extremal nbds X ::) C ---+ Y 3 Q are studied 
as follows. A general member D of I - Kx I is proved to have only 
Du Val singularities, and the irreducible extremal nbds are classified 
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into 6 types k1A, k2A, cD/3, IIA, IC, kAD [5, (2.2)] according to 
the singularities of D. The first two (resp. the last four) cases are said 
to be semistable (resp. exceptional). For the exceptional irreducible 
flipping extremal nbds X :::> C, the singularities of the general member 
H of IOxl containing C are computed in [5, Chapters 6-9] and the 
irreducible flipping X :::> C is reconstructed as an essentially arbitrary 
one-parameter deformation space of H [5, Theorems 13.9--13.12] and the 
flip is described [5, Theorems 13.17 and 13.18]. 

However if we start with H of an irreducible semistable extremal 
nbd X, whether or not X is flipping depends not only on H but also on 
the individual one-parameter deformation, which is quite different from 
the exceptional cases. 

In this paper, we treat the case of k2A. (The case of k1A will be 
treated elsewhere.) In Section 2, we give an expression of an extremal 
nbd X :::> C of type k2A in terms of coordinates (Theorem 2.2) and 
graded rings (Definition 2.8, Theorem 2.9). 

Section 3 is the core algorithm section of this paper, where we in
troduce a sequence d(n) (Definitions 3.2 and 3.11) and present a series 
of divisions (Theorems 3.10-3.13) starting with the "graded equations" 
in Theorem 2.9. 

Section 4 is the main section for applications, where we give a nec
essary and sufficient condition (Corollary 4.1) for X :::> C to be flipping 
in terms of d(n). Furthermore, the extremal contraction (Theorem 4.3) 
and the flip are explicitly constructed (Theorem 4.7). 

In Section 5, we present the division in the case of a multi-parameter 
deformation space of H and comment on some of the further directions. 

The author is very grateful to Professor Miles Reid for his interest 
in the current computation. 

§2. Good coordinates 

2.1. Let f: X:::> C (~ JP>1 )---> Y 3 Q be an extremal nbd of type 
k2A [5] with two terminal singular points P1 , P2 of indices m 1 , m2 > 1 
and axial multiplicities a 1 , a 2 :2: 1, respectively. 

Let D E I- Kxl be a DuVal member, whose minimal resolution 
has the dual configuration 

o _ ... - o -C' _ o _ ... _ o ..____.., ..____..,, 

where C' is the proper transform of C and o denotes an exceptional 
curve and all these curves are ( -2)-curves [5, 2.2.4]. By adding two 
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{non-compact) curves£~ at both ends 

£'1 - o - · · · - o -C' - o - ... - o -£' 
~ ~2· 

we obtain a reduced curve on the minimal resolution such that the in
tersection numbers with C' and o's are zero. Since H 1{X, Ox) = 0 [8], 
we see that £1 + C + £2 ""0 on D, where ii C D denotes the image of 
£~. Let 

Hv := £1 + C + £2 {rv 0 on D). 

By the exact sequence 

0-+ Ox(Kx)-+ Ox-+ Ov-+ 0 

and the Grauert Riemenschneider vanishing H 1{X, Ox(Kx)) = 0 [8], 
we obtain a trivial Cartier divisor H = (u = 0) on X, which is normal 
and induces Hv on D. 

Theorem 2.2. Let Ui be the Zm; -quotient of a "hypersurface" of 
CC4, 

ui := (,i, T/i, (i, u; 'i"li = gi((;'i' u))fZm; (1, -1, ai, 0), 

where ai is an integer E [1, mi] prime to mi and gi(T, u) E CC[[u]][T] is a 
monic polynomial in T of degree, say Pi such that gi ( (;';, u) is square
free. Let Pi := 0 and Ci := 'i-axis/Zm;. Ui is defined to be a formal 
scheme along ci ::::= CC1 with only terminal singularities. 

For a suitable choice of ai and gi (T, u), we have 

1. these cl and c2 are patched together to form c ::::= JP>1 and ul and 
u2 are patched together to form the completion X of X along c 
by the identification on ul n u2 : 

,;nl = (,;'2)-1' 
(1 _ cm2 (2 ,rl - .. 2 ,~2, 

2. D = {(1 = O)/Zm1 U {(2 = O)/Zm2 and H = (u = 0) under the 
identification. 

Remark 2.3. The assertions of Theorem 2.2 modulo the equation 
u of H, that is the corresponding assertion for H is easily seen as follows. 

By the construction, f ( H D) has an ordinary double point at Q. 
Since KH + Hv "" 0, we see that {!{H), f(Hv)) is lc {[6, {5.58)] or [12]). 
Since f(Hv) has two analytic branches, this means that {!(H), f(Hv)) 
is the quotient of ( xy-plane, ( xy = 0)) by a diagonal action of some cyclic 
group [1] or [3]. In particular, it is toric. 
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Since C is a log crepant divisor of (!(H), f(Hn)) (that is, KH + 
Hn......, 0 and, and Hn is a reduced curve containing C), (H, Hn) is toric 
as well as (!(H), f(Hn)). 

The index-1 cover of (H \ fi, Hn \ fi) is toric. By the descrition of 
the terminal singularities Pi [7, 11], we obtain the isomorphisms 

with the properties 

1. Hn = ((i = 0)/Zmp mipifi = (c;i = 0)/Zm; and C \ £3-i = ((i = 
'f/i = 0)/Zm; on H \ £3-i under the identification, and 

2 . .;;_"1 =.;2m2 on H \(it u £2), 

for some Pi E Z>o and ai E [1, mi] such that (ai, mi) = 1. Once these 
properties are checked, it is easy to see the following. 

3. KH"" (ml- a1) · (6 = 0)/Zm;- a2 · (6 = O)/Zm2 

4. G-a1 (t = e;'2 -a2 (2 on H \(it u £2) 

Indeed, the property 3 follows from gr~w ~ Oc(-1) [8, (1.14.(i))] and 
the assertion that 

~;-a; Re d.;i 1\ d'f/i 1\ d(i = _ ~;-a;(dc.;c.) 1\ d~'"· x, S c . . _ ;-m;p; x, ._, ._, ._, 
~~ ~ . 

is a generator of gr~wiH on H \ f 3 _i· The property 4 follows from the 
property 3 because mtd6/6 = -m2dc;2/6· 

Proof of Theorem 2.2. We note that Theorem 2.2 is proved modulo 
(u), the equation of H (Remark 2.3). On the completion X of X along 
C, let Ui be the complement of P3 _i· Assume that Theorem 2.2 is proved 
modulo (u)N for some N > 0. We attach subscript N to the coordinates 
and the equations that are chosen to work for (u)N. 

