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Introduction 

Siegel modular varieties are interesting because they arise as mod­
uli spaces for abelian varieties with a polarization and a level structure, 
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and also because of their concrete analytic realization as locally symmet­
ric varieties. Even in the early days of modern algebraic geometry the 
study of quartic surfaces led to some specific examples of these moduli 
spaces being studied in the context of projective geometry. Later ad­
vances in complex analytic and algebraic geometry and in number theory 
have given us many very effective tools for studying these varieties and 
their various compactifications, and in the last ten years a considerable 
amount of progress has been made in understanding the general pic­
ture. In this survey we intend to give a reasonably thorough account 
of the more recent work, though mostly without detailed proofs, and to 
describe sufficiently but not exhaustively the earlier work of, among oth­
ers, Satake, Igusa, Mumford and Tai that has made the recent progress 
possible. 

We confine ourselves to working over the complex numbers. This 
does not mean that we can wholly ignore number theory, since much 
of what is known depends on interpreting differential forms on Siegel 
modular varieties as Siegel modular forms. It does mean, though, that 
we are neglecting many important, interesting and difficult questions: 
in particular, the work of Faltings and Chai, who extended much of the 
compactification theory to Spec Z, will make only a fleeting appearance. 
To have attempted to cover this material would have greatly increased 
the length of this article and would have led us beyond the areas where 
we can pretend to competence. 

The plan of the article is as follows. 
In Section I we first give a general description of Siegel modular 

varieties as complex analytic spaces, and then explain how to compactify 
them and obtain projective varieties. There are essentially two related 
ways to do this. 

In Section II we start to understand the birational geometry of these 
compactified varieties. We examine the canonical divisor and explain 
some results which calculate the Kodaira dimension in many cases and 
the Chow ring in a few. We also describe the fundamental group. 

In Section III we restrict ourselves to the special case of moduli 
of abelian surfaces (Siegel modular threefolds), which is of particular 
interest. We describe a rather general lifting method, due to Gritsenko 
in the form we use, which produces Siegel modular forms of low weight 
by starting from their behaviour near the boundary of the moduli space. 
This enables us to get more precise results about the Kodaira dimension 
in a few interesting special cases, due to Gritsenko and others. Then 
we describe some results of a more general nature, which tend to show 
that in most cases the compactified varieties are of general type. In the 
last part of this section we examine some finite covers and quotients 
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of moduli spaces of polarized abelian surfaces, some of which can be 
interpreted as moduli of Kummer surfaces. The lifting method gives 
particularly good results for these varieties. 

In Section IV we examine three cases, two of them classical, where a 
Siegel modular variety (or a near relative) has a particularly good projec­
tive description. These are the Segre cubic and the Burkhardt quartic, 
which are classical, and the Nieto quintic, which is on the contrary a 
surprisingly recent discovery. There is a huge body of work on the first 
two and we cannot do more than summarize enough of the results to 
enable us to highlight the similarities among the three cases. 

In Section V we examine the moduli spaces of (1, t)-polarized abelian 
surfaces (sometimes with level structure) for small t. We begin with the 
famous Horrocks-Mumford case, t = 5, and then move on to the work 
of Manolache and Schreyer on t = 7 and Gross and Popescu on other 
cases, especially t = 11. 

In Section VI we return to the compactification problems and de­
scribe very recent improvements brought about by Alexeev and Naka­
mura, who (building on earlier work by Nakamura, Namikawa, Tai and 
Mumford) have shed some light on the question of whether there are 
compactifications of the moduli space that are really compactifications 
of moduli, that is, support a proper universal family. 

Acknowledgements. Both authors were partially supported by 
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ERBCHRXCT940557. We are also grateful to RIMS, Kyoto, for hospi­
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tions about their own work, and especially to V. Alexeev, M. Gross and 
S. Popescu, I. Nieto, and N. Manolache and F.-0. Schreyer for allowing 
us access to unpublished notes. 

I. Siegel modular varieties 

In this section we give the basic definitions in connection with Siegel 
modular varieties and sketch the construction of the Satake and toroidal 
compactifications. 

1.1. Arithmetic quotients of the Siegel upper half plane 

To any point T in the upper half plane 

lHI1 = { T E <C; Im T > 0} 
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one can associate a lattice 

and an elliptic curve 

Since every elliptic curve arises in this way one obtains a surjective map 

lHI1 -+ {elliptic curves}/ isomorphism. 

The group SL(2, Z) acts on lHI1 by 

( ~ 
and 

b ) ; T f--+ aT + b 
d cT+d 

Hence there is a bijection 

X 0 (l) = SL(2, Z)\lHI1 ~{elliptic curves}/ isomorphism. 

The j-function is an SL(2, Z)-invariant function on lHI1 and defines an 
isomorphism of Riemann surfaces 

An abelian variety (over the complex numbers <C) is a g-dimensional 
complex torus <CY / L which is a projective variety, i.e. can be embedded 
into some projective space ]pm. Whereas every 1-dimensional torus <C/ L 
is an algebraic curve, it is no longer true that every torus X = <CY / L of 
dimension g 2: 2 is projective. This is the case if and only if X admits a 
polarization. There are several ways to define polarizations. Perhaps the 
most common definition is that using Riemann forms. A Riemann form 
on <CY with respect to the lattice L is a hermitian form H 2: 0 on <CY 
whose imaginary part H' = Im(H) is integer-valued on L, i.e. defines 
an alternating bilinear form 

H': L®L-+ Z. 

The JR.-linear extension of H' to <CY satisfies H'(x, y) = H'(ix, iy) and 
determines H by the relation 

H(x, y) = H'(ix, y) + iH'(x, y). 
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H is positive definite if and only if H' is non-degenerate. In this case H 
(or equivalently H') is called a polarization. By the elementary divisor 
theorem there exists then a basis of L with respect to which H' is given 
by the form 

A= ( 
0 

-E ~) 

where the e1 , ... , e9 are positive integers such that e1 le2 ... le9 . The 
g-tuple (ell ... , e9 ) is uniquely determined by H and is called the type 
of the polarization. If e1 = . . . = e9 = 1 one speaks of a principal 
polarization. A (principally) polarized abelian variety is a pair (A, H) 
consisting of a torus A and a (principal) polarization H. 

Assume we have chosen a basis of the lattice L. If we express each 
basis vector of Lin terms of the standard basis of (C9 we obtain a matrix 
f2 E M(2g x g, <C) called a period matrix of A. The fact that H is 
hermitian and positive definite is equivalent to 

These are the Riemann bilinear relations. We consider vectors of (C9 

as row vectors. Using the action of GL(g, <C) on row vectors by right 
multiplication we can transform the last g vectors of the chosen basis of 
L to be (ell 0, ... , 0), (0, e2, 0, ... , 0), ... , (0, ... , 0, e9 ). Then n takes on 
the form 

and the Riemann bilinear relations translate into 

T = tT, lm T > 0. 

In other words, the complex (g x g)-matrix Tis an element of the Siegel 
space of degree g 

lHI9 = {T E M(g x g,<C);T = tT,ImT > 0}. 

Conversely, given a matrix T E lHI9 we can associate to it the period 
matrix nT and the lattice L = LT spanned by the rows of nT. The 
complex torus A = <C9 / L 7 carries a Riemann form given by 

H(x,y) = xlm(T)- 1 ty. 
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This defines a polarization of type (e1 , ... , e9 ). Hence for every given 
type of polarization we have a surjection 

JH[9 -+ {(A, H); (A, H) is an (e1 , ... ,e9 )-polarized ab.var.}/ isom. 

To describe the set of these isomorphism classes we have to see what 
happens when we change the basis of L. Consider the symplectic group 

Sp(A, Z) ={hE GL(2g, Z); hAth= A}. 

As usual we write elements h E Sp(A, Z) in the form 

h = ( ~ ~ ) ; A, ... , D E M(g x g, Z). 

It is useful to work with the "right projective space P of GL(g, C)" i.e. 
the set of all (2g x g)-matrices of rank g divided out by the equivalence 
relation 

( z~ } rv ( z~z ) for any ME GL(g,C). 

Clearly Pis isomorphic to the Grassmannian G = Gr(g, C2Y). The group 
Sp(A, Z) acts on P by 

where []denotes equivalence classes in P. One can embed JH[9 into P by 

T ~ [ ~ ] • Then the action of Sp(A, Z) restricts to an action on the 

image of JH[9 and is given by 

( A B) [ r] = [ Ar+BE] = [ (Ar+BE)(Cr+DE)- 1E] 
C D E Cr+DE E . 

In other words, Sp( A, Z) acts on JH[9 by 

( ~ ~ ) : r ~ (Ar+ BE)(Cr+ DE)-1 E. 

We can then summarize our above discussion with the observation that 
for a given type (eb ... , e9 ) of a polarization the quotient 
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parametrizes the isomorphism classes of (e1 , ... , e9 )-polarized abelian 
varieties, i.e. Ae1 , ... ,e9 is the coarse moduli space of (e1 , ... , e9 )-polarized 
abelian varieties. (Note that the action of Sp(A, Z) on 1Hl9 depends on 
the type of the polarization.) If we consider principally polarized abelian 
varieties, then the form A is the standard symplectic form 

J=(-~g ~) 
and Sp(A, Z) = Sp(2g, Z) is the standard symplectic integer group. In 
this case we use the notation 

A9 = A1, ... ,1 = Sp(2g, Z)\1Hl9 . 

This clearly generalizes the situation which we encountered with ellip­
tic curves. The space 1Hl1 is just the ordinary upper half plane and 
Sp(2, Z) = SL(2, Z). We also observe that multiplying the type of a po­
larization by a common factor does not change the moduli space. Instead 
of the group Sp(A, Z) one can also use a suitable conjugate which is a 
subgroup of Sp(J, Q). One can then work with the standard symplectic 
form and the usual action of the symplectic group on Siegel space, but 
the elements of the conjugate group will in general have rational and no 
longer just integer entries. 

One is often interested in polarized abelian varieties with extra struc­
tures, the so-called level structures. If L is a lattice equipped with a 
non-degenerate form A the dual lattice L v of L is defined by 

Lv = {y E L®Q; A(x,y) E Z for all x E L}. 

Then Lv I L is non-canonically isomorphic to (Ze1 x ... x Ze9 ) 2 • The 
group L vI L carries a skew form induced by A and the group (Ze1 x ... x 
Ze9 ) 2 has a QIZ-valued skew form which with respect to the canonical 
generators is given by 

( 0 E- 1 ) 
-E-1 0 . 

If (A, H) is a polarized abelian variety, then a canonical level structure 
on (A, H) is a symplectic isomorphism 

a: LVIL -t (Zel X ••• X Zeg)2 

where the two groups are equipped with the forms described above. 
Given A we can define the group. 

Sp1ev(A, Z) :={hE Sp(A, Z); hlp /L = id £V ;£}. 
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The quotient space 

Alev := Splev(A Z)\IHI 
e1 , ... ,e9 ' g 

has the interpretation 

A~e1v, ... ,e9 = {(A,H,a); (A,H) is an (e1, ... ,e9)-polarized abelian 
variety, a is a canonical level structure} I isom. 

If A is a multiple nJ of the standard symplectic form then Sp( nJ, Z) = 
Sp(J,Z) but 

f 9 (n) := Splev(nJ,Z) ={hE Sp(J,Z); h = 1 mod n}. 

This group is called the principal congruence subgroup of level n. A 
level-n structure on a principally polarized abelian variety (A, H) is a 
canonical level structure in the above sense for the polarization nH. 
The space 

is the moduli space of principally polarized abelian varieties with a level­
n structure. 

The groups Sp(A, Z) act properly discontinuously on the Siegel space 
IHI9 . If e1 2: 3 then Sp1ev(A, Z) acts freely and consequently the spaces 
A~e1~ ••• ,e9 are smooth in this case. The finite group Sp(A, Z)l Sp1ev(A, Z) 
acts on A~e;, ... ,e9 with quotient Ae1 , ••• ,e9 • In particular, these spaces have 
at most finite quotient singularities. 

A torus A= CY I L is projective if and only if there exists an ample 
line bundle .C on it. By the Lefschetz theorem the first Chern class 
defines an isomorphism 

The natural identification H 1 (A, Z) ~ L induces isomorphisms 

2 /\2 /\2 H (A,Z) ~Hom( H 1 (A,Z),Z) ~Hom( L,Z). 

Hence given a line bundle .C the first Chern class c1 (.C) can be interpreted 
as a skew form on the lattice L. Let H' := -c1 (.C) E Hom(;\2 L,Z). 
Since c1 (.C) is a (1, 1)-form it follows that H'(x, y) = H'(ix, iy) and hence 
the associated form H is hermitian. The ampleness of .C is equivalent 
to positive definiteness of H. In this way an ample line bundle defines, 
via its first Chern class, a hermitian form H. Reversing this process one 
can also associate to a Riemann form an element in H 2 (A, Z) which is 
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the first Chern class of an ample line bundle £. The line bundle £ itself 
is only defined up to translation. One can also view level structures 
from this point of view. Consider an ample line bundle £ representing 
a polarization H. This defines a map 

A: A ---+ 
A 0 

A= Pic A 

where tx is translation by x. The map A depends only on the polariza­
tion, not on the choice of the line bundle £. If we write A = (C9 I L then 
we have Ker A~ Lv I Land this defines a skew form on Ker A, the Weil 
pairing. This also shows that Ker A and the group (Ze1 X ... X Ze9 ) 2 

are (non-canonically) isomorphic. We have already equipped the lat­
ter group with a skew form. From this point of view a canonical level 
structure is then nothing but a symplectic isomorphism 

1.2. Compactifications of Siegel modular varieties 

We have already observed that the j-function defines an isomor­
phism of Riemann surfaces 

Clearly this can be compactified to X(l) = lP'1 = CU{ oo }. It is, however, 
important to understand this compactification more systematically. The 
action of the group SL(2, Z) extends to an action on 

The extra points Q U { ioo} form one orbit under this action and we can 
set 

X(l) = SL(2, Z)\lHI1. 

To understand the structure of X(l) as a Riemann surface we have to 
consider the stabilizer 

of the point ioo. It acts on lHI1 by T r---+ T + n. Taking the quotient by 
P( ioo) we obtain the map 

lHI1 ---+ Di = {z E C; 0 < izi < 1} 
T f---+ t = e27riT • 
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Adding the origin gives us the "partial compactification" D1 of D~. For 
c: sufficiently small no two points in the punctured disc D; of radius c: are 
identified under the map from Dr to the quotient S1(2, Z)\lHh. Hence 
we obtain X(l) by 

This process is known as "adding the cusp i=". If we take an arbitrary 
arithmetic subgroup r c S1(2, Z) then Q u { i=} will in general have 
several, but finitely many, orbits. However, given a representative of 
such an orbit we can always find an element in S1(2, Z) which maps this 
representative to i=. We can then perform the above construction once 
more, the only difference being that we will, in general, have to work 
with a subgroup of P(i=). Using this process we can always compactify 
the quotient X 0 (f) = f\lHh, by adding a finite number of cusps, to a 
compact Riemann surface X(f). 