From the Zm;-invariant relation 

we have 

for some ai, f3i E q.;N,i] [[u, 'f/N,i, (N,i]] and gHT, u) E C[[u, T]] such that 
g~ = 9N,i mod (u)N. Then 

(c;N,i- UN ai)('fJN,i- UN f3i) = g:'((lJ,'i' u) mod (u)N+l 

for some g:' E C[[u, T]] such that g:' = 9N,i mod ( u )N. 
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The Cartier divisor 

on a neighborhood of Pi extends to a principal divisor on X, because <I>i 
intersects properly with C and (<Pi ° C)= Oo By the exact sequence 

UN 
0--+ O_x-(<I>i)--+ O_x-(<I>i)--+ ONil--+ 0 

and H 1 ex' 0 X) = 0, there is a rational function 'Pi on X such that 
('Pi)= <I>i and 'PiiNfl = 1. We note that 'Pi is invertible on U3_io 

Let 

Then we have 

{ 
( m2-a2 -a1m2/m1 

( 
0 _ N,l 'P2 'P2 

N+l,t - ( -a1 -(m2-a2)mdm2 
N,2'P1 'P1 

i = 1, 

i = 20 

We note that (N+l,d(N,i is a unit on ui and that 

c-al ( cm2-a2( 
'>N+l,l N+l,l = '>N+1,2 N+1,2, 

(N+l,i = (N,i mod (u)No 

By the Weierstrass preparation theorem, there exist a unit 'Yi E C[[u, T]] 
such that 'Yi = 1 mod (u)N and 9N+l,i := g~''Yi is a monic polynomial 
E C[[u]][T]o We then define T/N+l,i such that T/N+l,i = (TJN,i - uN f3i) 0 

(unit on Ui) by the relation on Ui: 

~N+l,iT/N+l,i = (~N,i- UN ai)(TJN,i- UN f3i)((N+l,i/(N,i)m;pi"fio 

By 9N+l,i(T, 0) = TP' and (NH,i/(N,i = 1 mod (u)N, we have 

((mi ) _ ((m; ) (( /( )m;p; 9N+l,i N+l,i• U = 9N+l,i N,i• U 0 N+l,i N,i 

and hence 

~N+l,iT/N+l,i = 9N+l,i((;.f..1,i, u) mod (u)N+lo 

Thus the theorem is proved modulo ( u )N +l 0 We can let n --+ ooo 
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Finally gi((;';, u) is square-free, because otherwise Ui has a non-
isolated singularity. Q.E.D. 

Remark 2.4. The numbers ai and Pi in Theorem 2.2 can be easily 
read off from the information on X :J C, D and H. Furthermore, ai is 
related to 9i· 

1. The numbers ai are uniquely determined by X :J C 3 Pi because 
the Zm;-action is normalized by its action on the ~i-axis. 

2. By 
H = (~i'Tli = 9i((;';, 0))/Zm; (1, -1, ai), 

the index-one cover of Hat Pi is an Am;p;-point (~i''li = 9i((;'\ 0)). 
Thus Pi is uniquely determined by H. 

3. Similarly by 

D = (~i"li = 9i(O, u))/Zm; (1, -1, 0), 
~ (xy = 9i(O, u)m;), 

we have (gi(O,u)) = (u)<>; in C[[u]]. 

Remark 2.5. Under the notation of Theorem 2.2, let Si = (~i = 
0)/Zm;· Then 

1. m1S1 "'m2S2, S1 n 82 = 0, 

Let 

be the sections defining D, H and Si. 
Let Gi(T1, T2) = gi(T1/T2, u)Tf; E C[[u]][T1, T2], which is a homoge

neous polynomial in T1 , T2 of degree Pi. Since zm', xLi are both sections 
of 0(8Si), we can consider the section Gi(z=i, xLi) of O(pi8S3 -i)· The 
section is divisible by Xi and the quotient Yi satisfies the condition 

which follows immediately from the local equation ~i"li = 9i ( (m;, u ). We 
have thus two equations: 

X1Y1- G1(z'Tn',x~) = 0, X2Y2- G2(Zm2 ,xf) = 0, 

where G1 (z=1 ,x~) and G1 (z=1 ,x~) are square-free (Theorem 2.2). 
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The contractibility of C implies the following positivity result. 

Proposition 2.6. Under the notation and the assumptions of The
orem 2.2, we have 

Ll := P1m~- 8p1P2m1m2 + P2m~ > 0. 

Proof. By the property 1 of Remark 2.3, we have 

1 1 
(fi · C)H = -(8i ·C)= - 2-. 

miPi miPi 

Since H n D = £1 + C + £2 , we have the following by Remark 2.5. 

1 
(ft + C +£2 · C)H = (D ·C)= -(-mtKx ·C) 

m1 
1 8 

= -(882 ·C)=--. 
m1 m1m2 

Thus we have 
2 -..::l 

(C )H = 2 2" 
P1P2m1m2 

Since Cis an exceptional curve on H, we have (C2)H < 0. 

Remark 2.7. The properties that 

z E r(X, O(a181 + (a2- m2)82)), 

u E r(X, 0), 

Xi E r(x, 0(8i)), 

Yi E r(X, O(pi883-i- 8i)) 

in Remark 2.5 can be rephrased as follows. Let the group 

r := {('Yt,'Y2) E (C*)21'Y;."l = 1';'2} 

Q.E.D. 

act on H 0 (X,0(>. 181 + >.282)) via the multiplication by ')';1 ')';2 • Then 
we have 

and XiYi- Gi(zmi,xLi) is semi-invariant under the r-action. The 

scheme X has an alternate description in terms of these data as fol
lows. 

Definition 2.8. Let ai, mi, ai, Pi be positive integers ( cf. Remark 
2.10) and Gi(Tt,T2 ) E IC[[u]](Tt,T2] a homogeneous polynomial in T1 
and T2 of degree Pi (i = 1, 2) such that 
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1. ai :S mi and (ai, mi) = 1, 
2. 8 = a1m2 + a2m1- m1m2 > 0, 
3. Gi(1,0) = 1, Gi(O, 1)C[[u]] = u"iC[[u]], 
4. Gi(T;"';, 1) is reduced, and 
5. ~ = Ptm~- 8p1p2m1m2 + P2m~ > 0. 

Let R := C[[u]][xt,Yt,X2,Y2,z] be the C[[u]]-algebra with the r-action 
in Remark 2.7, and let W =Spec R/I be the scheme with the r-action, 
where I is the ideal given by 

I:= (XtYt- Gt(zrn',xg),X2Y2- G2(Zrn2 ,xf)). 

Set 
X:= (W \ V(x~, x2))jr:) C := V(yt, y2, z)jr ~ IP'1 

and {Pi} = V(xi, y~, y2, z, u), where V(I) denots the closed subset de
fined by all the equations in I. 

Theorem 2.9. With the above notation and the assumptions, we 
have the following. 

1. X is a normal scheme of dimension 3 such that X\ {P~, P2 } is 
smooth and 

PiE X~ (~i, T/i, (i, u; ~i"li = Gi((f';, 1))/Zrn; (1, -1, ai, 0) 

is a terminal singularity with index mi and Pi E C = ~i-axis/Zrn; 
under the identification, 

2. Si :=(xi= O)jr is a Q-Cartier Weil divisor on X, and a rational 
function¢ on w such that ¢/x1b1 x2b2 is r-invariant defines a 
Q-Cartier Weil divisor(¢= O)jr"' b1S1 + b2S2. In particular, 
D := (z = O)jr E 1- Kxl and H = (u = 0) are as in 2.1, 

3. the completion of X along C is isomorphic to X given in Theorem 
2.2. 

Proof. On ui = {x3-i =I= 0}, we normalize X3-i = 1 and set ~i := 
Xi, "li := Yi and (i := z with the relation ~i"li = Gi((i, 1). Note that "13-i 
is not needed because Y3-i = G3-i((;n3 -i, ~f). The stabilizer ri ~ Zrn; 
of X3-i acts on (~i,"li,(i,u) via the grading (1, -1,ai,O) mod (mi), and 
the quotient is isomorphic to Ui. The rest of the assertion 1 follows from 
[7, 11]. The patching of the coordinates is obtained by 

Indeed we obtain -y1 = ~~1 , -y2 = 6 (whence ~r'1 = ~2rn2 ) and the 
relation for (i's: ~~a1 ~~2 -rn2 (1 = (2. This proves the assertion 3, and 
the rest is obvious (cf. Remark 2.3). Q.E.D. 
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Remark 2.10. In 2.1, if we assume m 1 , m 2 2 1 and that there is 
a DuVal member C CD E I- Kxl whose minimal resolution has the 
dual configuration 

o - · · · - o - C' - o - · · · - o, 

then Theorem 2.2 still holds. In this case, the axial multiplicity ai is 
undefined and Remark 2.4.3 is irrelevant for i such that mi = 1, and 
most importantly a general member of 1-K xI does not contain C. That 
is, X :::> C is an easy case of k1A. 

In Definition 2.8, we assume m 1 , m 2 2 1. This allows us to treat 
k2A and some easy case of k1A with no changes in our treatment. 

§3. A division algorithm 

3.1. We maintain the notation and the assumptions of Definition 
2.8. We note that if Gi(O,l) = ua;vf;6 for some unit Vi E C[[u]] then 
replacing Xi;Yi by xiva!i,YiVJ-i, we may assume Gi(O, 1) = ua;. In 
other words, we may further assume 

without loss of generality. 
We will study when· X :::> C ~ IP'1 is a flipping nbd. 

Definition 3.2. In addition to the above G1 (T~, T2), G2 (T~, T2), 
we introduce Gi(T1,T2) (i = 3,4) as follows: 

We note that Gi(T~, T2 ) is homogeneous of degree Pi = Pi-2 and is of 
the form 

Gi(TI, T2) = Tt + ... + UOI.;Tf;' 

where ai = ai-2(Pi-2 - 1). We remark that Gi "¥= Tt mod (u) if 
Pi-2 = 1. 

For a positive integer a and an integer x, let x umod a be the integer 
y E [1, a] such that y = x mod a. For arbitrary i E Z, we use the 
following notation: 

We note then the obvious Pi = Pi-2 and the following formula 
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Let d(n) E Z (n E Z) be a sequence determined by 

d(1) = m 1, d(2) = m2, d(n + 1) + d(n- 1) = 8pnd(n) ('lin). 

Let e(n) E Z (n E Z) be another sequence determined by 

e(O) = 0, e(1) = -a1, e(2) = -a2, e(3) = 0, 

e(n + 1) + e(n- 1) = 8pne(n) + 8an-2- ctn-1,2 (n =/= 1, 2). 

Let c := (p1p28)2 - 4p1p2, the discriminant of the quadratic form 
q(xb x2) := P1xi - P1P2DX1X2 + P2X~. 

Lemma 3.3. Let 8, Pn be as above and let c := (PlP28) 2 - 4PlP2· 
Let x(n) E Q be a sequence for n E Z such that 

~ 

x(n) = DPn-lx(n- 1)- x(n- 2). 

Then we have the following. 

1. If x(no - 1) > x(no + 1) for some no such that 0 ~ x(no), 
then x(n- 1) > x(n + 1) for every n 2: n 0 such that 0 ~ 
x(n0 ), · · · , x(n). 

2. Ifx(n0 -1) = x(n0 +1) for some n0 , thenx(n0 -n) = x(n0 +n) for 
every n. If furthermore x(no) = x(no+2) and (x(no), x(no+1)) =/= 

(0, 0), then c = 0 and q(x(1), x(2)) = 0. 
3. Assume that c 2: 0. If x(n0 - 1) < x(no + 1) (resp. x(no- 1) > 

x(n0 +1)) for some n0 , then x(n-1) < x(n+ 1) (resp. x(n-1) > 
x(n + 1)) for every n. 

Proof. DrawthegraphoftheconicC := {(x1,x2) I q(x1,x2) =A}, 
with some constant A so that (x(2i -1),x(2i)) E C for some i. 
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·/I/ 
I/ I, 

-------1 
j 

I 
/ _, 

~::<0 

The induction formula for x( n) implies that 

(x(2i + 1), x(2i)) E C {} (x(2i- 1), x(2i)) E C (Vi), 

(x(2i + 1), x(2i)) E C {} (x(2i + 1), x(2i + 2)) E C (Vi). 
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So (x(2i + 1), x(2i)), (x(2i -1), x(2i)) all lie on C. Except for the second 
half of the assertion (2), the assertions are obvious from the geometric 
considerations. 

For the second half of the assertion (2), assume that x(n0 - 1) = 

x(no + 1), x(no) = x(n0 + 2) and (x(no), x(no + 1)) =/::. (0, 0). By the 
first half of the assertion (2), we have x(n) = x(n + 2) for all n. By 
x(i -1) = x(i + 1), we see that the line Xi= x(i) is tangent to the conic 
at the point P = (x(1), x(2)) =/::. (0, 0) for i = 1, 2. This means that P 
is a singular point of C, whence C is a double line. Hence c = 0 and 
A= 0. Q.E.D. 

Corollary 3.4. If we switch (a1, m1, a 1, p1, x 1, y1, G1) and (a2, 
m2, a2, P2, x2, Y2, G2), then (an, d(n), e(n)) and (a3-n, d(3- n), 
e(3- n)) are switched for all n. Modulo this switching, we may assume 
that d(1) > d(3). 

Proof. The first assertion is obvious. We note that d(1) = m 1 > 0 
and d(2) = m 2 > 0. Thus we are also done if d(1) > d(3) or if d(O) > d(2) 
by Lemma 3.3.1. So we may assume that d(1) :::; d(3) and d(O) :::; d(2). 
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By~ > 0, we have (d(O), d(1)) =f (d(2), d(3)) by Lemma 3.3.2. Hence 
we have either d(1) < d(3) or d(O) < d(2). 

If we switch the two sets as above, we have either d(2) < d(O) or 
d(3) < d(1) after the switch. Thus d(1) > d(3) by Lemma 3.3.1. Q.E.D. 

Lemma 3.5. Assume that d(1) > d(3) ( cf. Corollary 3.4) and that 
c < 0. Then d(k) < 0 for some k:::; 5. 

Proof. By c = P1P2(82P1P2- 4) < 0, we have 8 = 1 and P1P2:::; 3. 
Assume first that Pl = 1 and P2 :::; 3. By d(3) = p2m2 - m1 < m1, 

we have p2m 2 < 2m1. Thus the lemma follows from 

d(5) = P2(P2- 2)m2- (P2- 1)ml 

< (p2- 2)2ml - (p2- 1)ml 

= (P2 - 3)ml :::; 0. 

Assume next that P2 = 1 and Pl :::; 3. By d(3) = m2- m1 < m1, we 
have m2 < 2m1, and we are done by 

Remark 3.6. 

d(5) = (Pl - 2)m2 - (PI - 1)ml 

< (PI- 2)2ml- (p1 - 1)ml 

= (PI - 3)ml :::; 0. 

Q.E.D. 

1. We note that e(4) = 8a1 > 0, e(5) = (82p2 -1)a1 +8a2 > 0 and 

e(6) = (82p2 + Pl- 3)8plal + (82p1 -1)a2. 