The situation is considerably more complicated for higher genus g 
where it is no longer the case that there is a unique compactification of 
a quotient A(f) = f\1Hl9 . There have been many attempts to construct 
suitable compactifications of A(r). The first solution was given by Sa­
take ([Sa]) in the case of A9 . Satake's compactification .A9 is in some 
sense minimal. The boundary .A9 \A9 is set-theoretically the union of 
the spaces Ai, i ::::; g- 1. The projective variety .A9 is normal but highly 
singular along the boundary. Satake's compactification was later gener­
alized by Baily and Borel to arbitrary quotients of symmetric domains 
by arithmetic groups. By blowing up along the boundary, lgusa ([13]) 
constructed a partial desingularization of Sa take's compactification. The 
boundary of lgusa's compactification has codimension 1. The ideas of 
lgusa together with work of Hirzebruch on Hilbert modular surfaces 
were the starting point for Mumford's general theory of toroidal com­
pactifications of quotients of bounded symmetric domains ([Mu3]). A 
detailed description of this theory can be found in [AMRT]. Namikawa 
showed in [Nam2] that lgusa's compactification is a toroidal compacti­
fication in Mumford's sense. Toroidal compactifications depend on the 
choice of cone decompositions and are, therefore, not unique. The dis­
advantage of this is that this makes it difficult to give a good modular 
interpretation for these compactifications. Recently, however, Alexeev 
and Nakamura ([AN], [Aiel]) partly improving work of Nakamura and 
Namikawa ([Nakl], [Naml]) have made progress by showing that the 
toroidal compactification A; which is given by the second Voronoi de­
composition represents a good functor. We shall return to this topic in 
chapter VI of our survey article. 
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This survey article is clearly not the right place to give a complete 
exposition of the construction of compactifications of Siegel modular 
varieties. Nevertheless we want to sketch the basic ideas behind the 
construction of the Satake compactification and of toroidal compactifi­
cations. We shall start with the Satake compactification. For this we 
consider an arithmetic subgroup r of Sp(2g, Ql) for some g ;::: 2. (This 
is no restriction since the groups Sp(A, Z) which arise for non-principal 
polarizations are conjugate to subgroups of Sp(2g, Ql)). A modular form 
of weight k with respect to the group r is a holomorphic function 

F : lHI9 ------> C 

with the following transformation behaviour with respect to the group 
r: 

F(MT) = det(CT + D)k F(T) for all M = ( ~ ~ ) E r. 

(For g = 1 one has to add the condition that F is holomorpic at the 
cusps, but this is automatic for g :::: 2). If r acts freely then the auto­
morphy factor det( CT + D)k defines a line bundle Lk on the quotient 
r\lHI9 . In general some elements in r will have fixed points, but ev­
ery such element is torsion and the order of all torsion elements in r is 
bounded (see e.g. [LB, p.120]). Hence, even if r does not act freely, the 
modular forms of weight nk0 for some suitable integer k0 and n ;::: 1 are 
sections of a line bundle Lnko. The space Mk (r) of modular forms of 
fixed weight k with respect tor is a finite-dimensional vector space and 
the elements of Mnko (r) define a rational map to some projective space 
lP'N. If n is sufficiently large it turns out that this map is actually an 
immersion and the Satake compactification A(r) can be defined as the 
projective closure of the image of this map. 

There is another way of describing the Satake compactification which 
also leads us to toroidal compactifications. The Cayley transformation 

<I> : lHI9 ----+ Sym(g, <C) 
T f--+ (T-il)(T+il)-l 

realizes lHI9 as the symmetric domain 

V 9 = {Z E Sym(g,<C); 1- ZZ > 0}. 

Let 159 be the topological closure of V 9 in Sym(g, <C). The action of 
Sp(2g, JR) on lHI9 defines, via the Cayley transformation, an action on 
V 9 which extends to 159 . Two points in 159 are called equivalent if 
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they can be connected by finitely many holomorphic curves. Under this 
equivalence relation all points in 1J 9 are equivalent. The equivalence 
classes of V 9 \ V 9 are called the proper boundary components of V 9 • 

Given any point Z E V9 one can associate to it the real subspace U(Z) = 
Kenp(Z) of JR29 where 

1/J(Z) : JR29 ~ C9 , v ~ v ( i~ ~ ;) ) . 

Then U(Z) is an isotropic subspace of JR29 equipped with the standard 
symplectic form J. Moreover U(Z) =f. 0 if and only if Z E V9 \V9 and 
U(Z1 ) = U(Z2 ) if and only if Z1 and Z 2 are equivalent. This defines 
a bijection between the proper boundary components of V9 and the 
non-trivial isotropic subspaces of JR29. 

For any boundary component F we can define its stabilizer in 
Sp(2g, JR.) by 

P(F) ={hE Sp(2g,lR); h(F) = F}. 

If U = U(F) is the associated isotropic subspace, then 

P(F) = P(U) ={hE Sp(2g,JR); Uh- 1 = U}. 

A boundary component F is called rational if P(F) is defined over the 
rationals or, equivalently, if U(F) is arational subspace, i.e. can be gen­
erated by rational vectors. Adding the rational boundary components 
to V 9 one obtains the rational closure V~at of V 9 • This can be equipped 
with either the Satake topology or the cylindrical topology. The Satake 
compactification, as a topological space, is then the quotient r\V~at. 
(The Satake topology and the cylindrical topology are actually differ­
ent, but the quotients turn out to be homeomorphic.) For g = 1 the 
above procedure is easily understood: the Cayley transformation 1/J maps 
the upper half plane IHI1 to the unit disc D1• Under this transformation 
the rational boundary points Q U { ioo} of IHI1 are mapped to the rational 
boundary points of D 1 . The relevant topology is the image under 1/J of 
the horocyclic topology on IHI1 = IHh U Q U { ioo}. 

Given two boundary components F and F' with F =f. F' we say that 
F is adjacent to F' (denoted by F' >- F) if F C F'. This is the case if 
and only if U(F') ~ U(F). In this way we obtain two partially ordered 
sets, namely 

(X b <) = ({proper rational boundary components F of V 9 }, >-) 
(X 2, <) = ( {non-trivial isotropic subspaces U of Q9}, ~). 

The group Sp(2g, Q) acts on both partially ordered sets as a group of 
automorphisms and the map f : xl ~ x2 which associates to each 
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F the isotropic subspace U(F) is an Sp(2g, Q)-equivariant isomorphism 
of partially ordered sets. To every partially ordered set (X,<) one can 
associate its simplicial realization SR(X) which is the simplicial complex 
consisting of all simplices (xo, ... , Xn) where xo, ... , Xn E X and xo < 
x1 < ... < Xn. The Tits building T of Sp(2g, Q) is the simplicial complex 
T = SR(X1) = SR(X2). If r is an arithmetic subgroup of Sp(2g, Q), 
then the Tits building of r is the quotient T(r) = r\T. 

The group 'P(F) is a maximal parabolic subgroup of Sp(2g, JR). More 
generally, given any flag U1 ~ ... ~ Uz of isotropic subspaces, its sta­
bilizer is a parabolic subgroup of Sp(2g, JR). Conversely any parabolic 
subgroup is the stabilizer of some isotropic flag. The maximal length 
of an isotropic flag in JR2Y is g and the corresponding subgroups are the 
minimal parabolic subgroups or Borel subgroups of Sp(2g, JR). We have 
already remarked that a boundary component F is rational if and only 
if the stabilizer 'P(F) is defined over the rationals, which happens if and 
only if U(F) is a rational subspace. More generally an isotropic flag 
is rational if and only if its stabilizer is defined over Q. This explains 
how the Tits building T of Sp(2g, Q) can be defined using parabolic 
subgroups of Sp(2g, JR) which are defined over Q. The Tits building of 
an arithmetic subgroup r of Sp(2g, Q) can, therefore, also be defined in 
terms of conjugacy classes of groups r n 'P(F). 

As an example we consider the integer symplectic group Sp(2g, Z). 
There exists exactly one maximal isotropic flag modulo the action of 
Sp(2g, Z), namely 

{0} ~ U1 ~ U2 ~ ... ~ U9 ; Ui = span(e1, ... , ei)· 

Hence the Tits building T(Sp(2g, Z)) is a (g- 1)-simplex whose ver­
tices correspond to the space Ui. This corresponds to the fact that 
set-theoretically 

A9 = A9 II Ag-1 II ... II A1 II Ao. 

With these preparations we can now sketch the construction of a 
toroidal compactification of a quotient A(r) = r\llil9 where r is an 
arithmetic subgroup of Sp(2g, Q). We have to compactify A(r) in the 
direction of the cusps, which are in 1-to-1 correspondence with the ver­
tices of the Tits building T(r). We shall first fix one cusp and consider 
the associated boundary component F, resp. the isotropic subspace 
U = U(F). Let 'P(F) be the stabilizer ofF in Sp(2g, JR). Then there is 
an exact sequence of Lie groups 

1 ---+ P' (F) ---+ 'P (F) ---+ P" (F) ---+ 1 
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where P'(F) is the centre of the unipotent radical Ru(P(F)) of P(F). 
Here P'(F) is a real vector space isomorphic to Sym(g',JR) where 
g' = dimU(F). Let P(F) = P(F) n r,P'(F) = P'(F) n r and 
P"(F) = P(F)/P'(F). The group P'(F) is a lattice of maximal rank 
in P'(F). To F one can now associate a torus bundle X(F) with fibre 
T = P'(F) ®z C/P'(F) ~ (C*)Y' over the baseS= F x V(F) where 
V(F) = Ru(P(F))/P'(F) is an affine abelian Lie group and hence a 
vector space. To construct a partial compactification of A(r) in the 
direction of the cusp corresponding to F, one then proceeds as follows: 

(1) Consider the partial quotient X(F) = P'(F)\1Hl9 • This is a 
torus bundle with fibre (C*)~g'(g'+l) over some open subset of 
c_!(g(g+l)-g'(g'+l)) and can be regarded as an open subset of the 
torus bundle X (F). 

(2) Choose a fan :E in the real vector space P'(F) ~ Sym(g',JR) and 
construct a trivial bundle X:E(F) whose fibres are torus embed­
dings. 

(3) If :E is chosen compatible with the action of P"(F), then the ac­
tion of P"(F) on X(F) extends to an action of P"(F) on XE(F). 

(4) Denote by XE(F) the interior of the closure of X(F) in XE(F). 
Define the partial compactification of A(r) in the direction of F 
as the quotient space YE(F) = P"(F)\XE(F). 

To be able to carry out this programme we may not choose the fan 
:E arbitrarily, but we must restrict ourselves to admissible fans :E (for 
a precise definition see [Nam2, Definition 7.3]). In particular :E must 
define a cone decomposition of the cone Sym+ (g', lR) of positive definite 
symmetric (g' x g')-matrices. The space YE(F) is called the partial 
compactification in the direction F. 

The above procedure describes how to compactify A(r) in the di­
rection of one cusp F. This programme then has to be carried out for 
each cusp in such a way that the partial compactifications glue together 
and give the desired toroidal compactification. For this purpose we have 
to consider a collection 'E = {:E(F)} of fans :E(F) C P'(F). Such a 
collection is called an admissible collection of fans if 

(1) Every fan :E(F) C P'(F) is an admissible fan. 
(2) IfF = g(F') for some g E r, then :E(F) = g(:E(F')) as fans in 

the space P'(F) = g(P'(F')). 
(3) IfF' >- F is a pair of adjacent rational boundary components, 

then equality :E(F') = :E(F) n P'(F') holds as fans in P'(F') c 
P'(F). 
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The conditions (2) and (3) ensure that the compactifications in the di­
rection of the various cusps are compatible and can be glued together. 
More precisely we obtain the following: 

(2') If g E r with F = g(F'), then there exists a natural isomorphism 
[J: x'E(F')(F') -+ xE(F)(F). 

(3') Suppose F' >- F is a pair of adjacent rational boundary compo­
nents. Then P'(F') C P'(F) and there exists a natural quotient 
map 7ro(F', F) : X(F') -+ X(F). Because of (3) this extends to 
an etale map: 1r(F', F) : XE(F')(F')-+ X'E(F)(F). 

We can now consider the disjoint union 

over all rational boundary components F. One can define an equivalence 
relation on X as follows: if X E x'E(F) (F) and x' E x'E(F') (F'), then 

(a) x,......, x' if there exists g E r such that F = g(F') and x = g(x'). 
(b) x,......, x' ifF'>- F and 1r(F',F)(x') = x. 

The toroidal compactification of A(r) defined by the admissible col­
lection of fans f: is then the space 

A(r)* =X/,......,. 

Clearly A(r)* depends on f:. We could also have described A(r)* as 
Y/ ,......, where Y = II YE(F)(F) and the equivalence relation,......, on Y is 
induced from that on X. There is a notion of a projective admissible 
collection of fans (see [Nam2, Definition 7.22]) which ensures that the 
space A(r)* is projective. 

For every toroidal compactification there is a natural map 1r : 
A(r)*-+ .A(r) to the Satake compactification. Tai, in [AMRT], showed 
that if A(r)* is defined by a projective admissible collection offans, then 
1r is the normalization of the blow-up of some ideal sheaf supported on 
the boundary of .A(r). 

There are several well known cone decompositions for Sym+ (g', lR): 
see e.g. [Nam2, section 8]. The central cone decomposition was used 
by Igusa ([Il]) and leads to the lgusa compactification. The most 
important decomposition for our purposes is the second Voronoi de­
composition. The corresponding compactification is simply called the 
Voronoi compactification. The Voronoi compactification A(r)* = A; 
for r = Sp(2g, Z) is a projective variety ([Aiel]). For g = 2 all standard 
known cone decompositions coincide with the Legendre decomposition. 
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II. Classification theory 

Here we discuss known results about the Kodaira dimension of Siegel 
modular varieties and about canonical and minimal models. We also re­
port on some work on the fundamental group of Siegel modular varieties. 

11.1. The canonical divisor 

If one wants to prove results about the Kodaira dimension of Siegel 
modular varieties, one first has to understand the canonical divisor. For 
an element T E IHI9 we write 

Let 

Tg-1,g-1 

Tg-1,g 

Tg-1,g 

Tgg 

dr = dru 1\ dr12 1\ ... 1\ dr99 • 

If F is a modular form of weight g + 1 with respect to an arithmetic 
group r, then it is easy to check that the form w = Fdr is r-invariant. 
Hence, if r acts freely, then 

KA(r) = (g + 1)£ 

where L is the line bundle of modular forms, i.e. the line bundle given 
by the automorphy factor det( Cr + D). If r does not act freely, let 
';4(r) = A(r)\R where R is the branch locus of the quotient map IHI9 --+ 

A(r). Then by the above reasoning it is still true that 

K<?A(r) = (g + 1)LIC?A(r)· 

In order to describe the canonical bundle on a toroidal compactification 
A(r)* we have to understand the behaviour of the differential form w 
at the boundary. To simplify the exposition, we shall first consider the 
case r 9 = Sp(2g, Z). Then there exists, up to the action of r, exactly 
one maximal boundary component F. We can assume that U(F) = 
U = span(e9 ). The stabilizer P(F) = P(U) of U in r 9 is generated by 
elements of the form 

lg-1 
0 
0 
0 

0 
±1 
0 
0 

0 
0 

lg-1 
0 

~ ) ' 
±1 
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(Y 0 0 
'N ) cr 0 0 

~). 1 N 

-~M ' 

1 0 
93 = 0 lg-1 

94 = 0 lg-1 

0 0 0 0 

where ( ~ ~ ) E r 9 _ 17 M,N E zg- 1 and S E Z. 

The group P' (F) is the rank 1 lattice generated by 94 , and the 
partial quotient with respect to P'(F) is given by 

e(F) : IH!g --+ IHig-1 X C9 - 1 X C* 
T t-----t ( r', z, t = e27ri-rgg ). 

Here IH!g-1 X cg- 1 X C* is a rank 1 torus bundle over IH!g-1 X cg- 1 = 
F x V(F). Partial compactification in the direction of F consists of 
adding IH!g-1 X (CY- 1 X {0} and then taking the quotient with respect to 
P"(F). Since dr99 = (27ri)-1dt/t it follows that 

w = (21ri)_1 Fdru 1\ ... 1\ drg-1,g 1\ dt 
t 

has a pole of order 1 along the boundary, unless F vanishes there. More­
over, since F(94(r)) = F(r) it follows that F has a Fourier expansion 

F(r) = LFn(r',z)tn. 
n~O 

A modular form F is a cusp form if F0 ( r', z) = 0, i.e. ifF vanishes along 
the boundary. (If r is an arbitrary arithmetic subgroup of Sp(29, Q) 
we have in general several boundary components and then we require 
vanishing of F along each of these boundary components.) The above 
discussion can be interpreted as follows. First assume that r is· neat 
(i.e. the subgroup of C* generated by the eigenvalues of all elements 
of r is torsion free) and that A(r) * is a smooth compactification with 
the following property: for every point in the boundary there exists a 
representative x E XI:( F) (F) for some boundary component such that 
X:E(F)(F) is smooth at x and P"(F) acts freely at x. (Such a toroidal 
compactification always exists if r is neat.) Let D be the boundary 
divisor of A(r)*. Then 

KA(r)• = (9 + 1)L- D. 