In particular, e(6) :::; 0 implies that 8 = 1, p1 = 1 and p2 = 1, 2. 
2. If we set 

eo(n) := -o:n-2/ Pn (\In), 

then e0 ( n) 's satisfy the conditions for e( n) except for the values 
of e(O),· ·· ,e(3). Therefore if we put e1(n) = e(n)- e0 (n), then 

e1(0) = a2/P2,e1(1) = -o:I/pl,e1(2) = -a2/P2,e1(3) = o:I/pl 

and the following induction formula holds. 

Corollary 3.7. Assume that c 2': 0. Then e1 (n) > e1 (n- 2) for 
all n; e(n) > 0 for all n 2': 4; e(n) 2': a 1 + a 2 for all n 2': 7. 
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Proof. We have e1 (2) = -a.2/ P2 and e1 ( 4) = 8a.1 + a.2/ P2· If 
we temporarily mean the coefficient of a.i with the subscript a.i, then we 
have e1 ( 4 )ai > e1 (2)ai for i = 1, 2. By c: :=:: 0, we can apply Lemma 3.3 to 
e1(n)ai and obtain e1(n)ai > el(n-2)ai for all n :=:: 4 and i = 1, 2. Since 
e0 (n) depends only on n mod (4), we have e(n) :=:: e(n- 4) +a.1 +a.2 for 
all n :=:: 6. Also by eo(n) E a.n,2 · [-1,0], we have e(n)ai -e(n-2)ai > 0 
(resp. :=:: 0) fori ¢. n (resp. i = n) mod (2) if n :=:: 4. In other words, 
we have e(n) :=:: e(n- 2) + O'.n+l,2 for all n :=:: 4. 

By e(3) = 0 and e(4) = 8a.1, we have e(5) :=:: a.2, e(6) :=:: a.1 and 
e(n) :=:: a.1 + a.2 (n :=:: 7). Q.E.D. 

Corollary 3.8. Assume that d(1) > d(3) (cf. Corollary 3.4). Let 
k be the smallest integer:=:: 3 such that d(k)::; 0. (The integer k exists 
by Lemma 3.3.) Then e(n) > 0 if 4::; n::; k + 1. 

Proof. We note that e(4), e(5) > 0 by Remark 3.6.1. Thus we are 
done if k ::; 4. If c: :=:: 0, then e(n) > 0 for all n :=:: 4 by Corollary 3.7. 
Thus we are also done if c: :=:: 0. 

Thus we may assume that c: < 0 and d( 4) > 0. Hence k = 5 by 
Lemma 3.5. It is enough to derive a contradiction assuming e(6) ::; 0. 
By Remark 3.6.1, we have 8 = Pl = 1 and P2 = 1, 2. We have 

d(4) = d(3)- m2 = (P2- 1)m2- m1 > 0. 

From the second equation, we have P2 = 2. We have m1 > m2 from the 
first and m 2 > m 1 from the second. This is a contradiciton. Q.E.D. 

Definition 3.9. Let Si = (xi = 0)/f and D = (z = 0)/f be Ql
Cartier Weil divisors on X by Theorem 2.9.2, then we have -a1 S1 + 
(m2- a2)S2 + D "'0, m1D "'8S2 and m2D"' 881. 

Then we introduce the following sections and divisors. 

F0 := y1 E H 0 (X, O(Lo)), where Lo := 8p1L1- L2, 
Fl := X2 E H 0 (X, O(Ll)), where Ll := s2, 

F2 := x1 E H 0 (X, O(L2)), where L2 := S1, 
F3 := Y2 E H 0 (X, O(L3)), where L3 := 8p2L2- L1. 

We note that the formulas 

(n=1,2) 

can be rewritten in the form 

(n=1,2). 
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by the formula (3.1). 

These Li and Fi are extended as follows. 

Theorem 3.10. Let n 0 , n 1 E Z be such that no ::; 1, 2 ::; n1 and 

d(n) > 0 
e(n) > 0 

if n E [no, n1], 
if n E [no, n1] \ [0, 3]. 

Then L0 , · · · , L 3 and F0 , · • · , F3 can be extended to divisors Ln and 
Fn E H0 (X, O(Ln)) for n E [no -1, n1 + 1] such that the following hold. 

Ln-1 + Ln+1 = DpnLn, ifn E [no,n1]. 
Fn, Fn-1 are relatively prime on X (that is, {Fn = Fn-1 = 0} 
contains no divisors on X), if n E [no, n1 + 1]. 
Fn,ZU are relatively prime on X, ifn E [no -1,n1 + 1]. 

{
Gn(zd(n),F~) = Gn-2(F~,zd(n)Ue(nl)uan 

F F = (n=1,2), 
n-1 n+1 G (F/j d(n) e(n)) 

n-2 n' Z U 

(n#1,2), 
ifn E [no,n1]. 

Proof. By Corollary 3.4, we only need to consider n ~ 2. Thus we 
set no = 1 and use induction on n 1 . 

The theorem is obvious if n 1 = 2. Assume that n 1 ~ 3 and let 
n = n1 ~ 3. By the induction hypotheses, it is enough to define Ln+1 
by the assertion On, construct Fn+1 satisfying the assertion 3n and prove 
the assertions 1n+ 1 and 2n+l· 

We will construct Fn+1 satisfying 3n using 1n-1, 2n-1, 3n-2 and 
3n-1· During this proof, = denotes the congruence modulo the ideal 
Fn-1 <C[[u]][Fn-3, Fn-2, Fn-1, Fn, z] unless otherwise mentioned. We first 
claim that 

We note that the claim is obvious for n = 3 by Ff Ff = z8P2 d(2). If 
n ~ 4, the claim follows from 

F~-2F~ = Gn-3(FL1' zd(n-1)ue(n-1))8 

= z8Pn-3d(n-1)u8Pn-3e(n-1)+8an-3 

= zd(n-2)ue(n-2)+an-2,2 . zd(n)ue(n). 

In the following, we use a temporary notation that # denotes any 
sufficiently large integer. Let 

M := F~~2-2 Gn-2(F~, zd(n)ue(n))z#u#. 
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Then by the above claim, we have the following. 

M = Gn-2(F~-2F~, FL2zd(n)ue(n))z#u# 

= Gn-2(zd(n-2)Ue(n-2)+<>n-2,2' F~-2)z#u# 

= Gn-4(F~-2' zd(n-2)ue(n-2))z#u# 

= Fn-1Fn-3Z#u# 

=0. 
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Thus G 2(F8 zd(n)ue(n)) (or G (zd(n) F 8 ) if n = 1 2) vanishes on 
n- n' n ' n ' 

the divisor (Fn-1 = 0) by 1n-1 and 2n-1· Hence we obtain Fn+1 E 
H 0 (X, O(Ln+ 1 )) as claimed. 

We will prove 1n+1 and 2n+1 using 2n and 3n. We see that Fn+1 = 
zu = 0 implies Fn = 0 by the formula 3n. Indeed one can use d(n), e(n) > 
0 if n 2 4 and d(3) > 0 and G1 (T1 ,T2 ) = T{' mod (u) if n = 3. 
Thus by 2n, Fn+1 and zu are relatively prime on X, which is 2n+l· 
Fn = Fn+1 = 0 implies zu = 0. So by 2n, Fn, Fn+1 are relatively prime 
on X, which is ln+l, Q.E.D. 

Definition 3.11. By Corollary 3.4, we will assume that d(1) > 
d(3). Let k 2 3 be the smallest integer such that d(k) ::; 0, which exists 
by Corollary 3.3.1. Then we have 

by Corollary 3.8. 

d(1),d(2), .. · ,d(k-1) > 0, 

e(4), .. · ,e(k+1)>0, 

By Theorem 3.10, Q-Cartier Weil divisors Li and sections Fi E 
H 0 (X, Ox(Li)) (i = 0, · · · , k) satisfy the following. 

0. Ln-1 + Ln+1 = 8pnLn, if 1 ::; n ::; k - 1. 
1. Fn, Fn-1 are relatively prime on X if 1 ::; n ::; k. 
2. Fn, zu are relatively prime on X, if 0::; n::; k. 

{

Gn(zd(n)' F~) = Gn-2(F~, zd(n)ue(nl)u<>n 

(n=1,2), 
3. Fn-1Fn+1 = G (F{j d(n) e(n)) 

n-2 n,z U 

(n#1,2), 
if1::;n::;k-l. 

We then introduce the modified sequence d*(n) for the uniform 
treatment of Fn as follows. 

d*(n) = {d(n) 
-d(n- 2) 

(n::; k), 
(n 2 k + 1). 
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The following is one of the key results that the exceptional locus C of 
X is a set-theoretic complete intersection of two divisors: Fk = Fk+ 1 = 0 
(cf. [4, 20.11]). 

Theorem 3.12. Under the notation and the assumptions of Def
inition 3.11, we have 

F ·- Gk_2 (F~z-d(k),ue(k)) _ Gk_2 (F~,zd(k)ue(k))z-Pk-2d(k) 
k+1 .- -

Fk-1 Fk-1 

belongs to H 0 (X, O(Lk+1)), where Lk+1 := -Lk-1· 
Furthermore, Fk and Fk+ 1 satisfy the following. 

1. C = {Fk+1 = Fk = 0} as a set. 
2. C = {Fk+1 = u = 0} as a set. 

Proof. The proof that Fk+ 1 is a regular section of O(Lk+1) is sim
ilar to the one for Fn+l in Theorem 3.10, and we omit it. 

The assertion 1 is immediately reduced to 2. Indeed Fk+l = Fk = 0 
implies u = 0 by the definition of Fk+ 1 (note that e(k) > 0 if k?:: 4). It 
remains to prove the assertion 2. 

Let FniH denote the restriction of Fn to Hand (FniH) the divisor 
defined by FniH = 0. We note 

We claim 

DnH 
(F11H) 
(F21H) 
(F31H) 

We prove the claim by induction on n, where the cases n = 2, 3 are 
checked. Assume that the claim is proved up to n (::; k - 1). By 
Definition 3.11, we have 

(Fn+1IH) = (8Pn-2Pn-1d(n- 1)- Pn-2d(n- 2))£, 

= Pnd(n)£1 mod ZC. 

Thus the claim is proved. We then have 

(Fk+IIH) = Pk-2(8 · (FkiH)- d(k)D)- (Fk-11H) 

= 0 mod ZC. 

Hence C = {Fk+ 1 = u = 0}, and we are done. Q.E.D. 
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There is another important division. 

Theorem 3.13. Under the notation and the assumptions of The
orem 3.12, we have 

F ·- Gk-1(Ff+1zd(k-l),ue(k+1)) 
k+2 .-

Fk 
Gk-1 (Ff+1' zd* (k+l)ue(k+l))z-Pk~,d* (k+1) 

Fk 

belongs to H 0(X, O(Lk+2 )), where Lk+2 := -Lk. 
Furthermore, C = {Fk_ 1 = Fk+2 = u = 0}. 

Proof. We will closely follow the proof for Theorem 3.10. In this 
proof, =denotes the congruence modulo HC[[u]][Fk-2, Fk-1, H, Fk+1, z]. 

By the induction formula of e(n), we have: 

F 8 p8 zd(k-1) _ G (F8z-d(k) ue(k))8zd(k-1) 
k-1 k+1 - k-2 k ' = zd(k-l)u8Pk~2e(k)+8ak~2 

= ue(k+1). zd(k-1)uak~I, 2 +e(k-1)_ 

Thus for 

we have the following. 

M = Gk-1(Ff_ 1Ff+lzd(k-1),Ff_ 1ue(k+1l)u# 

= Gk-1 (zd(k-1)u"'k~I,2+e(k-1)' Ff_1)u# 

= Gk-3(Ff_1, zd(k-1)ue(k-1))u# 

= FkFk-2U# 

=0. 

Since Fk_ 1 u, Fk are relatively prime on X by Theorem 3.10, we see that 
Gk-1(Ff+1zd(k-1),ue(k+ 1)) is divisible by Hand that Fk+2 is a regular 
section of Lk+2· 

For the last assertion, we borrow the notation and the argument in 
the proof of the previous theorem 3.12. We saw (Fk_ 1IH) C Cu£1 there. 
By the formula (3.2), we have 

(Fk+21H) = Pk-1(8(Fk+11H) + d(k- 1)(D n H))- (FkiH) 

= Pk-1d(k- 1)- Pk-1d(k- 1) = 0 mod ZC. 

This means (Fk+21H) C C U £2, which proves the claim. Q.E.D. 
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The following are elementary properties which are immediate to 
check. 

Proposition 3.14. We have 

1. d*(n)Ln+l -d*(n+1)Ln ""'0 is a generating relation for Ln, Ln+l 
in Pic X if 1 S: n S: k + 1, 

2. (Ln ·C)= d*(n)j(m1m2) if 1 S: n S: k + 2. 

Proof. The case n = 1 of the first assertion is on m181 rv m282. If 
i81 - j 82 ""' 0 then it is Cartier at P1. Hence m 1li and i81 - j 8 2 is a 
multiple of m181 - m282. If 2 S: n S: k - 1, then we are done by the 
change of the basis, Ln+l ""'8pnLn- Ln-1: 

d(n)Ln+l- d(n + 1)Ln rv d(n)(DpnLn- ln-d- d(n + 1)Ln 

rv d(n- 1)Ln- d(n)Ln· 

The cases n = k, k + 1 follow from the case n = k - 1. The first 
assertion is thus proved. The second assertion follows from the first 
because (£1 ·C) = 1/m2 and (£2 ·C) = 1/ml. Q.E.D. 

Proposition 3.15. Let c(i) (i E [1, k + 2]) be a sequence deter-
mined by 

i. c(1) = a1, c(2) = m2- a2, 
ii. c(n + 1) = Dpnc(n)- c(n- 1) for n E [2, k- 1], 

iii. c(k + 1) = -c(k- 1), c(k + 2) = -c(k). 

Then we have 

1. -Kx rv c(n)Ln+l- c(n + 1)Ln if 1 S: n S: k + 1, 
2. c(n)d*(n + 1)- c(n + 1)d*(n) = {j for all n E [1, k + 1], 
3. c(n) and d*(n) are relatively prime for all n E [1, k + 2], and 
4. -d*(n)Kx ""'8Ln for all n E [1, k + 1]. 

Proof. The case n = 1 of the assertion 1 follows from -Kx 
a1£2- (m2- a2)£1. One can check the case n E [2, k- 1] inductively 
by using Ln+l ""'8pnLn- Ln-l (n E [2, k- 1]) as follows: 

c(n)Ln+l- c(n + 1)Ln rv c(n)(8pnLn- Ln-1)- c(n + 1)Ln 

""'c(n- 1)Ln- c(n)Ln-l ""'-Kx. 