Here L is the extension of the line bundle on modular forms on A(r) to 
A(r)*. This makes sense since by construction the line bundle extends 
to the Satake compactification A(r) and since there is a natural map 
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1r: A(r)* -t .A(r). We use the same notation for Land 1r* L. If r does 
not act freely we can define the open set ~(r)* consisting of ~(r) and 
those points in the boundary which have a representative x E XE(F)(F) 
where P"(F) acts freely at x. In this case we still have 

K<;.<t(r)• = ((g + 1)L- D)\<;.<t(r)•· 

This shows in particular that every cusp form F of weight g + 1 with 
respect tor defines via w = Fdr a differential N-form on ~(r)* where 
N = g(gil) is the dimension of A(r). It is a non-trivial result of Freitag 
that every such form can be extended to any smooth projective model 
of A(r). If we denote by Sk (r) the space of cusp forms of weight k with 
respect tor, then we can formulate Freitag's result as follows. 

Theorem 11.1.1 ([F]). Let A(r) be a smooth projective model of 
A(r). Then every cusp form F of weight g + 1 with respect to r defines 
a differential form w = Fdr which extends to A(r). In particular, there 
is a natural isomorphism 

r(.A(r), w A(r)) 3:! Sg+l (r) 

and hence p9 (A(r)) = dimS9+1(r). 

Proof. See [F, Satz III.2.6] and the remark following this. Q.E.D. 

Similarly a form of weight k(g + 1) which vanishes of order k along 
the boundary defines a k-fold differential form on ~(r)*. In general, 
however, such a form does not extend to a smooth model A(r) of A(r). 

11.2. The Kodaira dimension of .A.g(n) 
By the Kodaira dimension of a Siegel modular variety A(r) we mean 

the Kodaira dimension of a smooth projective model of A(r). Such a 
model always exists and the Kodaira dimension is independent of the 
specific model chosen. It is a well known result that A9 is of general 
type for g ;::: 7. This was first proved by Tai for g ;::: 9 ([T1]) and then 
improved to g ;::: 8 by Freitag ([F]) and to g ;::: 7 by Mumford ([Mu4]). 
In this section we want to discuss the proof of the following result. 

Theorem 11.2.1 ([T1], [F], [Mu4] and [H2]). A 9 (n) is of general 
type for the following values of g and n;::: n0 : 

g 12 3 4 56 ;:::7. 
no 4 3 2 2 2 1 

We have already seen that the construction of differential forms is closely 
related to the existence of cusp forms. Using Mumford's extension of 
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Hirzebruch proportionality to the non-compact case and the Atiyah-Bott 
fixed point theorem it is not difficult to show that the dimension of the 
space of cusp forms of weight k grows as follows: 

where 
N- g(g + 1) - d" A ( ) -. 2 -1m 9 n 

and V9 is Siegel's symplectic volume 

Here Bj are the Bernoulli numbers. 
Every form of weight k(g + 1) gives rise to a k-fold differential form 

on ~9 ( n). If k = 1, we have already seen that these forms extend 
by Freitag's extension theorem to every smooth model of A 9 (n). This 
is no longer automatically the case if k ;::: 2. Then one encounters 
two types of obstructions: one is extension to the boundary (since we 
need higher vanishing order along D), the other type of obstruction 
comes from the singularities, or more precisely from those points where 
r 9 ( n) does not act freely. These can be points on A 9 ( n) or on the 
boundary. If n ;::: 3, then r g ( n) is neat and in particular it acts freely. 
Moreover we can choose a suitable cone decomposition such that the 
corresponding toroidal compactification is smooth. In this case there 
are no obstructions from points where r g ( n) does not act freely. If 
n = 1 or 2 we shall, however, always have such points. It is one of 
the main results of Tai ([T1, Section 5]) that for g ;::: 5 all resulting 
singularities are canonical, i.e. give no obstructions to extending k-fold 
differential forms to a smooth model. The remainder of the proof of Tai 
then consists of a careful analysis of the obstructions to the extension of 
k-forms to the boundary. These obstructions lie in a vector space which 
can be interpreted as a space of Jacobi forms on 1Hl9 _ 1 x ([:9-1 . Tai gives 
an estimate of this space in [T1, Section 2] and compares it with the 
dimension formula for Sk(r9 ). 

The approach developed by Mumford in [Mu4] is more geometric in 
nature. First recall that 

(1) 

Let E>nun be the closure of the locus of pairs (A, 8) where A is an abelian 
variety and e is a symmetric divisor representing a principal polarization 
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such that e has a singularity at a point of order 2. Then one can show 
that for the class of Snull on A; ( n): 

(2) 

One can now use (2) to eliminate the boundary D in (1). Since the 
natural quotient A;(n) -+A; is branched of order n along Done finds 
the following formula for K: 

In view of Tai's result on the singularities of A;(n) this gives general 
type whenever the factor in front of L is positive and n ;:::: 3 or g ;:::: 5. 
This gives all cases in the list with two exceptions, namely (g, n) = ( 4, 2) 
and (7, 1). In the first case the factor in front of L is still positive, but 
one cannot immediately invoke Tai 's result on canonical singularities. 
As Salvetti Manni has pointed out, one can, however, argue as follows. 
An easy calculation shows that for every element a E r 9 ( 2) the square 
a 2 E r 9 ( 4). Hence if a has a fixed point then a 2 = 1 since r 9 ( 4) acts 
freely. But now one can again use Tai's extension result (see [T1, Remark 
after Lemma 4.5] and [T1, Remark after Lemma 5.2]). 

This leaves the case (g, n) = (7, 1) which is the main result of [Mu4]. 
Mumford considers the locus 

No= {(A, 8); Singe -1- 0} 

in A9 • Clearly this contains 8nu!J, but is bigger than 8null if g ;:::: 4. 
Mumford shows that the class of the closure N0 on A; is 

(4) [N,] = ( (g + 1)! !) L- (g + 1)! D 
0 2 + g 12 

and hence one finds for the canonical divisor: 

Kj _ 12(g2 - 4g - 17) L 12 [R ] 
~;(n)- g+1 + (g+1)! 0· 

Since the factor in front of L is positive for g = 7 one can once more use 
Tai's extension result to prove the theorem for (g, n) = (7, 1). 

The classification of the varieties A9 ( n) with respect to the Kodaira 
dimension is therefore now complete with the exception of one important 
case: 

Problem. Determine the Kodaira dimension of At;. 
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All other varieties A9 (n) which do not appear in the above list are 
known to be either rational or unirational. Unirationality of A 5 was 
proved by Donagi ([D]) and independently by Mori and Mukai ([MM]) 
and Verra ([V]). Unirationality of~ was shown by Clemens ([Cl]) and 
unirationality of A9 , g ::; 3 is easy. For g = 3 there exists a dominant 
map from the space of plane quartics to M 3 which in turn is birational 
to A3 . For g = 2 one can use the fact that M 2 is birational to A2 

and that every genus 2 curvE) is a 2:1 cover of IP'1 branched in 6 points. 
Rationality of these spaces is a more difficult question. Igusa ([Il]) 
showed that A 2 is rational. The rationality of M 3 , and hence also of 
A 3 , was proved by Katsylo ([K]). The space A 3 (2) is rational by the 
work of van Geemen ([vG]) and Dolgachev and Ortland ([DO]). The 
variety A2 (3) is birational to the Burkhardt quartic in IP'4 and hence 
also rational. This was proved by Todd in 1936 ([To]) and Baker in 1942 
(see [Ba2]), but see also the thesis of Finkelnberg ([Fi]). The variety 
A2 (2) is birational to the Segre cubic (cf. [vdG1]) in IP'4 and hence also 
rational. The latter two cases are examples of Siegel modular varieties 
which have very interesting projective models. We will come back to 
this more systematically in chapter IV. It should also be noted that 
Yamazaki ([Ya]) was the first to prove that A 2 (n) is of general type for 
n;:::: 4. 

All the results discussed above concern the case of principal polar­
ization. The case of non-principal polarizations of type (e1, ... , e9 ) was 
also studied by Tai. 

Theorem 11.2.2 ([T2]). The moduli space Ael>···,eg of abelian va­
rieties with a polarization of type ( e1 , ... , e9 ) is of general type if either 
g ;:::: 16 or g ;:::: 8 and all ei are odd and sums of two squares. 

The essential point in the proof is the construction of sufficiently 
many cusp forms with high vanishing order along the boundary. These 
modular forms are obtained as pullbacks of theta series on Hermitian or 
quaternionic upper half spaces. 

More detailed results are known in the case of abelian surfaces (g = 
2). We will discuss this separately in chapters III and V. 

By a different method, namely using symmetrization of modular 
forms, Gritsenko has shown the following: 

Theorem 11.2.3 ([Gr1]). For every integer t there is an integer 
g(t) such that the moduli space A1, ... ,l,t is of general type for g;:::: g(t). 
In particular A1, ... ,1,2 is of general type for g ;:::: 13. 

Proof. See [Gr1, Satz 1.1.10], where an explicit bound for g(t) is 
given. Q.E.D. 
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Once one has determined that a variety is of general type it is natural 
to ask for a minimal or canonical model. For a given model this means 
asking whether the canonical divisor is nef or ample. In fact one can ask 
more generally what the nef cone is. The Picard group of A;, g = 2, 3 
is generated (modulo torsion) by two elements, namely the (Q-) line 
bundle L given by modular forms of weight 1 and the boundary D. 

In [H2] one of us computed the nef cone of A;, g = 2, 3. The result is 
given by the theorem below. As we shall see one can give a quick proof 
of this using known results about M 9 and the Torelli map. However this 
approach cannot be generalized to higher genus since the Torelli map is 
then no longer surjective, nor to other than principal polarizations. For 
this reason an alternative proof was given in [H2] making essential use 
of a result of Weissauer ([We]) on the existence of cusp forms of small 
slope which do not vanish on a given point in Siegel space. 

Theorem 11.2.4. Let g = 2 or 3. Then a divisor aL- bD on A; 
is nef if and only if b ~ 0 and a- 12b ~ 0. 

Proof. First note that the two conditions are necessary. In fact let 
C be a curve which is contracted under the natural map 1r : A; ---+ A9 

onto the Satake compactification. The divisor - D is 1r-ample ( cf. also 
[Mu4]) and L is the pull-back of a line bundle on A9 . Hence (aL­
bD).C ~ 0 implies b ~ 0. Let C be the closure of the locus given by 
split abelian varieties E x A' where E is an arbitrary elliptic curve and 
A' is a fixed abelian variety of dimension g - 1. Then C is a rational 
curve with D.C = 1 and L.C = 1/12. This shows that a- 12b ~ 0 for 
every nef divisor D. 

To prove that the conditions stated are sufficient we consider the 
Torelli map t : M 9 ---+ A 9 which extends to a map [: M 9 ---+A;. This 

map is surjective for g = 2, 3. Here M 9 denotes the compactification of 
M 9 by stable curves. It follows that for every curve C in A; there exists 

a curve C' in M 9 which is finite over C. Hence a divisor on A;, g = 2, 3 

is nef if and only if this is true for its pull-back to M 9 . We can now 
use Faber's paper ([Fa]). Then [* L = >.. where >.. is the Hodge bundle 
and t* D = Do. Here Do is the boundary (g = 2), resp. the closure of 
the locus of genus 2 curves with one node (g = 3). The result now 
follows from [Fa] since a>..- b80 is nef on M 9 , g = 2, 3 if b ~ 0 and 
a- 12b ~ 0. Q.E.D. 

Corollary 11.2.5. The canonical divisor on A2(n) is nef but not 
ample for n = 4 and ample for n ~ 5. In particular A2(4) is a minimal 
model and A2(n) is a canonical model for n ~ 5. 
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This was first observed, though not proved in detail, by Borisov in an 
early version of (Bori]. 

Corollary 11.2.6. The canonical divisor on Aj(n) is nef but not 
ample for n = 3 and ample for n;::: 4. In particular Aj(3) is a minimal 
model and A3 ( n) is a canonical model for n ;::: 4. 

Proof of the corollaries. Nefness or ampleness of K follows immediately 
from Theorem II.2.4 since 

12 { n > 4 
(g + 1) - -;:; ;::: 0 {::? n ~ 3 

if g = 2 
if g = 3. 

To see that K is not ample on A2(4) nor on A3(3) we can again use 
the curves C coming from products Ex A' where A' is a fixed abelian 
variety of dimension g- 1. For these curves K.C = 0. D 

For g ;::: 4 it is, contrary to what was said in (H2], no longer true 
that the Picard group is generated by L and D. Here we simply state 
the 

Problem. Describe the nef cone of A;. 
In (H3] the methods of (H2] were used to prove ampleness of Kin the 

case of (1,p)-polarized abelian surfaces with a canonical level structure 
and a level-n structure, for p prime and n ;::: 5, provided p does not 
divide n. 

Finally we want to mention some results concerning the Chow ring 
of A;. The Chow groups considered here are defined as the invariant 

part of the Chow ring of A;(n). The Chow ring of M 2 was computed 
by Mumford (Mu5]. This gives also the Chow ring of A2, which was also 
calculated by a different method by van der Geer in (vdG3]. 

Theorem 11.2.7 ((Mu5] and (vdG3]). Let .A1 = .A and A2 be the 
tautological classes on A2. Let a 1 be the class of the boundary. Then 

where I is the ideal generated by the relations 

(1 + .A1 + .A2)(1 - .A1 + .A2) = 1, 
.A2a1 = 0, 

ar = 22al.Al -120-Ai. 

The ranks of the Chow groups are 1, 2, 2, 1. 

Vander Geer also computed the Chow ring of Aj. 
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Theorem 11.2.8 ([vdG3]). Let ..\1, ..\2, ..\3 be the tautological 
classes in Aj and a 1 , a 2 be the first and second symmetric functions 
in the boundary divisors (viewed as an invariant class on A; ( n)). Then 

where J is the ideal generated by the relations 

(1 + ..\1 + ..\2 + ..\3)(1 - ..\1 + ..\2 - ..\3) = 1, 
..\3a1 = ..\3a2 = .Aia2 = 0, 
ar = 2016..\3- 4.Aia1- 24..\10"2 + 1310"20"1, 
a~ = 360..\ra-1- 45..\iar + 15..\10"20"1. 

The ranks of the Chow groups are 1, 2, 4, 6, 4, 2, 1. 

Proof. See [vdG3]. The proof uses in an essential way the descrip­
tion of the Voronoi compactification Aj given by Nakamura ([Nak1]) 
and Tsushima ([Ts]). Q.E.D. 

11.3. Fundamental groups 

The fundamental group of a smooth projective modelA(r) of A(f) 
is independent of the specific model chosen. We assume in this section 
that g 2:: 2, so that the dimension of A(r) is at least 3. 

The first results about the fundamental group of A(f) were obtained 
by Heidrich and Knoller ([HK], [Kn]) and concern the principal congru­
ence subgroups f(n) C Sp(2g, Z). They proved the following result. 

Theorem 11.3.1 ([HK],[Kn]). Ifn 2:: 3 or ifn = g = 2 then A9 (n) 
is simply-connected. 

As an immediate corollary (first explicitly pointed out by Heidrich­
Riske) one has 

Corollary 11.3.2 ([H-R]). If r is an arithmetic subgroup of 
Sp(2g, Ql), then the fundamental group of A(f) is finite. 

Corollary Il.3.2 follows from Theorem Il.3.1 because any subgroup 
of Sp(2g, Z) of finite index contains a principal congruence subgroup of 
some level. 

Proof. The proof of Theorem Il.3.1 uses the fact that there is, up 
to the action of the group Sp(2g, Zn), only one codimension 1 boundary 
component Fin the Igusa compactification A;(n). Suppose for simplic­
ity that n ;:::: 4, so that f(n) is neat. A small loop passing around this 
component can be identified with a loop in the fibre C* of X(F) and 
hence with a generator up of the 1-dimensionallattice P'(F). This loop 
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determines an element "fF, usually non-trivial, of n1 (A9 (n)) (which is 
simply f(n), since f(n) is torsion-free and hence acts freely on IHI9 ). The 

element "'F is in the kernel of the map n 1 (A9(n)) ____, n1 (A9(n)), so uF is 

in the kernel of r(n) ____, 7rl (Ag(n)). But it turns out that the normalizer 
of P'(F) in f(n) is the whole of f(n), as was shown by Mennicke ([Me]) 
by a direct calculation. Q.E.D. 