The cases n = k, k + 1 are equivalent to the case n = k - 1 because 
Lk+l ""'-Lk-l and Lk+2 ""'-Lk. This proves the assertion 1. 

By the induction formula, we immediately see that the value 

c(n)d(n + 1)- c(n + 1)d(n) = c(n- 1)d(n)- c(n)d(n- 1) 
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does not depend on nand hence equal to 8 = c(1)d(2)- c(2)d(1), which 
proves the assertion 2. 

Let gcd(n) = (c(n),d(n)), then gcd(n) divides 8. By the induction 
formula, we see that d(i) = -d(i-2) and c(i) = -c(i-2) modulo gcd(n) 
for all i. This implies that gcd(n) divides gcd(1) or gcd(2) depending on 
the parity of n. Since gcd(1) = (a1, m1) = 1 and gcd(2) = (a2 , m2) = 1, 
we get gcd(n) = 1, the assertion 3. 

The assertion 4 follows from Proposition 3.14. 

-d*(n)Kx '""c(n)d*(n)Ln+1- c(n + 1)d*(n)Ln 

'""(c(n)d*(n + 1)- c(n + 1)d*(n))Ln = 8Ln· 

§4. Contractions and flips 

Q.E.D. 

In this section, we give an explicit description of the contractions 
and the flips using the divisions in Section 3. 

Although we work on the specific model X, our description can treat 
arbitrary extremal nbd of type k2A by passing to the formal completion 
or the associated analytic space by Theorems 2.2 and 2.9. 

First by Theorem 3.12 alone (without the further division), we can 
decide exactly when X :=> C is a flipping nbd as follows. 

Corollary 4.1. Let X:=> C ~ IP'1 be the scheme introduced in 3.1. 
Under the notation and the assumptions of Theorem 3.12, we have 

1. If d( k) < 0 then the formal completion X and the associated 
algebraic space of X :=> C are flipping nbds. 

2. If d( k) = 0 then X :=> C is not a flipping nbd. Indeed, C is a fiber 
of a divisorial contraction of X (or the algebraic space X) and 
{Fk+ 1 = 0} is the exceptional divisor for the contraction. 

Proof. By Theorem 3.12, Cis a set-theoretic complete intersection 
of two Cartier divisors N1 := a(Fk = 0) '"" aLk and N2 := a(Fk+l = 

0) '"" aLk+1 for some integer a > 0. 
Assume that d(k) < 0. Then -N1 and -N2 are ample on C by 

(Lk · C), (Lk+ 1 · C) < 0. Then the defining ideal J of N 1 n N 2 has 
the property that J I J2 is ample on C = Supp ( 0 xI J). Thus C C X 
can be contracted by [2, 6.2] and the associated algebraic space can be 
contracted by [2, 3.1]. Since (Kx·C) < 0, these are flipping contractions. 

Assume thet d(k) = 0. Then aLk '"" 0 and (Lk+ 1 ·C) < 0. Then 
Ff: : X -+ A 1 induces, on the divisor N2, a morphism g : N2 -+ A 1 

such that C = g-1 (0) as a set. We note that ON2 (-N2 ) is g-ample by 
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(Lk+l ·C) < 0. Thus we can similarly see that N 2 can be contracted 
to a curve such that C is one of its set-theoretic fiber by a birational 
contraction of the formal completion (and also the associated algebraic 
space) of X ::::> C. We note that -Kx is relatively ample and Nz is 
exceptional with respect to the contraction. Q.E.D. 

The extremal contraction of X is expressed as Spec H 0 (X, 0 x) (or 
its formal scheme version). We give here an explicit construction using 
the further division Theorems 3.12 and 3.13. 

Definition 4.2. Let 

Yi := Fk+z 
X~ := Fk+1 
xi := Fk 
y~ :=Fk-1 
z 

E H 0 (X, 0( -Lk)), 
E H 0 (X, O(LkH)), 
E H 0 (X, O(Lk)), 
E H 0 (X,O(-Lk+t)), 
E H 0 (X, O(c(k)Lk+l + c(k- 1)Lk)), 

on which we have the r-action defined in Remark 2.7. We rewrite the 
action as follows. 

By ZL 1 +ZL2 = ZLk+ZLk+1 C Pic X (Proposition 3.14.1), we set 

r' :=Hom (ZLk + ZLk+t, C*) =Hom (ZL1 + ZL2 , C*) = r, 

and ry' E r' acts on H 0 (X,O(Li)) as the multiplication by ry'(Li) E C*. 
Let mi := d(k- 1) > 0, m~ := -d(k) ~ 0. Then we have m~Lk+l ~ 
miLk (Proposition 3.14) and hence 

The r-action is equivalent to the r'-action given by 

'( I I ) _ (( ') I ( /)c(k-1)( l)c(k) ( /)-1 I ) 'Y xi,z,yi,u - 'Yi xi, 'Y1 'Yz z, 'Yi Yi,u · 

r' acts on the ring R' := C[[u]][xi, yi, x~, y~, z], the ideal 

I:= (x~y~- Gk-1((x~)'5zm~,ue(k+ll),x~y~- Gk-z((x~) 8zm;,ue(k))) 

and the scheme W' := Spec R' I I'. We note that it is easy to check that 
W' is a complete intersection and is an integral domain by Proposition 
4.8 and that W' is normal by the Jacobian criterion. Let 

(R'II')r' := {r E R'II' I ry'r = r} 

andY:= Spec (R' I I')r' with the origin 0. Because of the construction, 
we have a natural morphism 1r: X----+ Y. 
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Theorem 4.3. There is an open subset U 3 0 of Y such that 
7r: 1r-1 (U)---+ U is either a flipping contraction with C the only flipping 
curve (the case m~ > 0), or a divisorial contraction with (Fk+l = 0) the 
only exceptional divisor (the case m~ = 0). 

Proof. First of all, W (cf. Definition 2.8) and W' are birationally 
equivalent because of the inductive formulas in Defintion 3.11 and The
orems 3.12 and 3.13. The birational map is f-equivariant as explained 
in Definition 4.2. Because of these, it is easy to see that 7r is birational. 

Next, we claim that 7r- 1 (0) =Cas a set, and prove it in two cases. 

Case 1 (m~ > 0). For arbitrary i,j, we have u, (x~)a(yj)bE (R'/I')r' 
for some positive integers a, b depending on x~, yj. Thus 

C c 1r-1 (0) C {x~ = x~ = 0} U {y~ = y~ = u = 0}. 

Thus by Theorems 3.12 and 3.13, we have 1r-1 (0) =Cas a set. 

Case2 (m~ = 0). We have (YDa,(x~)a,x~y~,u E (R'/I')r' for 
some positive integer a. Thus 

C C 7r- 1 (0) C {x~ = x~ = 0} U {y~ = y~ = u = 0}. 

The rest is the same as Case 1. This proves the claim. 

By [9], 7r can be extended to a proper birational morphism 7t: X---+ 
Y. Then we have 1r-1 (0) =C. Indeed, by the normality of Y, 1r-1 (0) is 
a connected set containing C as a connected component. 

Thus it is enough to set U = Y \ 1t(X \X) to make 7r proper above 
it. Shrink U further so that Lk_ 1 is 'Tr-ample over U. 