We (the authors of the present article) applied this method in [HS2] 
to the case of Aie,~ for p :;::: 5 prime, where there are many codimension 1 
boundary components. A minor extra complication is the presence of 
some singularities in f\IHI2 , but they are easily dealt with. In [S1] one 
of us also considered the case of A1 ,p· We found the following simple 
result. 

Theorem 11.3.3 ([HS2] and [S1]). lfp:;::: 5 is prime then Aie,~ and 

A1 ,p are both simply-connected. 

In some other cases one knows that A(f) is rational and hence 
simply-connected. In all these cases, as F. Campana pointed out, it 
follows that the Satake compactification, and any other normal model, 
is also simply-connected. 

By a more systematic use of these ideas, one of us [S1] gave a more 
general result, valid in fact for all locally symmetric varieties over C. 
From it several results about Siegel modular varieties can be easily de­
duced, of which Theorem 11.3.4 below is the most striking. 

Theorem 11.3.4 ([S1]). For any finite group G there exists a g:;::: 2 

and an arithmetic subgroup r C Sp(2g,Z) such that n1 (A(f)) ~G. 

Proof. We choose an l :;::: 4 and a faithful representation p : G ____, 
Sp(2g, IFp) for some prime p not dividing 2ZIGI. The reduction mod p 
map ¢P : f(Z) ____, Sp(2g, IFp) is surjective and we take r = ¢;1 (p( G)). 
As this is a subgroup of f(Z) it is neat, and under these circumstances 
the fundamental group of the corresponding smooth compactification of 
A(r) is r jY, where Y is a certain subgroup of r generated by unipo­
tent elements (each unipotent element corresponds to a loop around a 
boundary component). From this it follows that Y C Ker¢p = f(pl). 
Then from Theorem 11.3.1 applied to level pl it follows that Y = f(pl) 
and hence that the fundamental group is r jf(pl) ~G. Q.E.D. 

For G = D 8 we may take g = 2; in particular, the fundamental group 
of a smooth projective model of a Siegel modular threefold need not be 
abelian. Apart from the slightly artificial examples which constitute 
Theorem 11.3.4, it is also shown in [S1] that a smooth model of the 
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double cover .N5 of Nieto's threefold .N5 has fundamental group z2 X z2. 
The space N5 will be discussed in Section IV below: it is birational with 
the moduli space of abelian surfaces with a polarization of type (1, 3) 
and a level-2 structure. 

III. Abelian surfaces 

In the case of abelian surfaces the moduli spaces A1,t and Att of 
abelian surfaces with a (1, t)-polarization, resp. with a (1, t)-polarization 
and a canonical level structure were investigated by a number of authors. 
One of the starting points for this development was the paper by Hor­
rocks and Mumford ([HM]) which established a connection between the 
Horrocks-Mumford bundle on IP'4 and the moduli space A~es· 

' 
111.1. The lifting method 
Using a version of MaaB lifting Gritsenko has proved the existence of 

a weight 3 cusp forms for almost all values oft. Before we can describe 
his lifting result recall the paramodular group Sp(A, Z) where 

for some integer t ~ 1, with respect to a basis (e1 , e2 , e3 , e4 ). This group 
is conjugate to the (rational) paramodular group 

rl,t = R-1 Sp(A,Z)R, 

It is straightforward to check that 

Then A 1,t = r 1,t \IHI2 is the moduli space of (1, t)-polarized abelian sur­
faces. In this chapter we shall denote the elements of IHI2 by 

The Tits building of r 1,t, and hence the combinatorial structure of the 
boundary components of the Satake or the Voronoi (Igusa) compactifi­
cation of A 1,t are known, at least ift is square free: see [FrS], where Tits 
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buildings for some other groups are also calculated. There are exactly 
p,(t) corank 1 boundary components, where p,(t) denotes the number of 
prime divisors oft ([Grl, Folgerung 2.4]). If t is square free, then there 
exists exactly one corank 2 boundary component ([Fr, Satz 4.7]). In 
particular, if t > 1 is a prime number then there exist two corank 1 
boundary components and one corank 2 boundary component. These 
boundary components belong to the isotropic subspaces spanned by e3 

and e4, resp. by ea A e4. In terms of the Siegel space the two corank 1 
boundary components correspond to 71 ----> ioo and 73 ----> ioo. For t = 1 
these two components are equivalent under the group r 1,1 = Sp( 4, Z). 

Gritsenko's construction of cusp forms uses a version of MaaB lifting. 
In order to explain this, we first have to recall the definition of Jacobi 
forms. Here we restrict ourselves to the case of r 1,1 = Sp(4,Z). The 
stabilizer of Qe4 in Sp( 4, Z) has the structure 

where SL(2, Z) is identified with 

{(
a 0 b 0) 
0 1 0 0 a 
cOdO ;(c 
0 0 0 1 

! ) E SL(2,Z)} 

and 

H(Z) ~ { u ~ ! ~A }A,p,r EZ} 
is the integral Heisenberg group. 

Every modular form F E Mk (Sp( 4, Z)) of weight k with respect 
to Sp(4, Z) has a Fourier extension with respect to 73 which is of the 
following form 

F(7) = L fm(71,72)e27rimra. 
m2':0 

The same is true for modular forms with respect to r 1,t, the only differ­
ence is that the factor exp(27rim73 ) has to be replaced by exp(27rimt7a). 
The coefficients fm(71, 72) are examples of Jacobi forms. Formally Ja­
cobi forms are defined as follows: 

Definition. A Jacobi form of index m and weight k is a holomor­
phic function 

<I>= <1>(7, z) : IHI1 x C----> C 
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which has the following properties: 

(1) It has the transformation behaviour 

(a) q, (ar+b _z_) = (cr + d)ke 2"c;.;'.+/ 4>(T z) 
cr+d ' cr+d ' ' 

( ~ ~ ) E SL(2, Z) 

(b) 4>(T,z+.AT+J.t) =e-211"im(>.'r+2>-z)q,(T,z), .A,J.tEZ. 
(2) It has a Fourier expansion 

4>(T,z) = 
n,lEZ,n<::O 
4nm<::!2 

J(n, l)e27ri(nr+lz). 

A Jacobi form is called a cusp form if one has strict inequality 4nm > l2 

in the Fourier expansion. 

Note that for z = 0 the transformation behaviour described by (1)(a) 
is exactly that of a modular form. For fixed T the transformation law 
(1)(b) is, up to a factor 2 in the exponent, the transformation law for 
theta functions. One can also summarize ( 1) (a) and ( 1) (b) by saying 
that 4> = 4>(T, z) is a modular form with respect to the Jacobi group 
SL(2, Z) ~ H(Z). (Very roughly, Jacobi forms can be thought of as 
sections of a suitable Q-line bundle over the universal elliptic curve, 
which doesn't actually exist.) The Jacobi forms of weight k and index 
m form a vector space Jk,m of finite dimension. The standard reference 
for Jacobi forms is the book by Eichler and Zagier ([EZ]). 

As we have said before, Jacobi forms arise naturally as coefficients 
in the Fourier expansion of modular forms. These coefficients are func­
tions, or more precisely sections of a suitable line bundle, on a boundary 
component of the Siegel modular threefold. The idea of lifting is to re­
verse this process. Starting with a Jacobi form one wants to construct 
a Siegel modular form where this Jacobi form appears as a Fourier co­
efficient. This idea goes back to MaaB ([Ma2]) and has in recent years 
been refined in several ways by Gritsenko, Borcherds and others: see 
e.g.[Gr1], [Gr3], [GrN] and [Bore]. The following lifting result is due to 
Gritsenko. 

Theorem III.l.l ([Gr1]). There is a lifting, i.e. an embedding 

Lift : Jk,t -----+ Mk(rl,t) 

of the space of Jacobi forms of weight k and index t into the space of 
modular forms of weight k with respect to the paramodular group rl,t· 
The lifting of a Jacobi cusp form is again a cusp form. 
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Proof. For details see [Gr1, Hauptsatz 2.1] or [Gr2, Theorem 3]. 
For a Jacobi form If>= lf>(rz) with Fourier expansion 

lf>(r, z) = L f(n, l)e21ri(nr+lz) 

n,lEZ 
4nt2':! 2 

the lift can be written down explicitly as 

Liftlf>(r)= L L ak-1f(:r:,~)e21ri(nr1+lr2+mtra). 
4tmn2':l2 ai(n,l,m) 

Q.E.D. 

Since one knows dimension formulae for Jacobi cusp forms one obtains 
in this way lower bounds for the dimension of the space of modular 
forms and cusp forms with respect to the paramodular group. Using 
this together with Freitag's extension theorem it is then easy to obtain 
the following corollaries. 

Corollary 111.1.2. Let p9 (t) be the geometric genus of a smooth 
projective model of the moduli space A 1,t of (1, t)-polarized abelian sur­
faces. Then 

where 

t-1 ( l"2J) p9 (t) ·~ ~ {2j + 2}I2 - i2 

{ } { l~J m 12 = l~J _1 
if m ¢. 2 mod 12 

if m = 2 mod 12 

and L x J denotes the integer part of x. 

This corollary also implies that p9 (t) goes to infinity as t goes to 
infinity. 

Corollary 111.1.3. The Kodaira dimension of A1,t is non­
negative if t ~ 13 and t =I 14, 15, 16, 18, 20, 24, 30, or 36. In particular 
these spaces are not unirational. 

Corollary 111.1.4. The Kodaira dimension of A1,t is positive if 
t ~ 29 and t =I 30, 32, 35, 36, 40, 42, 48, or 60. 

On the other hand one knows that A1,t is rational or unirational 
for small values of t. We have already mentioned that lgusa proved 
rationality of A1,1 = A2 in [11]. Rationality of A1,2 and A1,3 was proved 
by Birkenhake and Lange ([BL]). Birkenhake, Lange and van Straten 
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([BLvS]) also showed that A 1,4 is unirational. It is a consequence of 
the work of Horrocks and Mumford ([HM]) that Aie5 is rational. The 
variety Aie7 is birational to a Fano variety of type V2; ([MS]) and hence 
also ratio:O:al. The following result of Gross and Popescu was stated in 
[GP1] and is proved in the series of papers [GP1]-[GP4]. 

Theorem 111.1.5 ([GP1], [GP2], [GP3] and [GP4]). Aie't is ratio­
nal for 6 :::; t :::; 10 and t = 12 and unirational, but not rational, for 
t = 11. Moreover the variety A1,t is unirational fort = 14, 16, 18 and 
20. 

We shall return to some of the projective models of the modular 
varieties A1,t in chapter V. Altogether this gives a fairly complete pic­
ture as regards the question which of the spaces A 1,t can be rational or 
unirational. In fact there are only very few open cases. 

Problem. Determine whether the spaces A1 ,t for t = 15, 24, 30, 
or 36 are unirational. 

111.2. General type results for moduli spaces of abelian sur­
faces 

In the case of moduli spaces of abelian surfaces there are a number 
of concrete bounds which guarantee that the moduli spaces A1,t, resp. 
At'f are of general type. Here we collect the known results and comment 
on the different approaches which enable one to prove these theorems. 

Theorem 111.2.1 ([HS1] and [GrH1]). Let p be a prime number. 
The moduli spaces A~e.~ are of general type if p 2: 37. 

Proof. This theorem was first proved in [HS1] for p 2: 41 and was 
improved in [GrH1] top= 37. The two methods of proof differ in one 
important point. In [HS1] we first estimate how the dimension of the 
space of cusp forms grows with the weight k and find that 

(5) dimS (rlev) = p(p4
- 1) k3 + O(k2) 

3k l,p 640 . 

These cusp forms give rise to k-fold differential forms on~~~~ and we 
have two types of obstruction to extending them to a smooth projec­
tive model of At~: one comes from the boundary and the other arises 
from the elliptic fixed points. To calculate the number of obstructions 
from the boundary we used the description of the boundary of the Igusa 
compactification (which is equal to the Voronoi decomposition) given in 
[HKW2]. We found that the number of obstructions to extending k-fold 
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differentials is bounded by 

The singularities of the moduli spaces Ai~; and of the Igusa compact­
ification were computed in [HKW1]. This allowed us to calculate the 
obstructions arising from the fixed points of the action of the group 
rie,;. The result is that the number of these obstructions is bounded by 

(7) Hs(p, k) = 112 (p2- 1) ( 178p- 1) e + O(k2). 

The result then follows from comparing the leading terms of (6) and (7) 
with that of (5). 

The approach in [GrH1] is different. The crucial point is to use 
Gritsenko's lifting result to produce non-zero cusp forms of weight 2. 
The first prime where this works is p = 37, but it also works for all 
primes p > 71. Let G be a non-trivial modular form of weight 2 with 
respect to f 1 ,37 . Then we can consider the subspace 

The crucial point is that the elements of Vk vanish by construction to 
order k on the boundary. This ensures that the extension to the bound­
ary imposes no further conditions. The only possible obstructions are 
those coming from the elliptic fixed points. These obstructions were 
computed above. A comparison of the leading terms again gives the 
result. Q.E.D. 

The second method described above was also used in the proof of 
the following two results. 

Theorem 111.2.2 ([OG] and [GrS]). The moduli space Aie,~2 is of 
general type for every prime p ?: 11. 

This was proved in [GrS] and improves a result of O'Grady ([OG]) 
who had shown this for p ?: 17. The crucial point in [GrS] is that, 
because of the square p2 , there is a covering A 1,p2 ___, A 1,1 . The proof in 
[GrS] then also uses the existence of a weight 2 cusp form with respect 
to the group r l,p2 for p ?: 11. The only obstructions which have to be 
computed explicitly are those coming from the elliptic fixed points. The 
essential ingredient in O'Grady's proof is the existence of a map from a 
partial desingularization of a toroidal compactification to the space M 2 

of semi-stable genus 2 curves. 
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A further result in this direction is 

Theorem 111.2.3 ([82]). The moduli spaces At,p are of geneml 
type for all primes p ~ 173. 

It is important to remark that in this case there is no natural map 
from A 1,p to the moduli space A 1,1 = A2 of principally polarized abelian 
surfaces. A crucial ingredient in the proof of the above theorem is the 
calculation of the singularities of the spaces A 1,p which was achieved by 
Brasch ([Br]). Another recent result is 

Theorem 111.2.4 ([H3]). The moduli spaces of (1, d)-polarized 
abelian surfaces with a full level-n structure are of geneml type for all 
pairs (d, n) with (d, n) = 1 and n ~ 4. 

A general result due to L. Borisov is 

Theorem 111.2.5 ([Bori]). There are only finitely many subgroups 
H of Sp(4, Z) such that A( H) is not of geneml type. 

Note that this result applies to the groups rt; and r 1,p2 which 
are both conjugate to subgroups of Sp(4, Z), but does not apply to the 
groups r 1,p, which are not. (At least for p ~· 7: the subgroup of C* 
generated by the eigenvalues of non-torsion elements of r l,p contains pth 
roots of unity, as was shown by Brasch in [Br], but the corresponding 
group for Sp(4,Z) has only 2- and 3-torsion.) 

We shall give a rough outline of the proof of this result. For details 
the reader is referred to [Bori]. We shall mostly comment on the geo­
metric aspects of the proof. Every subgroup H in Sp( 4, Z) contains a 
principal congruence subgroup r(n). The first reduction is the obser­
vation that it is sufficient to consider only subgroups H which contain 
a principal congruence subgroup r(pt) for some prime p. This is essen­
tially a group theoretic argument using the fact that the finite group 
Sp( 4, Zp) is simple for all primes p ~ 3. Let us now assume that H 
contains r(n) (we assume n ~ 5). This implies that there is a finite 
morphism A 2 (n) -+ A(H). The idea is to show that for almost all 
groups H there are sufficiently many pluricanonical forms on the Igusa 
(Voronoi) compactification X= A2(n) which descend to a smooth pro­
jective model of A( H). For this it is crucial to get a hold on the possible 
singularities of the quotient Y. We have already observed in Corollary 
II.2.6 that the canonical divisor on X is ample for n ~ 5. The finite 
group H = r 2 (n)/H acts on X and the quotient Y = H\X is a (in 
general singular) projective model of A(H). Since X is smooth and H 
is finite, the variety Y is normal and has log-terminal singularities, i.e. 
if 1r : Z -+ Y is a desingularization whose exceptional divisor E = E Ei 

i 
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has simple normal crossings, then 

Choose 8 > 0 such that -1 +8 is the minimal discrepancy. ByLx, resp. 
Ly we denote the (()-line bundle whose sections are modular forms of 
weight 1. Then Lx = J-L* Ly where J-L : X ~ Y is the quotient map. 

The next reduction is that it suffices to construct a non-trivial sec­
tions E H 0 (m(Ky- Ly)) such that sy E Oy ( m(Ky- Ly)m;;-'(1-o)) 
for all y E Y where Y has a non-canonical singularity. This is enough 
because n*(sH0 (mLy)) c H 0 (mKz) and the dimension of the space 
H 0 (mLy) grows as m 3 . 

The idea is to construct s as a suitable H-invariant section 

satisfying vanishing conditions at the branch locus of the finite map 
J-L : X ~ Y. For this one has to understand the geometry of the quotient 
map 1-L· First of all one has branching along the boundary D = E Di of 
X. We also have to look at the Humbert surfaces 

Ji1 = { T = ( 
T1 ~ ) ; r, r, E Ill,} ~ FD< ( I 

-1 _J 0 1 

and 

;: ) ; r, ~ r,} ~ FD< ( 

0 1 

J· 1i4={T=( 
T1 1 0 
T2 0 

1 

Let 
F= u g(1i1) Q= u g(1i2) 

gESp(4,Z) gESp(4,Z) 

and let 
F = n(F), G = n(Q) 

where n: JH!2 ~ r(n)\lBI2 c X is the quotient map. One can then show 
that the branching divisor of the map A(r2 (n)) ~ A(H) is contained 
in F U G and that all singularities in A( H) which lie outside J-L(F U G) 
are canonical. Moreover the stabilizer subgroups in Sp( 4, Z) of points 
in F U g are solvable groups of bounded order. Let F = E Fi and 
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G = E Gi be the decomposition of the surfaces F and G into irreducible 
components. We denote by di, fi and 9i the ramification order of the 
quotient map fL: X -----> Y along Di, Fi and Gi. The numbers fi and 9i 
are equal to 1 or 2. One has 

f.L*(m(Ky- Ly)) = m(Kx- Lx)- Lm(di -l)Di- Lm(fi -l)Fi 
i 

- L m(gi -l)Gi. 
i 

Recall that the finite group fi is a subgroup of the group G 
r /f(n) = Sp(4, Zn)· The crucial point in Borisov's argument is to show, 
roughly speaking, that the index [ G : fl] can be bounded from above in 
terms of the singularities of Y. There are several such types of bounds 
depending on whether one considers points on the branch locus or on one 
or more boundary components. We first use this bound for the points 
on X which lie on 3 boundary divisors. Using this and the fact that Y 
has only finite quotient singularities one obtains the following further 
reduction: if R is the ramification divisor of the map fL : X -----> Y, then 
it is enough to construct a non-zero section in H 0 (m(Kx - Lx - R)) 

for some m > 0 which lies in m~k(StabH x) for all points x in X which lie 
over non-canonical points of Y and which are not on the intersection of 
3 boundary divisors. Here k(StabH x) is defined as follows. First note 
that StabH x is solvable and consider a series 

{0} = Ho <l H1 <l ... <l Ht = StabH x 

with Hi/ Hi-1 abelian of exponent ki. Take k' = k1 · ... · kt. Then 
k(StabH x) is the minimum over all k' which are obtained in this way. To 
obtain an invariant section one can then take the product with respect to 
the action of the finite group fl. Now recall that all non-canonical points 
on A( H) lie in f.L(F U G). The subgroup Z StabH Di of StabH Di which 
acts trivially on Di is cyclic of order di. Moreover if x lies on exactly one 
boundary divisor of X then the order of the group StabH x / Z StabH Di 
is bounded by 6 and if x lies on exactly 2 boundary divisors, then the 
order of this group is bounded by 4. Using this one can show that there 
is a constant c (independent of H) such that it is sufficient to construct 
a non-zero section in m(Kx- Lx- cR) for some positive m. By results 
of Yamazaki [Ya] the divisor mKx- 2mLx is effective. It is, therefore, 
sufficient to prove the existence of a non-zero section in m(Kx - 2cR). 
The latter equals 

mKx- 2c L m(di- l)Di- 2c L m(fi- l)Fi- 2c L m(gi -l)Gi. 
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We shall now restrict ourselves to obstructions coming from components 
Fi; the obstructions coming from Gi, Di can be treated similarly. Since 
h0 (mKx) > c1n 10m3 for some c1 > 0, m :» 0 one has to prove the 
following result: let c > 0; then for all but finitely many subgroups H 
one has 

2)h0 (mKx)- h0 (mKx- 2cmfiFi)):::; cn10m3 for m :» 0 
/;=2 

and all n. This can finally be derived from the following boundedness 
result. Let c > 0 and assume that 

then the index [G : .H] is bounded by an (explicitly known) constant 
depending only on c. The proof of this statement is group theoretic 
and the idea is as follows. Assume the above inequality holds: then 
H contains many involutions and these generate a subgroup of Sp( 4, Z) 
whose index is bounded in terms of c. 

111.3. Left and right neighbours 
The paramodular group r 1,t C Sp(4, Q) is (fort> 1) not a maximal 

discrete subgroup of the group of analytic automorphisms of IHI2 • For 
every divisor diit (i.e. dit and (d,t/d) = 1) one can choose integers x 
and y such that 

xd- ytd = 1, where td = tjd. 

The matrix 

(

dx -1 

V, = ___!_ -yt d 
d y'd 0 0 

0 0 
~ !) 
1 dx 

is an element of Sp( 4, JR) and one easily checks that 

The group generated by r 1,t and the elements Vd, i.e. 

does not depend on the choice of the integers x, y. It is a normal exten­
sion of r l,t with 

rt ;r ~ (Z )~-'<t) l,t l,t - 2 
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where J.t(t) is the number of prime divisors of t. If t is square-free, 
it is known that rf t is a maximal discrete subgroup of Sp( 4, JR.) (see 
[Al],[Gu]). The coset f 1,t vt equals f 1 ,t V! where 

Vt-1 
0 
0 

0 

This generalizes the Fricke involution known from the theory of elliptic 
curves. The geometric meaning of the involution ift : A 1,t -> A1,t in­
duced by Vi is that it maps a polarized abelian surface (A, H) to its dual. 
A similar geometric interpretation can also be given for the involutions 
Vd (see [GrH2, Proposition 1.6] and also [Br, Satz (1.11)] for the case 
d = t). We also consider the degree 2 extension 

of rl,t· If t = pn for a prime number p, then rt,t = rL. The groups 

rL and rt,t define Siegel modular threefolds 

Since rt t is a maximal discrete subgroup for t square free the space 

Ai t was' called a minimal Siegel modular threefold. This should not be 
co~fused with minimal models in the sense of Mori theory. 

The paper [GrH2] contains an interpretation of the varieties AI t 
and At t as moduli spaces. We start with the spaces AI t· ' 

' ' 

Theorem 111.3.1 ([GrH2]). 

(i) Let A, A' be two (1, t)-polarized abelian surfaces which define the 
same point in AI t· Then their (smooth) Kummer surfaces X, X' 
are isomorphic. ' 

(ii) Assume that the Neron-Severi group of A and A' is generated by 
the polarization. Then the converse is also true: if A and A' have 
isomorphic Kummer surfaces, then A and A' define the same 

. t. At pam m l,t· 
The proof of this theorem is given in [GrH2, Theorem 1.5]. The cru­

cial ingredient is the Torelli theorem for K3 surfaces. The above theorem 
says in particular that an abelian surface and its dual have isomorphic 
Kummer surfaces. This implies a negative answer to a problem posed by 
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Shioda, who asked whether it was true that two abelian surfaces whose 
Kummer surfaces are isomorphic are necessarily isomorphic themselves. 
In view of the above result, a general (1, t)-polarized surface with t > 1 
gives a counterexample: the surface A and its dual A have isomorphic 
Kummer surfaces, but A and A are not isomorphic as polarized abelian 
surfaces. If the polarization generates the Neron-Severi group this im­
plies that A and A are not isomorphic as algebraic surfaces. In view 
of the above theorem one can interpret Ai t as the space of Kummer 
surfaces associated to (1, t)-polarized abelia~ surfaces. 

The space At t can be interpreted as a space of lattice-polarized 
K3-surfaces in the' sense of [N3] and [Dol]. As usual let E 8 be the even, 
unimodular, positive definite lattice of rank 8. By E 8 ( -1) we denote 
the lattice which arises from E 8 by multiplying the form with -1. Let 
{n) be the rank 1 lattice 7/.,l with the form given by l2 = n. 

Theorem 111.3.2 ([GrH2]). The moduli space Att is isomorphic 
to the moduli space of lattice polarized K3-surfaces with a polarization 
of type {2t) EB 2Es(-1). 

For a proof see [GrH2, Proposition 1.4]. If 

L = Ze1 EB Ze2 EB Ze3 EB Ze4, 

then 1\2 L carries a symmetric bilinear form ( , ) given by 

- /\2 rl,t = {g: L-+ L; g(wt) = Wt} 

is isomorphic to the paramodular group rl,t· The lattice Lt = wf has 
rank 5 and the form ( , ) induces a quadratic form of signature (3, 2) on 
Lt. If O(Lt) is the orthogonal group of isometries of the lattice Lt, then 
there is a natural homomorphism 

This homomorphism can be extended to rL and 

where L'( is the dual lattice of Lt. This, together with Nikulin's theory 
([N2], [N3]) is the crucial ingredient in the proof of the above theorems. 
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The varieties At,t and AL are quotients of the moduli space A 1,t 

of (1, t)-polarized abelian surfaces. In [GrH3] there is an investigation 
into an interesting class of Galois coverings of the spaces A1,t· These 
coverings are called left neighbours, and the quotients are called right 
neighbours. To explain the coverings of A 1 ,t which were considered in 
[GrH3], we have to recall a well known result about the commutator 
subgroup Sp(2g, Z)' of the symplectic group Sp(2g, Z). Reiner [Re] and 
Maafi [Mal] proved that 

{

z12 

Sp(2g, Z)/ Sp(2g, Z)' = ~2 

for g = 1 

for g = 2. 

for g ~ 3 

The existence of a character of order 12 of Sp(2, Z) = SL(2, Z) follows 
from the Dedekind 7]-function 

00 

7J(T) = l/24 II (1 _ qn), q = e21rir. 

n=l 

This function is a modular form of weight 1/2 with a multiplier system 
of order 24. Its square 772 has weight 1 and is a modular form with 
respect to a character v17 of order 12. For g = 2 the product 

II 
(m,m') even 

of the 10 even theta characteristics is a modular form for Sp( 4, Z) of 
weight 5 with respect to a character of order 2. 

In [GrH3] the commutator subgroups of the groups r 1,t and rt,t 
were computed. For t ~ 1 we put 

tl = (t, 12), t2 = (2t, 12). 

Theorem 111.3.3 ([GrH3]). For the commutator subgroups ri t of 
r l,t and (rt,t)' of rt,t one obtains , 

(i) r l,t/ri,t ~ Zt1 x Zt2 

(ii) rt,tf(rt,t)' ~ z2 x Zt2 • 

This was shown in [GrH3, Theorem 2.1]. 
In [Mul] Mumford pointed out an interesting application of the 

computation of Sp(2, Z)' to the Picard group of the moduli stack A 1 . 

He showed that 
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In the same way the above theorem implies that 

and 
Tors Pic(A1,t) = Zt1 x Zt2 • 

The difference between the cases A 1 ,1 and A 1,t, t > 1 is that one knows 
that the rank of the Picard group of A 2 = A 1 ,1 is 1, whereas the rank 
of the Picard group of A 1,t, t > 1 is unknown. One only knows that 
it is positive. This is true for all moduli stacks of abelian varieties of 
dimension g ~ 2, since the bundle L of modular forms of weight 1 is 
non-trivial. The difference from the genus 1 case lies in the fact that 
there the boundary of the Satake compactification is a divisor. 

Problem. Determine the rank of the Picard group Pic(A1 t)· -, 

We have already discussed Gritsenko's result which gives the exis­
tence of weight 3 cusp forms for r l,t for all but finitely many values of 
t. We call these values 

t = 1,2, ... ,12,14,15,16,18,20,24,30,36 

the exceptional polarizations. In many cases the results of Gross and 
Popescu show that weight 3 cusp forms indeed cannot exist. The best 
possible one can hope for is the existence of weight 3 cusp forms with 
a character of a small order. The following result is such an existence 
theorem. 

Theorem 111.3.4 ([GrH3]). Lett be exceptional. 

(i) If t =f. 1, 2, 4, 5, 8, 16 then there exists a weight 3 cusp form with 
respect to rl,t with a character of order 2. 

(ii) Fort = 8, 16 there exists a weight 3 cusp form with a character 
of order 4. 

(iii) Fort = 0 mod 3, t =/= 3, 9 there exists a weight 3 cusp form with 
a character of order 3. 

To every character X: f 1 ,t---+ <C* one can associate a Siegel modular 
variety 

A(x) = Ker x \ lfh 

The existence of a non-trivial cusp form of weight 3 with a character x 
then implies by Freitag's theorem the existence of a differential form on 
a smooth projective model A(x) of A(x). In particular the above result 
proves the existence of abelian covers A(x) ---+ A 1,t of small degree with 

p9 (A(x)) > o. 
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The proof is again an application of Gritsenko's lifting techniques. 
To give the reader an idea we shall discuss the case t = 11 which is 
particularly interesting since by the result of Gross and Popescu A1,n is 
unirational, but not rational. In this case r 1,11 has exactly one character 
x2 . This character has order 2. By the above theorem there is a degree 
2 cover A(x2 ) ---> A 1,11 with positive geometric genus. In this case the 
lifting procedure gives us a map 

Here vry is the multiplier system of the Dedekind ry-function and v~2 is a 
character of order 2. The character VH is a character of order 2 of the 
integer Heisenberg group H = H(Z). By J;uii.'(v~ x vH) we denote the 

, 2 

Jacobi cusp forms of weight 3 and index 11/2 with a character v~2 x VH· 

Similarly S3 (f1,11 , x2 ) is the space of weight 3 cusp form with respect 
to the group f 1,11 and the character x2 . Recall the Jacobi theta series 

where 
ifm = ±1 mod 4 

ifm = 0 mod 2. 

This is a Jacobi form of weight 1/2, index 3/2 and multiplier system 
v~ x VH. For an integer a we can consider the Jacobi form 

One then obtains the desired Siegel cusp form by taking 

Finally we want to consider the maximal abelian covering of A 1,t, namely 
the Siegel modular threefold 

By Ai~r we denote a smooth projective model of Ai~tm· 

Theorem 111.3.5 ([GrH3]). 

(i) The geometric genus of Aiotm is 0 if and only if t = 1, 2, 4, 5. 
(ii) The geometric genus of Ai~3 and Ai~7 is 1. 
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The proof can be found as part of the proof of [GrH3, Theorem 3.1]. 
At this point we should like to remark that all known construction 

methods fail when one wants to construct modular forms of small weight 
with respect to the groups rt,t or rL. We therefore pose the 

Problem. Construct modular forms of small weight with respect 
to the groups rt,t and rL. 

IV. Projective models 

In this section we describe some cases in which a Siegel modular 
variety is or is closely related to an interesting projective variety. Many 
of the results are very old. 