Assume that m~ > 0. Then C = 1r-1 (0) is a set-theoretic complete 
intersection of two 1r-negative divisors (Fk = 0) and (Fk+ 1 = 0). Every 
7r-exceptional curve C 1r-1 (U) is contained in these divisors. Thus Cis 
the only 1r-exceptional curve c 1r-1 (U). 

Assume next that m~ = 0. In this case, the arguments are similar 
to those in the proof of Corolary 4.1.2. C = (Fk = 0) n (Fk+ 1 = 0) 
being 1r-exceptional and Fk cv 0 imply that Fk+ 1 is contracted by 1r. 
Then, - Fk+l being 'Tr-ample implies that Fk+ 1 contains all the curves 
contracted by 7r. Q.E.D. 

We will closely study the divisorial contraction or the flip as follows. 

Definition 4.4. Let a~ := c(k-1) umod (m~) ( cf. Definition 3.2), 
and if m~ > 0 then we also let a~ := c(k) umod (m~). Since (c( i), d(i)) = 
1 by Proposition 3.15, we have (mL aD = 1 and 0 <a~ ~ m~ if m~ > 0. 
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Theorem 4.5. With the above notation and assumptions, assume 
further that d(k) = 0. Then mi = d(k -1) = 8 = gcd(m1 ,m2), c(k) = 
-1 and we have a terminal singularity of index mi, 

0 E Y ~ (e, 17, (, u; e11- Gk-1 ((m~, ue(k+l)))/Zm~ (1, -1, a~, 0), 

where the 7r-fundamental set is the curve { ( =Gk_2 (em~, ue(k)) =0} /Zm~ 
under the identification. 

Proof. By the induction formula, we see gcd(m1 ,m2 ) 

gcd(d(i), d(i+ 1)) for all i. In particular, we have d(k-1) = gcd(m1 , m 2 ). 

By Proposition 3.15, we have c(k) = ±1 and -c(k)d(k- 1) = 8. Thus 
c(k) = -1 and mi = d(k- 1) = 8. 

By d(k) = 0, we haver' = Zm~ XC* and can obtain the isomorphism 
by taking the invariants in two steps. We note that e = xi, 17 = Yi and 
( = xi z. Since the fundamental set on Y is defined by x~y~ = x~z = 0, 
we are done by x~y~ = Gk_2 (em~, ue(k)). Q.E.D. 

Definition 4.6. Let 

X':= (W' \ {x~ = x~ = O})jr' :::> C' := {y~ = y~ = z = u = O}jr' 

and Pf the point, x~ = Yi = y~ = z = u = 0. We note that C' ~ lP'1 . 

Let 1r1 : X' -+ Y be the induced morphism. 

Theorem 4. 7. With the above notation and the assumptions, as
sume further that d(k) < 0. Then we have 

1. X' is a normal scheme of dimension 3 such that X' \ { Pf, PD is 
smooth and the germ 

Pf EX'~ (e~, 17~, ({, u; e~11~ = G~(({m;, 1))/Zm; (1, -1, a~, 0) 

is a terminal singularity of index m~ and Pi E C' = e~-axisfZm' 
under the identification, where ' 

G' (T fT' ) • G (T e(k+2-i)fT' ) i 1,12 .= k-i 1,u 12 (i = 1,2), 

2. X' is proper and is the flip of X over some open set 3 0 of Y. 

Proof. The proof of the first assertion is similar to the one for 
Theorem 2.9, and we omit it. 

As in the proof of Theorem 4.3, we see that 1r1 is a birational mor
phism. Although X' is proper over X, we only claim it over an open set 
3 0. For this we only need to show (7r')-1 (0) = C' as in the proof of 
Theorem 4.3. 
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For arbitrary i,j, we have (xDa(yj)b,(x~)azc E (R'/I')r' for some 
positive integers a, b, c depending on x~, yj, z. Thus 

(7r')-1 (0) C {x~ = x~ = 0} U {y~ = y~ = z = u = 0} = C', 

and the properness is settled. 
By the construction of W' and by C = {Fk = Fk+l = 0} (Theorem 

3.12), we have a natural birational morphism X\ C ---+ X'. By Theorem 
4.3, X\ C ~X'\ C' over an open set U 3 0 of Y. It only remains to 
show that (Kx' · C') > 0. 

Let Si := (xi = 0)/f' be the Q-Cartier divisor on X'. Then (Si · 
C') > 0. Since X~ X' in codimension 1, we can pull back Si and Kx' 
on X' to Lk ,....., (Fk = 0) and Kx on X. By -d(k)Kx ,....., 8Lk on X 
(Proposition 3.15), we have -d(k)Kx' ,....., 8Si. Hence (Kx' · C') > 0 as 
required. Q.E.D. 

We used the following elementary result in this section. We give a 
proof for the readers' convenience. 

Proposition 4.8. Let A be an integml domain, and x1 , x2 , u 1 , 

Uz E A. Assume that x1 , x2 are prime elements (that is, x1A, x2A are 
non-zero prime ideals) and that (x1, x2 ) is a prime ideal =f. x1A, x2A. 
Then 

1. IJu1 t:/. x1A, then A[y1]/(x1Y1- u1) is an integml domain. 
2. Iful t:/. (x1,x2) and Uz t:/. xzA, then A[YbYzJI(xlYl- U1,X2Y2-

u 2 ) is an integral domain. 

Proof. LetP := {f(yl) E A[y1]l f(udxl) = 0}. 
We claim that if f(Yl) =any"{+···+ ao E P \ {0}, then n > 0 and 

an E x1A. Indeed n;::::: deg f ;::::: 1 is obvious, and from 

we get an E x 1A by u 1 t:f. x 1A. This proves the claim. 
For the assertion 1, it is enough to prove that P = (x1Y1 - u1). 
Let f E P\ {0}. By the claim, we can lower deg f modulo (x1Y1 -u1). 

Hence the assertion 1 is proved by induction on deg f. 
For the assertion 2, let S = A[y1]/(x1y1 - u1), which is an integral 

domain. We note that 8/xzS ~ (A/xzA)[Yl]/(xlYl - u1) is an integral 
domain by u 1 t:f. (x1 , x2 ). We claim that u2 mod x 2 S =f. 0. Indeed 
u2 mod x 2 A is a non-zero constant of the integral domain (A/x2A)[y1]. 
Hence Uz mod xzA t:/. (A/xzA)[yl](xlYl - u1), which proves the claim. 
Finally applying the assertion 1 on S, we obtain the assertion 2. Q.E.D. 
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§5. Further discussions 

In this section, we consider the case of a base ring which is more 
general than C[[u]] in Definition 3.2. We note that, over Spec Z, our 
finite group action Zm is actually the finite multiplicative group scheme 
action J.l-n C Gm, which is linearly reductive over Spec Z. Hence no 
changes are needed for characteristic 2: 0. 

Definition 5.1. Let (A, mA) be a regular local ring and let 
u 11 u 2 E mA be non-zero elements. Let ai, mi, Pi be positive integers 
and Gi(T1, T2) E A[T1, T2] a homogeneous polynomial in T1 and T2 of 
degree Pi (i = 1, 2) such that · 

1. ai ~ mi and (ai, mi) = 1, 
2. 8 := a1m2 + a2m1- m1m2 > 0, 
3. the coefficient of Tfi (resp. Tfi) in Gi is 1 (resp. u1), 
4. ~ := P1m~- 8p1P2m1m2 + P2m~ > 0. 