IV .1. The Segre cubic 
Segre's cubic primal, or the Segre cubic, is the subvariety 5 3 of lP'5 

given by the equations 

5 5 

I::Xi= L:xt=O 
i=O i=O 

in homogeneous coordinates ( x 0 : ... : x5 ) on lP'5 . Since it lies in the hy­
perplane ( 2: Xi = 0) C lP'5 it may be thought of as a cubic hypersurface 
in lP'4 , but the equations as given here have the advantage of showing 
that there is an action of the symmetric group Sym(6) on S 3 . 

These are the equations of 5 3 as they are most often given in the 
literature but there is another equally elegant formulation: s3 is given 
by the equations 

cr1(xi) = cr3(xi) = 0 

where uk(xi) is the kth elementary symmetric polynomial in the Xi, 

crk(xi) = L IT Xi· 
#l=k iEI 

To check that these equations do indeed define S3 it is enough to notice 
that 

Lemma IV.l.l. S3 is invariant under the action of Sym(6) and 
has ten nodes, at the points equivalent to ( 1 : 1 : 1: -1 : -1 : -1) under 
the Sym(6)-action. This is the maximum possible for a cubic hyper­
surface in lP'4 , and any cubic hypersurface with ten nodes is projectively 
equivalent to s3. 
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Many other beautiful properties of the Segre cubic and related va­
rieties were discovered in the nineteenth century. 

The dual variety of the Segre cubic is a quartic hypersurface I4 C JP>4, 
the lgusa quartic. If we take homogeneous coordinates (yo: ... : Ys) on 
F then it was shown by Baker ([Ball) that I 4 is given by 

5 

LYi = a2 + b2 + c2 - 2(ab +be+ ca) = 0 
i=O 

where 

This can also be written in terms of symmetric functions in suitable 
variables as 

u1(xi) = 4u4(xi)- u2(xi) 2 = 0. 

This quartic is singular along (~) = 15 lines iii, 0 :::; i < j :::; 5, and 

iii nlmn = 0 if and only if {i,j} n {m,n} =I 0. There are ~m = 10 
smooth quadric surfaces Qijk in I4, such that, for instance, lor, £12 and 
£ 20 lie in one ruling of Q012 = Q345 and £34, £45 and £53 lie in the other 
ruling. The birational map I 4 --+ S3 given by the duality blows up the 
15 lines iii, which resolves the singularities of I 4 , and blows down the 
proper transform of each Qijk (still a smooth quadric) to give the ten 
nodes of s3. 

5 
It has long been known that if H C lP'4 = ( 2: Yi) is a hyperplane 

i=O 
which is tangent to I 4 then H n I 4 is a Kummer quartic surface. This 
fact provides a connection with abelian surfaces and their moduli. The 
Igusa quartic can be seen as a moduli space of Kummer surfaces. In this 
case, because the polarization is principal, two abelian surfaces giving 
the same Kummer surface are isomorphic and the (coarse) moduli space 
of abelian surfaces is the same as the moduli space of Kummer surfaces. 
This will fail in the non-principally polarized case, in IV.3, below. 

Theorem IV.1.2. S3 is birationally equivalent to a compactifica­
tion of the moduli space A2 (2) of principally polarized abelian surfaces 
with a level-2 structure. 

The Segre cubic is rational. An explicit birational map lP'3 --+ S3 

was given by Baker ([Ball) and is presented in more modern language 
in [Hun]. 

Corollary IV.1.3. A2(2) is rational. 
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A much more precise description of the relation between 5 3 and 
A2(2) is given by this theorem of lgusa. 

Theorem IV.1.4 ([12]). The Igusa compactijication A2(2) of the 
moduli space of principally polarized abelian surfaces with a level-2 struc­
ture is isomorphic to the the blow-up S3 of 53 in the ten nodes. The Sa­
take compactijication A2(2) is isomorphic to I 4 , which is obtained from 
S3 by contracting 15 rational surfaces to lines. 

Proof. The Satake compactification is ProjM(f2(2)), where 
M(f) is the ring of modular forms for the group r. The ten even 
theta characteristics determine ten theta constants Bmo ( T), ... , Bm9 ( T) 
of weight ~ for f 2 ( 2), and e;,, ( T) is a modular form of weight 2 for 
f 2(2). These modular forms determine a map f : A2(2) ---+ IP'9 whose 
image actually lies in a certain ~ c IP'9 . The integral closure of the 
subring of M(f2(2)) generated by thee;,, is the whole of M(f2(2)) 
and there is a quartic relation among the e;,. (as well as five linear 
relations defining IP'4 c IP'9 ) which, with a suitable choice of basis, is 
the quartic a 2 + b2 + c2 - 2(ab +be+ ca) = 0. Furthermore, f is an 
embedding and the closure of its image is normal, so it is the Satake 
compactification. Q.E.D. 

The lgusa compactification is, in this context, the blow-up of the 
Satake compactification along the boundary, which here consists of the 
fifteen lines £ij· The birational map I4 ---t 5 3 does this blow-up and 
also blows down the ten quadrics Qijk to the ten nodes of 53. 

For full details of the proof see [12]; for a more extended sketch 
than we have given here and some further facts, see [Hun]. We mention 
that the surfaces Qijk, considered as surfaces in A2(2), correspond to 
principally polarized abelian surfaces which are products of two elliptic 
curves. 

Without going into details, we mention also that I 4 may be thought 
of as the natural compactification of the moduli of ordered 6-tuples of 
distinct points on a conic in IP'2. Such a 6-tuple determines 6 lines in 
J!D2 which are all tangent to some conic, and the Kummer surface is 
the double cover of lP2 branched along the six lines. The order gives 
the level-2 structure (note that f 2/f2(2) ~ Sp(4, ::2::2) ~ Sym(6).) The 
abelian surface is the Jacobian of the double cover of the conic branched 
at the six points. On the other hand, 5 3 may be thought of as the 
natural compactification of the moduli of ordered 6-tuples of points on 
a line: for this, see [DO]. 

The topology of the Segre cubic and related spaces has been studied 
by van der Geer ([vdGl]) and by Lee and Weintraub ([LWl], [LW2]). 
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The method in [LW1] is to show that the isomorphism between the open 
parts of 53 and A 2 (2) is defined over a suitable number field and use the 
Weil conjectures. 

Theorem IV.1.5 ([LW1] and [vdG1]). The homology of the Igusa 
compactification of A 2 (2) is torsion-free. The Hodge numbers are h0 •0 = 

h3•3 = 1, h1 •1 = h2 •2 = 16 and hp,q = 0 otherwise. 

By using the covering A2 (4) ---> A2 (2), Lee and Weintraub [LW3] 
also prove a similar result for Az ( 4). 

IV.2. The Burkhardt quartic 
The Burkhardt quartic is the subvariety l34 of lP'4 given by the equa-

tion 

Y~- Yo(y~ + Y~ + Y~ + Y~) + 3Y1Y2Y3Y4 = 0. 

This form of degree 4 was found by Burkhardt ([Bu]) in 1888. It is the 
invariant of smallest degree of a certain action of the finite simple group 
PSp( 4, Z3 ) of order 25920 on J!D4, which arises in the study of the 27 
lines on a cubic surface. In fact this group is a subgroup of index 2 in 
the Weyl group W(E6 ) of E6 , which is the automorphism group of the 
configuration of the 27 lines. The 27 lines themselves can be recovered 
by solving an equation whose Galois group is W(E6) or, after adjoining 
a square root of the discriminant, PSp( 4, Z3 ). 

Lemma IV.2.1. 84 has forty-five nodes. Fifteen of them are 
equivalent to (1: -1: 0: 0: 0: 0) under the action of Sym(6) and the 
other thirty are equivalent to (1 : 1 : 6 : 6 : ~5 : ~5), where 6 = e2ni/3 . 

This is the greatest number of nodes that a quartic hypersurface in lP'4 

can have and any quartic hypersurface in J!D4 with 45 nodes is projectively 
equivalent to 84. 

This lemma is an assemblage ofresults of Baker ([Ba2]) and de Jong, 
Shepherd-Barron and Van de Ven ([JSV]): the bound on the number of 
double points is the Varchenko (or spectral) bound [Va], which in this 
case is sharp. 

We denote by Baf3(T), a,(3 E z3, the theta constants 

Baf3(T) = (} [ ~ ~] (T,O) = L exp{'1ritnTn + 2ni(an1 + (3n2 )} 

nEZ2 

where T E lHiz. Here we identify a E z3 with a/3 E Q. The action of 
f 2 (1) = Sp(4,Z) on lHI2 induces a linear action on the space spanned 
by these Baf3, and f 2 (3) acts trivially on the corresponding projective 
space. Since -1 E f 2 (1) acts trivially on lHI2 , this gives an action of 
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PSp(4, Z)/r2(3) ~ PSp(4, Z3) on JPB. The subspace spanned by the 
Ya./3 = !(Oa./3 + 0-a.,-{3) is invariant. Burkhardt studied the ring of 
invariants of this action. We put Yo = -Yoo, Y1 = 2yw, Y2 = 2y01, 
Y3 = 2yn and Y4 = 2yl,-1· 

Theorem IV.2.2 ([Bu) and [vdG2)). The quartic form yg -
Yo(Yr + Y~ + Y~ + Y!) + 3Y1Y2Y3Y4 is an invariant, of lowest degree, for 
this action. The map · 

T ~----+ (Yo : Y1 : Y2 : Y3 : Y4) 

defines a map IHI2/r2(3) ~ B4 which extends to a birational map 
A2(3) --+ 84. 

This much is fairly easy to prove, but far more is true: van der Geer, 
in [vdG2), gives a short modern proof as well as providing more detail. 
The projective geometry of B4 is better understood by embedding it in 
JP>5 ' as we did for s3. Baker [Ba2) gives explicit linear functions Xo, ... 'X5 

of Yo, ... , Y4 such that 84 C JP>5 is given by 

a1(xi) = a4(xi) = 0. 

The details are reproduced in [Hun). 

Theorem IV.2.3 ([To) and [Ba2)). B4 is rational: consequently 
A2(3) is rational. 

This was first proved by Todd ([To)); later Baker ([Ba2)) gave an 
explicit birational map from JP>3 to 84. 

To prove Theorem IV.2.2 we need to say how to recover a princi­
pally polarized abelian surface and a level-3 structure from a general 
point of B4 . The linear system on a principally polarized abelian surface 
given by three times the polarization is very ample, so the theta func­
tions Oa13 (r,z) determine an embedding of Ar = C2/Z2 + Z2r (r E IHI2) 
into JP>8 . Moreover the extended Heisenberg group G3 acts on the linear 
space spanned by the Oa./3· The Heisenberg group of level 3 is a central 
extension 

.2 
O---+ f.L3---+ H 3---+ Z3 ---+O 

and G3 is an extension of this by an involution t. The involution acts 
by z ~ -z and Z~ acts by translation by 3-torsion points. The space 
spanned by the Yaf3 is invariant under the normalizer of the Heisenberg 
group in PGL(4,C), which is isomorphic to PSp(4,Z3), so we get an 
action of this group on JP>4 and on B4 C JP>4. 

For a general point p E B4 the hyperplane in JP>4 tangent to B4 

at p meets B4 in a quartic surface with six nodes, of a type known as a 
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Weddle surface. Such a surface is birational to a unique Kummer surface 
(Hudson ([Hud]) and Jessop ([Je]) both give constructions) and this is 
the Kummer surface of AT. 

It is not straightforward to see the level-3 structure in this picture. 
One method is to start with a principally polarized abelian surface (A, 8) 
and embed it in JP'8 by 1381. Then there is a projection lP'8 ----+ JP'3 under 
which the image of A is the Weddle surface, so one identifies this JP'3 

with the tangent hyperplane to B4 . The Heisenberg group acts on JP'8 

and on H 0 (1P'8 , OIP'" (2)), which has dimension 45. In JP'8 , A is cut out 
by nine quadrics in JP'8 . The span of these nine quadrics is determined 
by five coefficients a 0 , ... , a 4 which satisfy a homogeneous Heisenberg­
invariant relation of degree 4. As the Heisenberg group acting on JP'4 has 
only one such relation this relation must again be the one that defines B4 • 

Thus the linear space spanned by nine quadrics, and hence A with its 
polarization and Heisenberg action, are determined by a point of B4. 
The fact that the two degree 4 relations coincide is equivalent to saying 
that B4 has an unusual projective property, namely it is self-Steinerian. 

It is quite complicated to say what the level-3 structure means for 
the Kummer surface. It is not enough to look at the Weddle surface: 
one also has to consider the image of A in another projection JP'8 ----+ J!D4, 
which is again a birational model of the Kummer surface, this time as a 
complete intersection of type (2, 3) with ten nodes. More details can be 
found in [Hun]. 

The details of this proof were carried out by Coble ([Cob]), who also 
proved much more about the geometry of B4 and the embedded surface 
AT C JP'8 . The next theorem is a consequence of Coble's results. 

Theorem IV.2.4 ([Cob]). Let 7f : B4 ----+ B4 be the blow-up of B4 
in the 45 nodes. Then B4 ~ A2(3); the exceptional surfaces in B4 corre­
spond to the Humbert surfaces that parametrize product abelian surfaces. 
The Satake compactijication is obtained by contracting the preimages of 
40 planes in B4, each of which contains 9 of the nodes. 

One should compare the birational map A2(3) --+ B4 with the hi­
rational map I 4 --+ S 3 of the previous section. 

By computing the zeta function of B4 over 1Fq for q = 1 (mod 3), 
Hoffman and Weintraub ([HoW]) calculated the cohomology of A2(3). 

Theorem IV.2.5 ([HoW]). Hi(A2(3), Z) is free: the odd Betti 
numbers are zero and b2 = b4 = 61. 

In fact [HoW] gives much more detail, describing the mixed Hodge 
structures, the intersection cohomology of the Satake compactifica­
tion, the PSp(4, Z3 )-module structure of the cohomology and some of 
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the cohomology of the group r 2 (3). The cohomology of r 2 (3) was 
also partly computed, by another method, by MacPherson and Mc­
Connell ([McMc]), but neither result contains the other. 

IV.3. The Nieto quintic 

The Nieto quintic .N5 is the subvariety of IP'5 given in homogeneous 
coordinates x 0 , ••• , X5 by 

This is conveniently written as I: Xi = I: x\ = 0. As in the cases of 53 

and 84, this form of the equation displays the action of Sym(6) and is 
preferable for most purposes to a single quintic equation in JP>4. Unlike 
53 and B4 , which were extensively studied in the nineteenth century, .N5 

and its relation to abelian surfaces was first studied only in the 1989 
Ph.D. thesis of Nieto ([Ni]) and the paper of Barth and Nieto ([BN]). 

We begin with a result of van Straten ([vS]). 

Theorem IV.3.1 ([vS]). .N5 has ten nodes but (unlike 53 and B4) 
it also has some non-isolated singularities. However the quintic hyper­
surface in JP>4 given as a subvariety of IP'5 by 

has 130 nodes and no other singularities. 

This threefold and the Nieto quintic are both special elements of the 
pencil 

a1(xi) = aa5(xi) + ,6a2(xi)a3(xi) = 0 

and the general element of this pencil has 100 nodes. Van der 
Geer ([vdG2]) has analysed in a similar way the pencil 

al(xi) = aa4(xi) + ,6a2(xi)2 = 0 

which contains B4 ( 45 nodes) and I 4 ( 15 singular lines) among the special 
fibres, the general fibre having 30 nodes. 

No example of a quintic 3-fold with more than 130 nodes is known, 
though the Varchenko bound in this case is 135 . 

.N5 , like 53 and B4 , is related to abelian surfaces via Kummer sur­
faces. The Heisenberg group H 2 ,2 , which is a central extension 

o - M2 - H2,2 - z~ - o 
acts on !P'3 via the Schrodinger representation on (C4 . This is fundamental 
for the relation between .N5 and Kummer surfaces. 
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Theorem IV.3.2 ([BN]). The space of H2 ,2 -invariant quartic sur­
faces in JP>3 is 5-dimensional. The subvariety of this JP>5 which consists 
of those H2 ,2 -invariant quartic surfaces that contain a line is three­
dimensional and its closure is projectively equivalent to Ns. There is a 
double cover .iif5 --+ N5 such that .iif5 is birationally equivalent to Ai 3 (2). 