By formally writing ai = loguui (or uO/.i = ui) fori= 1, 2, Definition 3.2 
applies to our case. By Corollary 3.4, we may assume that 

5. d(l) > d(3). 
Corollary 3.8 implies that 

6. ue(n) E (u1,u2)A if 4 ~ n ~ k + 1. 

Let R := A[xb Yb X2, Y2, z] be the A-algebra with the r-action in 
Remark 2.7, and let W =Spec R/I be the scheme with the r-action, 
where I is the ideal given by 

I:= (x1Y1- G1(zm',x~),x2Y2- G2(zm•,xf)). 

As in Definition 2.8, we set 

X:= (W \ V(xb x2))jr :> C := V(y1, Y2, z, mA)/r ~ IP§pec A/mA 

and Pi= V(xi, Y1, Y2, z, mA)/r ~Spec A/mA. Let Li be the Q-Cartier 
divisor classes and Fi E H 0 (X, CJ(Li)) be the sections as in Definition 
3.9. 

Theorem 5.2. L0 , • • · , L3 and F0 , • · • , F3 can be extended to Q
Cartier divisor classes Li and sections Fi E H 0 (X, CJ(Li)) fori E [0, k+ 
2] such that the following hold. 

{
8pnLn (n < k- 1) 

On. Ln-l+Ln+l= O ( - ) ifnE[l,k+l]. 
n = k,k+ 1, 

ln. Fn, Fn-1 are relatively prime on X if n E [1, k + 2]. 
2n. Fn, zu1 u2 are relatively prime on X, if n E [0, k + 2]. 
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Gn-z(F~z-d*(n)' ue(n)) 

= Gn-z(F~, zd*(n)ue(n))z-Pnd*(n) 

3n. K-lK+l = Gn-z(F~, zd*(n)ue(n)) 
G (zd(n) po) 

n ' n 

= Gn-z(F~, zd(n)ue(nl)u<>n 

ifnE [1,k+1]. 
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(n=k,k+1), 

(2<n<k), 

(n=1,2), 

Our argument here is slightly stronger than those for Theorems 3.10, 
3.12 and 3.13, since we introduce the intermediate schemes Xi and study 
them closely. 

Lemma 5.3. Let the notation and the assumptions be as in The
orem 5.2. ForiE [1, k], let Ri := A[Fi_ 1 , · · · , Fi+2 , z] be the polynomial 
ring with 5 variables and Ji C Ri the ideal genemted by the relations 3i 
and 3i+l· 

As in Definition 2.8, let Xi:= (Spec RiiJi \ {Fi = Fi+1 = O})lf, 
and let L} (j E [i - 1, i + 2]) be the Q-Cartier divisor class on Xi 
induced by F1. By the condition corresponding to On, we define L; for 
all j E [0, k + 2]. Let Bf ( resp. B~) be the closed subset of Xi defined by 
Fi-1 = Fi = 0 (resp. Fi+1 = Fi+2 = 0). 

Then for every i E [1, k], we have the following. 

1. Ri I Ji is a normal domain of complete intersection, 
2. codimx,(Bj);:::: 2 for every j = 1,2. 

By the relations 31' ... '3n, R1 I I 1' ... 'Rn- 1 I rn- 1 are all bimtional to 
each other. For every i E [2, k], the bimtional map xi-1 ---t Xi induces 

3. an isomorphism xi-1 \ B~- 1 -:::-Xi\ Bf, 
4. the identification L~- 1 = L;, which is simply denoted by L1, and 
5. H 0 (Xi-I,O(L1)) = H 0 (Xi,O(L1)) for all j. 

Proof. It is easy to check that Ri I Ji is a complete intersection 
integral domain by Proposition 4.8 and u 1 u 2 =f. 0 E A. The normality 
can be checked by the Jacobian criterion at codimension 1 points, which 
is the assertion 1. Again using u 1 u2 =f. 0 E A, one can easily check the 
assertion 2. 

We now regard Fi+2 as a rational function in Fi-z, · · · , Fi+l, z. We 
can see that the regular section 

satisfies the condition 
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from the relations 3i+b 3i and 3i_1 by pure computation, where # 
denotes an arbitrarily large positive integer. Indeed the computation 
was carried out in the proof of Theorem 3.10 with n = i + 1 ::; k- 1. 
Since the computation is similar in other cases, we omit the compu
tation. This means that the regular section Fi+2Fi vanishes on the 
divisor (Fi = 0) ,....., L~-1, whence Fi+1 E H 0 (Xi-1, O(L~+i)). Hence 
( .,.. D D D ) • d h. xi-1 \ Bi-1 xi\ Bi ri-b ri, ri+b ri+2, z In uce a morp Ism 2 ---> 1 . 

The inverse Xi \ Bf ---> xi-1 \ B~- 1 can be constructed similarly 
from the assertion: 

Indeed, we can prove this using 3i-b 3i and 3i+l by the computation 
similar to the above. The rest are obvious. Q.E.D. 

Proof of Theorem 5.2. By On, we define Lj's. By Lemma 5.3, we 
have the extension Fj (j E [0, k + 2]) satisfying 3n ( n E [1, k + 1]) 
by Fi E H 0 (X, O(Li)) = H 0 (Xi, O(Lj)) for some i E [1, k] such that 
j E [i- 1, i + 2]. 

By Lemma 5.3, the assertions 1n and 2m can be examined on Xi 
such that n, m E [i - 1, i + 2]. 

On Xi, we know that Bf = {Fi-1 = Fi = 0}, 0 = {Fi = Fi+l = 0}, 
B~ = {Fi+l = Fi+2 = 0} are of codimension ~ 2 on Xi. This proves 
1n- The computation of 2n can be done through a simple but tedious 
computation, which we omit. Q.E.D. 

Remark 5.4. For the family of surfaces 1r : X ---> Spec A, we have 
a divisorial contraction or a flipping contraction depending on whether 
d(k) = 0 or not (Corollary 4.1). It is not difficult to obtain an analogue 
of Theorem 2.2 for a multi-parameter analytic deformation space of H 
and analogues of Theorems 3.12 and 3.13 for A, and furthermore to carry 
out a detailed computation as in Sections 2 and 4. 

For instance, C need not be the only contractible curve over [mA] 
because we do not assume Gi = Tf; mod mA in Definition 5.1.3. The 
contractible curves over [mA] are contained in F4 = 0, which follows 
from Fk = Fk+l = u 1 = u2 = 0 through the relations in Theorem 5.2.3. 

Using such Gi, we can systematically construct reducible flipping 
curves. 

Remark 5.5. An interesting problem in order to understand flips 
is to find the generators of the graded ring ffivEzH0 (X, O(vKx)) or 
some of its variants. We note that our z, F0 , • • • , Fk+2 are a part of the 
key generators. 
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It is possible to carry out further divisions to get Fi for i < 0 and 
i > k + 2. The former case was treated in Theorem 3.10. The latter case 
corresponds to the case i < 0 for X' in Theorem 4.7, or we can continue 
the division imitating the arguments in Theorem 3.10. 

However this immediate generalization does not give the right ho
mogeneous elements as pointed out by M. Reid. He has been proposing 
a more general division [10] using pfaffians. 

Our standpoint is that, with our easier divisions, we can determine 
many of the structures of the flips. 
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