' 
Proof. A general H 2,2-invariant quartic surface X containing a line 

i will contain 16 skew lines (namely the H2,2-orbit of£). By a theorem 
of Nikulin ([N1]) this means that X is the minimal desingularization of 
the Kummer surface of some abelian surface A. The H2,2-action on X 
gives rise to a level-2 structure on A, but the natural polarization on A 
is of type (1, 3). There is a second H2,2-orbit of lines on X and they 
give rise to a second realization of X as the desingularized Kummer 
surface of another (in general non-isomorphic) abelian surface A, which 
is in fact the dual of A. The moduli points of A and A (with their 
respective polarizations, but without level structures) in A1,3 are related 
by V3(A) =A, where v3 is the Gritsenko involution described in III.3, 
above. 

Conversely, given a general abelian ~urface A with a (1, 3)­
polarization and a level-2 structure, let Km A be the desingularized 
Kummer surface and£ a symmetric line bundle on A in the polarization 
class. Then the linear system 1£02 1- of anti-invariant sections embeds 
Km A as an H2,2-invariant quartic surface and the exceptional curves 
become lines in this embedding. This gives the connection between Ns 
and A1,3(2). Q.E.D. 

The double cover .iif5 --+ N5 is the inverse image of N5 under the 
double cover of IP'5 branched along the coordinate hyperplanes. 

N5 is not very singular and therefore resembles a smooth quintic 
threefold in some respects. Barth and Nieto prove much more. 

Theorem IV.3.3 ([BN]). Both N5 and .iif5 are birationally equiv­
alent to (different) Calabi- Yau threefolds. In particular, the Kodaira 
dimension of Ai,3 (2) is zero. 

The fundamental group of a smooth projective model of Ai 3(2) is 
isomorphic to Z2 x Z2 (see [81] and Il.3 above). Hence, as R.' Livne 
has pointed out, there are four unramified covers of such a model which 
are also Calabi-Yau threefolds. In all other cases where the Kodaira 
dimension of a Siegel modular variety (of dimension > 1) is known, the 
variety is either of general type or uniruled. 

It is a consequence of the above theorem that the modular group 
r 1,3(2) which defines the moduli space A1;3(2) has a unique weight-3 
cusp form (up to a scalar). This cusp form was determined in [GrH4]. 
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Recall that there is a weight-3 cusp form D-1 for the group r 1,3 with 
a character of order 6. The form D-1 has several interesting properties, 
in particular it admits an infinite product expansion and determines 
a generalized Lorentzian Kac-Moody superalgebra of Borcherds type 
(see (GrN)). 

Theorem IV.3.4 ((GrH4)). The modular form D-1 is the unique 
weight-3 cusp form of the group rl,3(2). 

Using this, it is possible to give an explicit construction of a Calabi­
Yau model of A1,3(2) which does not use the projective geometry of (BN]. 

Nieto and the authors of the present survey have investigated the 
relation between N5 and Ai,3(2) in more detail. .N5 contains 30 planes 
which fall naturally into two sets of 15, the so-called S- and V-planes. 

Theorem IV.3.5 ((HNS1]). The rational map Ai 3(2) --+ .Ns 
(which is generically 2-to-1) contracts the locus of produ~t surfaces to 
the 10 nodes. The locus of bielliptic surfaces is mapped to the V-planes 
and the boundary of Ai,3 (2) is mapped to the S-planes. Thus by first 

blowing up the singular points and then contracting the surfaces in N5 

that live over the S-planes to curves one obtains the Satake compactifi­
cation. 

In (HNS2] we gave a description of some of the degenerations that 
occur over the S-planes. 

One of the open problems here is to give a projective description of 
the branch locus of this map. The projective geometry associated with 
the Nieto quintic is much less worked out than in the classical cases of 
the Segre cubic and the Burkhardt quartic. 

Theorem IV.3.6 ((HSGS)). The varieties .Ns and Ns have rigid 
Calabi- Yau models. Both Calabi- Yaus are modular: more precisely, their 
£-function is equal (up to the Euler factors at bad primes) to the Mellin 
transform of the normalised weight 4 cusp form of level6. 

V. Non-principal polarizations 

We have encountered non-principal polarizations and some of the 
properties of the associated moduli spaces already. For abelian surfaces, 
a few of these moduli spaces have good descriptions in terms of projective 
geometry, and we will describe some of these results for abelian surfaces 
below. We begin with the most famous case, historically the starting 
point for much of the recent work on the whole subject. 
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V.l. Type (1, 5) and the Horrocks-Mumford bundle 
In this section we shall briefly describe the relation between the 

Horrocks-Mumford bundle and abelian surfaces. Since this material has 
been covered extensively in another survey article (see [H1] and the 
references quoted there) we shall be very brief here. 

The existence of the Horrocks-Mumford bundle is closely related 
to abelian surfaces embedded in ]pl4. Indeed, let A C lP'4 be a smooth 
abelian surface. Since WA = 0 A it follows that the determinant of the 
normal bundle of A in lP'4 is det NA/11'4 = 0 A(5) = 011'4(5)IA, i.e. it 
can be extended to J!D4. It then follows from the Serre construction (see 
e.g. [OSS, Theorem 5.1.1]) that the normal bundle NA/11'4 itself can 
be extended to a rank 2 bundle on lP'4 . On the other hand the double 
point formula shows immediately that a smooth abelian surface in lP'4 

can only have degree 10, so the hyperplane section is a polarization of 
type (1, 5). Using Reider's criterion (see e.g. [LB, chapter 10, §4]) one 
can nowadays check immediately that a polarization of type ( 1, n), n 2: 5 
on an abelian surface with Picard number p(A) = 1 is very ample. The 
history of this subject is, however, quite intricate. Comessatti proved 
in 1916 that certain abelian surfaces could be embedded in lP'4 . He con­
sidered a 2-dimensional family of abelian surfaces, namely those which 
have real multiplication in Q( vfs). His main tool was theta functions. 
His paper ([Com]) was later forgotten outside the Italian school of al­
gebraic geometers. A modern account of Comessatti's results using, 
however, a different language and modern methods was later given by 
Lange ([L]) in 1986. Before that Ramanan ([R]) had proved a criterion 
for a (1, n)-polarization to be very ample. This criterion applies to all 
(1, n)-polarized abelian surfaces (A, H) which are cyclic n-fold covers of 
a Jacobian. In particular this also gives the existence of abelian sur­
faces in lP'4 . The remaining cases not covered by Ramanan's paper were 
treated in [HL]. 

With the exception of Comessatti's essentially forgotten paper, none 
of this was available when Horrocks and Mumford investigated the ex­
istence of indecomposable rank 2 bundles on lP'4 . Although they also 
convinced themselves of the existence of smooth abelian surfaces in lP'4 

they then presented a construction of their bundle F in [HM] in cohomo­
logical terms, i.e. they constructed F by means of a monad. A monad 
is a complex 

(M) A~B~C 

where A, B and C are vector bundles, p is injective as a map of vector 
bundles, q is surjective and q o p = 0. The cohomology of (M) is 

F = Kerq/Imp 
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which is clearly a vector bundle. The Horrocks-Mumford bundle can be 
given by a monad of the form 

where V = CC5 and JP>4 = lP'(V). The difficulty is to write down the maps 
p and q. The crucial ingredient here is the maps 

V--tf\ 2 V, 
v ___, /\2 v, 

j+(L_viei) 

f-(L_ Viei) 
L_ viei+2 1\ ei+3 

L_ viei+l 1\ ei+4 

where (ei)iEZs is the standard basis of V = CC5 and indices have to be 
read cyclically. The second ingredient is the Koszul complex on JP>4, 
especially its middle part 

1\2 V Q9 alf"4 ( 1) ____ A_s ___ * 1\3 V Q9 alf"4 (2) 

~ 7 
where s : alP". ( -1) ---+ V ®alP'. is the tautological bundle map. The maps 
p and q are then given by 

p:V®alf"4(2) u~-) 2f\2 V®alP"•(2) 

q : 2 1\2 rlP". 2~~-V 2 1\3 v 0 alP'. (3) 

Once one has come up with these maps it is not difficult to check that 
p and q define a monad. Clearly the cohomology F of this monad is a 
rank 2 bundle and it is straightforward to calculate its Chern classes to 
be 

c(F) = 1 + 5h+ 10h2 

where h denotes the hyperplane section. Since this polynomial is irre­
ducible over the integers it follows that F is indecomposable. 

One of the remarkable features of the bundle F is its symmetry 
group. The Heisenberg group of level n is the subgroup Hn of SL(n, CC) 
generated by the automorphisms 

Since [a-, r] = E • idv the group Hn is a central extension 
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Let N5 be the normalizer of the Heisenberg group H5 in SL(5,C). Then 
N5/ H5 ~ SL(2, Z5) and N5 is in fact a semi-direct product 

N5 ~ H5 ~ SL(2, Z5). 

Its order is IN51 = IH5I·I SL(2, Z5)l = 125 ·120 = 15,000. One can show 
that N5 acts on the bundle F and that it is indeed its full symmetry 
group ([De]). 

The Horrocks-Mumford bundle is stable. This follows since F( -1) = 
F 18> 0JI'4(-1) has c1 (F(-1)) = 3 and h0 (F(-1)) = 0. Indeed F is the 
unique stable rank 2 bundle with c1 = 5 and c2 = 10 ([DS]). The 
connection with abelian surfaces is given via sections of F. Since F( -1) 
has no sections every section 0 =1- s E H 0 (F) vanishes on a surface whose 
degree is c2 (F) = 10. 

Proposition V.l.l. For a general sections E H 0 (F) the zero-set 
Xs = { s = 0} is a smooth abelian surface of degree 10. 

Proof. [HM, Theorem 5.1]. The crucial point is to prove that X 8 is 
smooth. The vector bundle F is globally generated outside 25 lines Lij 
in JP>4 • It therefore follows from Bertini that X 8 is smooth outside these 
lines. A calculation in local coordinates then shows that for general s the 
surface Xs is also smooth where it meets the lines Lij. It is then an easy 
consequence of surface classification to show that X 8 is abelian. Q.E.D. 

In order to establish the connection with moduli spaces it is useful 
to study the space of sections H0 (F) as an N 5-module. One can show 
that this space is 4-dimensional and that the Heisenberg group H 5 acts 
trivially on H 0 (F). Hence H 0 (F) is an SL(2, Z5 )-module. It turns 
out that the action of SL(2, Z5) on H 0 (F) factors through an action of 
PSL(2, Z5) ~ A5 and that as an A5-module H0 (F) is irreducible. Let 
U c JP>3 = JP>( H 0 (F)) be the open set parametrising smooth Horrocks­
Mumford surfaces X 8 • Then X 8 is an abelian surface which is fixed under 
the Heisenberg group H 5 • The action of H 5 on X 8 defines a canonical 
level-5 structure on X5 . Let Aie5 be the moduli space of triples (A, H, a) 
where (A, H) is a (1, 5)-polariz~d abelian surface and a a canonical level 
structure and denote by ~-·W5 the open part where the polarization H is 
very ample. Then the abov~ discussion leads to 

Theorem V.1.2 ([HM]). The map which associates to a section 
s the Horrocks-Mumford surface X 8 = {s = 0} induces an isomorphism 
of U with ~ie5. Under this isomorphism the action of PSL(2, Z5 ) = A5 

on U is identified with the action of PSL(2, Z5) on Aie5 which permutes 
the canonical level structures on a (1, 5)-polarized abelian surface. In 
particular Aie,5 is a rational variety. 
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Proof. [HM, Theorem 5.2]. 

The inverse morphism 

can be extended to a morphism 
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Q.E.D. 

where (Aie5)* denotes the Igusa (=Voronoi) compactification of Aie5· 
This exte~sion can also be understood in terms of degenerations 'of 
abelian surfaces. Details can be found in [HKW2]. 

V.2. Type (1, 7) 
The case of type (1, 7) was studied by Manolache and Schreyer 

([MS]) in 1993. We are grateful to them for making some private notes 
and a draft version of [MS] available to us and answering our questions. 
Some of their results have also been found by Gross and Popescu ([GP1] 
and [GP3]) and by Ranestad: see also [S-BT]. 

Theorem V.2.1 ([MS]). Aie7 is rational, because it is birationally 
equivalent to a Fano variety of type V22· 

Proof. We can give only a sketch of the proof here. For a general 
abelian surface A with a polarization of type ( 1, 7) the polarization is 
very ample and embeds A in IP'6 • In the presence of a canonical level 
structure the IP'6 may be thought of as IP'(V) where V is the Schrodinger 
representation of the Heisenberg group H7. We also introduce, for 
j E Z7, the representation Vj, which is the Schrodinger representa­
tion composed with the automorphism of H7 given by e27ri/7 ~ e61rii/7 . 

These can also be thought of as representations of the extended Heisen­
berg group G7, the extension of H7 by an extra involution coming from 
-1 on A. The representation S of G7 is the character given by this 
involution (so Sis trivial on H7 ). 

It is easy to see that A C IP'6 is not contained in any quadric, that 
is H 0 (IA(2)) = 0, and from this it follows that there is an H7-invariant 
resolution 

0 +--- IA +--- 3l/4 0 0( -3) +--- 7Vl 0 0( -4) +--- 6V2 0 0( -5) 

+--- 2V 0 0( -6) EB 0( -7) +--- 20( -7) +--- 0. 

By using this and the Koszul complex one obtains a symmetric resolution 
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This resolution is G7-invariant. Because of the G 7-symmetry, a can 
be described by a 3 x 2 matrix X whose entries lie in a certain 4-
dimensional space U, which is a module for SL(2, Z7 ). The symmetry 
of the resolution above amounts to saying that a' is given by the matrix 

X'= ( ~1 ~ ) tx, and the complex tells us that aa' = 0. The three 

2 x 2 minors of X cut out a twisted cubic curve C A in IP'(Uv) and because 
of the conditions on a the ideal IA of this cubic is annihilated by the 
differential operators 

where the Ui are coordinates on U. 
This enables one to recover the abelian surface A from CA. If we 

write R = C[uo, u1, u2, u3] then we have a complex (the Hilbert-Burch 
complex) 

It is exact, because otherwise one can easily calculate the syzygies of IA 
and see that they cannot be the syzygies of any ideal annihilated by the 
three D..i. So IA determines a (up to conjugation) and the symmetric 
resolution of 0 A can be reconstructed from a. 

Let H1 be the component of the Hilbert scheme parametrising 
twisted cubic curves. For a general net of quadrics 8 C IP'(Uv) the 
subspace H(8) C H1 consisting of those cubics annihilated by 8 is, by a 
result of Mukai ([Muk]), a smooth rational Fano 3-fold of genus 12, 
of the type known as V22 . To check that this is so in a particular 
case it is enough to show that H ( 8) is smooth. We must do so for 
8 =D.= Span(D..1, D..2D..3). Manolache and Schreyer show that H(D..) is 
isomorphic to the space VSP (X(7), 6) of polar hexagons to the Klein 
quartic curve (the modular curve X(7)): 
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(To be precise we first consider all 6-tuples (l1, ... , l6 ) where the li are 
pairwise different with the above property and then take the Zariski­
closure in the Hilbert scheme.) It is known that VSP (X(7), 6) is smooth, 
so we are done. Q.E.D. 

Manolache and Schreyer also give an explicit rational parametriza­
tion ofVSP (X(7), 6) by writing down equations for the abelian surfaces. 
They make the interesting observation that this rational parametrization 
is actually defined over the rational numbers. 

V.3. Type (1, 11) 

The spaces Aie'd for small d are studied by Gross and Popescu, 
([GPl], [GP2], [GP3] and [GP4]). In particular, in [GP2], they obtain a 
d . t" f Alev escnp 10n o 1,11 . 

Theorem V.3.1 ([GP2]). There is a rational map 8 11 : At11 --+ 

Gr(2, 6) which is birational onto its image. The closure of Im 8 11 is a 
smooth linear section of Gr(2, 6) in the Plucker embedding and is bira­
tional to the Klein cubic in JP4 . In particular Ai~J. 1 is unirational but not 
rational. 

The Klein cubic is the cubic hypersurface in JP4 with the equation 

4 

l:x?xi+l = 0 
i=O 

with homogeneous coordinates xi, i E Z5 . It is smooth, and all smooth 
cubic hypersurfaces are unirational but not rational [CG] and [IM]. 

The rational map 8 11 arises in the following way. For a general 
abelian surface A in AieJ.1, the polarization (which is very ample) and the 
level structure determi~e an H 11-invariant embedding of A into JP10 . The 
action of -1 on A lifts to JP10 = JP(H0(.C)) and the (-I)-eigenspace of this 
action on H 0 (L) (where .Cis a symmetric bundle in the polarizing class) 
determines a JP4 , called JP- C JP10 . We choose coordinates x 0 , . .. , x 10 on 
JP10 with indices in Z11 such that x1, ... , x 5 are coordinates on JP-, so 
that on JP- we have x 0 = 0, Xi = -x-i. The matrix Tis defined to be 
the restriction of R to JP-, where 

0::::: i,j::::: 5. 

(This is part of a larger matrix which describes the action on 
H 0(0ll'w(2)) of H11 .) The matrix T is skew-symmetric and non­
degenerate at a general point of JP-. However, it turns out that for 
a general A E Ai8,J. 1 the rank ofT at a general point x E An JP- is 4. 
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For a fixed A, the kernel of T is independent of the choice of x (except 
where the dimension of the kernel jumps), and this kernel is the point 
8n(A) E Gr(2,6). 

From the explicit matrix R, finally, Gross and Popescu obtain the 
description of the closure of Im 8 11 as being the intersection of Gr(2, 6) 
with five hyperplanes in Plucker coordinates. The equation of the Klein 
cubic emerges directly (as a 6 x 6 Pfaffian), but it is a theorem of 
Adler ([AR]) that the Klein cubic is the only degree 3 invariant of 
PSL(2,Z11 ) in Jri. 

V.4. Other type {1, t) cases 

The results of Gross and Popescu for t = 11 described above are 
part of their more general results about Att: and A1,t fort 2: 5. In the 
series of papers [GP1]-[GP4] they prove the following (already stated 
above as Theorem III.1.5). 

Theorem V.4.1 ([GP1], [GP2], [GP3] and [GP4]). Aiel: is ratio­
nal for 6 ~ t ~ 10 and t = 12 and unirational, but not rational, for 
t = 11. Moreover the variety A 1,t is unirational fort = 14, 16, 18 and 
20. 

The cases have a different flavour depending on whether t is even 
or odd. For odd t = 2d + 1 the situation is essentially as described for 
t = 11 above: there is a rational map 8 2d+l :Aiel: --+ Gr(d- 3, d + 1), 
which can be described in terms of matrices or by saying that A maps 
to the Hrsubrepresentation H 0 (I A (2)) of H 0 ( 0 A ( 2)). In other words, 
one embeds A in pt-1 and selects the Hrspace of quadrics vanishing 
along A. 

Theorem V.4.2 ([GP1]). If t = 2d + 1 2: 11 is odd then the ho­
mogeneous ideal of a general Ht-invariant abelian surface in pt-1 is 
generated by quadrics; consequently e2d+l is birational onto its image. 

For t = 7 and t = 9 this is not true: however, a detailed analysis is 
still possible and is carried out in [GP3] fort = 7 and in [GP2] fort = 9. 
For t 2: 13 it is a good description of the image of et that is lacking. 
Even for t = 13 the moduli space is not unirational and for large t it is 
of general type (at least for t prime or a prime square). 

For even t = 2d the surface A C pt- 1 meets p- = pd-2 in four 
distinct points (this is true even for many degenerate abelian surfaces). 
Because of the Hrinvariance these points form a z2 X Z2-orbit and there 
is therefore a rational map e2d : Aiet: --+ p- /(Z2 X Z2)· 

' 
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Theorem V.4.3 ([GP1]). Ift = 2d;::: 10 is even then the homoge­
neous ideal of a general Hrinvariant abelian surface in pt-1 is generated 
by quadrics (certain Pfaffians) and 8 2d is birational onto its image. 

To deduce Theorem V.4.1 from Theorem V.4.2 and Theorem V.4.3 
a careful analysis of each case is necessary: for t = 6, 8 it is again the 
case that A is not cut out by quadrics in pt-1 . In those cases when 
rationality or unirationality can be proved, the point is often that there 
are pencils of abelian surfaces in suitable Calabi-Yau 3-folds and these 
give rise to rational curves in the moduli spaces. Gross and Popescu use 
these methods in [GP2] (t = 9, 11), [GP3] (t = 6, 7, 8 and 10), and [GP4] 
(t = 12) to obtain detailed information about the moduli spaces Aiet· 
In [GP4] they also consider the spaces A 1,t for t = 14, 16, 18 and 20. ' 

VI. Degenerations 

The procedure of toroidal compactification described in [AMRT] in­
volves making many choices. Occasionally there is an obvious choice. For 
moduli of abelian surfaces this is usually the case, or nearly so, since one 
has the Igusa compactification (which is the blow-up of the Satake com­
pactification along the boundary) and all known cone decompositions 
essentially agree with this one. But generally toroidal compactifications 
are not so simple. One has to make further modifications in order to 
obtain acceptably mild singularities at the boundary. Ideally one would 
like to do this in a way which is meaningful for moduli, so as to obtain 
a space which represents a functor described in terms of abelian vari­
eties and well-understood degenerations. The model, of course, is the 
Deligne-Mumford compactification of the moduli space of curves. 

VI.l. Local degenerations 
The first systematic approach to the local problem of constructing 

degenerations of polarized abelian varieties is Mumford's paper [Mu2] 
(conveniently reprinted as an appendix to [FC]). Mumford specifies de­
generation data which determine a family G of semi-abelian varieties 
over the spectrum S of a complete normal ring R. Faltings and Chai 
([FC]) generalized this and also showed how to recover the degeneration 
data from such a family. This semi-abelian family can then be compact­
ified: in fact, Mumford's construction actually produced the compacti­
fication first and the semi-abelian family as a subscheme. However, al­
though G is uniquely determined, the compactification is non-canonical. 
We may as well assume that R is a DVR and that G.,, the generic fibre, is 
an abelian scheme: the compactification then amounts to compactifying 
the central fibre G0 in some way. 
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Namikawa (see for instance [Nam3] for a concise account) and Naka­
mura ([Nakl]) used toroidal methods to construct natural compactifica­
tions in the complex-analytic category, together with proper degenerat­
ing families of so-called stable quasi-abelian varieties. Various difficul­
ties, including non-reduced fibres, remained, but more recently Alexeev 
and Nakamura ([Alel] and [AN]) have produced a more satisfactory and 
simpler theory. We describe their results below, beginning with their 
simplified version of the constructions of Mumford and of Faltings and 
Chai. See [FC], [Mu2], or [AN] itselffor more. 

R is a complete DVR with maximal ideal I, residue field k = R/ I 
and field of fractions K. We take a split torus G over S = Spec R with 
character group X and let G(K) ~ (K*)g be the group of K-valued 
points of G. A set of periods is simply a subgroup Y C G(K) which is 
isomorphic to zg. One can define a polarization to be an injective map 
4> : Y ----> X with suitable properties. 

Theorem Vl.l.l ([Mu2] and [FC]). There is a quotient G = GjY 
which is a semi-abelian scheme overS : the generic fibre G.'l is an abelian 
scheme over SpecK with a polarization (given by a line bundle ,C,'I in­
duced by 4>). 

Mumford's proof also provides a projective degeneration, in fact a 
wide choice of projective degenerations, each containing G as an open 
subscheme. 

Theorem Vl.1.2 ([Mu2], [Ch], [FC] and [AN]). There is an in­
tegral scheme P, locally of finite type over S, containing G as an open 
subscheme, with an ample line bundle L and an action of Y on (F, L). 
There is an S-scheme P = P /Y, projective over S, with P11 ~ G 11 as 
polarized varieties, and G can be identified with an open subscheme of P. 

Many technical details have been omitted here. P has to satisfy 
certain compatibility and completeness conditions: of these, the most 
complicated is a completeness condition which is used in [FC] to prove 
that each component of the central fibre Po is proper over k. Alexeev 
and Nakamura make a special choice of P which, among other merits, 
enables them to dispense with this condition because the properness is 
automatic. 

Mumford proved this result in the case of maximal degeneration, 
when G0 is a torus over k. That condition which was dropped in [FC] 
and also in [AN] where G is allowed to have an abelian part. Then G 
and Go are Raynaud extensions, that is, extensions of abelian schemes 
by tori, over R and k respectively. The extra work entailed by this is 
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carried out in [FC] but the results, though a little more complicated to 
state, are essentially the same as in the case of maximal degeneration. 

In practice one often starts with the generic fibre G17 • According to 
the semistable reduction theorem there is always a semi-abelian family 
G----> S with generic fibre G17 , and the aim is to construct a uniformiza­
tion G = GjY. It was proved in [FC] that this is always possible. 

The proof of VI.l.l, in the version given by Chai ([Ch]) involves im­
plicitly writing down theta functions on G(K) in order to check that the 
generic fibre is the abelian scheme G17 • These theta functions can be writ­
ten (analogously with the complex-analytic case) as Fourier power series 
convergent in the J-adic topology, by taking coordinates w 1 , ... , w 9 on 
G(K) and setting 

with ax(B) E K. In particular theta functions representing elements 
of H 0 ( G17 , £ 17 ) can be written this way and the coefficients obey the 
transformation formula 

for suitable functions a : Y ----> K* and b : Y x X ----> K*. 
For simplicity we shall assume for the moment that the polarization 

is principal: this allows us to identify Y with X via ¢ and also means 
that there is only one theta function,{}, The general case is only slightly 
more complicated. 

These power series have K-coefficients and converge in the J­
adic topology but their behaviour is entirely analogous to the familiar 
complex-analytic theta functions. Thus there are cocycle conditions on 
a and b and it turns out that b is a symmetric bilinear form on X X X 
and a is an inhomogeneous quadratic form. Composing a and b with the 
valuation yields functions A : X ----> Z, B : X x X ----> Z, and they are 
related by 

1 rx 
A(x) = 2B(x,x) + 2 

for some r EN. We fix a parameters E R, so I= sR. 

Theorem Vl.1.3 ([AN]). The normalization of the scheme 
Proj R[sA(x)wxB; x E X] is a relatively complete model P for the max­
imal degeneration of principally polarized abelian varieties associated 
with G 17 • 

Similar results hold in general. The definition of P has to be modi­
fied slightly if G0 has an abelian part. If the polarization is non-principal 
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it may be necessary to make a ramified base change first, since otherwise 
there may not be a suitable extension of A : Y ----+ Z to A : X ----+ Z. Even 
for principal polarization it may be necessary to make a base change if 
we want the central fibre Po to have no non-reduced components. 

The proof of Theorem VI.l.3 depends on the observation that the 
ring 

is generated by monomials. Consequently P can be described in terms of 
toric geometry. The quadratic form B defines a Delaunay decomposition 
of X® lR = XJR. One of the many ways of describing this is to consider 
the paraboloid in lReo EB XIR given by 

1 rx 
x0 = A(x) = 2B(x, x) + 2 , 

and the lattice M = Ze0 EB X. The convex hull of the points of the 
paraboloid with x E X consists of countably many facets and the pro­
jections of these facets on XJR form the Delaunay decomposition. This 
decomposition determines P. It is convenient to express this in terms 
of the Voronoi decomposition VorB of XIR which is dual to the Delaunay 
decomposition in the sense that there is a 1-to-1 inclusion-reversing cor­
respondence between (closed) Delaunay and Voronoi cells. We introduce 
the map dA : XIR ----+ x;. given by 

rx 
dA(~)(x) = B(~,x) + 2 . 

Theorem Vl.1.4 ([AN]). P is the torus embedding over R given 
by the lattice N = M* c JRe~ EB x;_ and the fan~ consisting of {0} and 
the cones on the polyhedral cells making up (1, -dA(VorB)). 

Using this description, Alexeev and Nakamura check the required 
properties of P and prove Theorem VI.l.3. They also obtain a precise de­
scription of the central fibres Po (which has no non-reduced components 
if we have made a suitable base change) and P0 (which is projective). 
The polarized fibres (P0 , .Co) that arise are called stable quasi-abelian 
varieties, as in [Nakl]. In the principally polarized case P0 comes with a 
Cartier divisor 8 0 and (P0 , 8 0 ) is called a stable quasi-abelian pair. We 
refer to [AN] for a precise intrinsic definition, which does not depend on 
first knowing a degeneration that gives rise to the stable quasi-abelian 
variety. For our purposes all that matters is that such a characterization 
exists. 



The Geometry of Siegel Modular Varieties 149 

VI.2. Global degenerations and compactification 

Alexeev, in [Aiel], uses the infinitesimal degenerations that we have 
just been considering to tackle the problem of canonical global moduli. 
For simplicity we shall describe results of [Alel] only in the principally 
polarized case. 

We define a semi-abelic variety to be a normal variety P with an 
action of a semi-abelian variety G having only finitely many orbits, such 
that the stabilizer of the generic point of P is a connected reduced sub­
group of the torus part of G. If G = A is actually an abelian variety 
then Alexeev refers toP as an abelic variety: this is the same thing as a 
torsor for the abelian variety A. If we relax the conditions by allowing P 
to be semi-normal then Pis called a stable semi-abelic variety or SSAV. 

A stable semi-abelic pair (P, 8) is a projective SSAV together with 
an effective ample Cartier divisor 8 on P such that 8 does not con­
tain any G-orbit. The degree of the corresponding polarization is 
g!h0 (0p(8)), and P is said to be principally polarized if the degree 
of the polarization is g! If Pis an abelic variety then (P, 8) is called an 
abelic pair. 

Theorem VI.2.1 ([Aiel]). The categories A9 of g-dimensional 
principally polarized abelian varieties and AP 9 of principally polarized 
abelic pairs are naturally equivalent. The corresponding coarse moduli 
spaces A 9 and AP9 exist as separated schemes and are naturally iso­
morphic to each other. 

Because of this we may as well compactify AP 9 instead of A 9 if 
that is easier. Alexeev carries out this program in [ Alel]. In this way, 
he obtains a proper algebraic space AP 9 which is a coarse moduli space 
for stable semi-abelic pairs. 

Theorem VI.2.2 ([Aiel]). The main irreducible component of 
AP9 (the component that contains AP9 = A9 ) is isomorphic to the 
Voronoi compactification A; of A 9 • Moreover, the Voronoi compactifi­
cation in this case is projective. 

The first part of Theorem VI.2.2 results from a careful comparison 
of the respective moduli stacks. The projectivity, however, is proved by 
elementary toric methods which, in view of the results of [FC], work over 
SpecZ. 

In general AP 9 has other components, possibly of very large dimen­
sion. Alexeev has examined these components and the SSAV s that they 
parametrize in [Ale2]. 

Namikawa, in [Naml], already showed how to attach a stable quasi­
abelian variety to a point of the Voronoi compactification. Namikawa's 
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families, however, have non-reduced fibres and require the presence of a 
level structure: a minor technical alteration (a base change and normal­
ization) has to be made before the construction works satisfactorily. See 
[AN] for this and also for an alternative construction using explicit local 
families that were first written down by Chai ([Ch]). The use of abelic 
rather than abelian varieties also seems to be essential in order to ob­
tain a good family: this is rather more apparent over a non-algebraically 
closed field, when the difference between an abelian variety (which has 
a point) and an abelic variety is considerable. 

Nakamura, in [Nak2], takes a different approach. He considers de­
generating families of abelian varieties with certain types of level struc­
ture. In his case the boundary points correspond to projectively stable 
quasi-abelian schemes in the sense of GIT. His construction works over 
SpecZ[(N, 1/N] for a suitable N. At the time of writing it is not clear 
whether Nakamura's compactification also leads to the second Voronoi 
compactification. 
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