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Introduction

Siegel modular varieties are interesting because they arise as mod-
uli spaces for abelian varieties with a polarization and a level structure,
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and also because of their concrete analytic realization as locally symmet-
ric varieties. Even in the early days of modern algebraic geometry the
study of quartic surfaces led to some specific examples of these moduli
spaces being studied in the context of projective geometry. Later ad-
vances in complex analytic and algebraic geometry and in number theory
have given us many very effective tools for studying these varieties and
their various compactifications, and in the last ten years a considerable
amount of progress has been made in understanding the general pic-
ture. In this survey we intend to give a reasonably thorough account
of the more recent work, though mostly without detailed proofs, and to
describe sufficiently but not exhaustively the earlier work of, among oth-
ers, Satake, Igusa, Mumford and Tai that has made the recent progress
possible.

We confine ourselves to working over the complex numbers. This
does not mean that we can wholly ignore number theory, since much
of what is known depends on interpreting differential forms on Siegel
modular varieties as Siegel modular forms. It does mean, though, that
we are neglecting many important, interesting and difficult questions:
in particular, the work of Faltings and Chai, who extended much of the
compactification theory to Spec Z, will make only a fleeting appearance.
To have attempted to cover this material would have greatly increased
the length of this article and would have led us beyond the areas where
we can pretend to competence.

The plan of the article is as follows.

In Section I we first give a general description of Siegel modular
varieties as complex analytic spaces, and then explain how to compactify
them and obtain projective varieties. There are essentially two related
ways to do this.

In Section IT we start to understand the birational geometry of these
compactified varieties. We examine the canonical divisor and explain
some results which calculate the Kodaira dimension in many cases and
the Chow ring in a few. We also describe the fundamental group.

In Section IIT we restrict ourselves to the special case of moduli
of abelian surfaces (Siegel modular threefolds), which is of particular
interest. We describe a rather general lifting method, due to Gritsenko
in the form we use, which produces Siegel modular forms of low weight
by starting from their behaviour near the boundary of the moduli space.
This enables us to get more precise results about the Kodaira dimension
in a few interesting special cases, due to Gritsenko and others. Then
we describe some results of a more general nature, which tend to show
that in most cases the compactified varieties are of general type. In the
last part of this section we examine some finite covers and quotients
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of moduli spaces of polarized abelian surfaces, some of which can be
interpreted as moduli of Kummer surfaces. The lifting method gives
particularly good results for these varieties.

In Section IV we examine three cases, two of them classical, where a
Siegel modular variety (or a near relative) has a particularly good projec-
tive description. These are the Segre cubic and the Burkhardt quartic,
which are classical, and the Nieto quintic, which is on the contrary a
surprisingly recent discovery. There is a huge body of work on the first
two and we cannot do more than summarize enough of the results to
enable us to highlight the similarities among the three cases.

In Section V we examine the moduli spaces of (1, t)-polarized abelian
surfaces (sometimes with level structure) for small ¢. We begin with the
famous Horrocks-Mumford case, ¢ = 5, and then move on to the work
of Manolache and Schreyer on t = 7 and Gross and Popescu on other
cases, especially t = 11.

In Section VI we return to the compactification problems and de-
scribe very recent improvements brought about by Alexeev and Naka-
mura, who (building on earlier work by Nakamura, Namikawa, Tai and
Mumford) have shed some light on the question of whether there are
compactifications of the moduli space that are really compactifications
of moduli, that is, support a proper universal family.

Acknowledgements. Both authors were partially supported by
the HCM network AGE (Algebraic Geometry in Europe), contract no.
ERBCHRXCT940557. We are also grateful to RIMS, Kyoto, for hospi-
tality at different times during 1996/97 and the first author would like
to thank MSRI for hospitality in the autumn of 1998. We particularly
thank the many people mentioned in this article who answered our ques-
tions about their own work, and especially to V. Alexeev, M. Gross and
S. Popescu, 1. Nieto, and N. Manolache and F.-O. Schreyer for allowing
us access to unpublished notes.

I. Siegel modular varieties

In this section we give the basic definitions in connection with Siegel
modular varieties and sketch the construction of the Satake and toroidal
compactifications.

I.1. Arithmetic quotients of the Siegel upper half plane
To any point 7 in the upper half plane

Hi={reC; Im7>0}
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one can associate a lattice
L =7Zt+7Z

and an elliptic curve

E.=C/L,.
Since every elliptic curve arises in this way one obtains a surjective map
H; — {elliptic curves}/ isomorphism.

The group SL(2,Z) acts on H;y by
a b\ s & +b
c d ) cT+d

E. =2 E. & 7v~7 mod SL(2,Z).

and

Hence there is a bijection
X°(1) = SL(2, Z)\H, A {elliptic curves}/ isomorphism.

The j-function is an SL(2,Z)-invariant function on H; and defines an
isomorphism of Riemann surfaces

jrX°()=cC.

An abelian variety (over the complex numbers C) is a g-dimensional
complex torus C9/L which is a projective variety, i.e. can be embedded
into some projective space P". Whereas every 1-dimensional torus C/L
is an algebraic curve, it is no longer true that every torus X = C9/L of
dimension g > 2 is projective. This is the case if and only if X admits a
polarization. There are several ways to define polarizations. Perhaps the
most common definition is that using Riemann forms. A Riemann form
on C9 with respect to the lattice L is a hermitian form H > 0 on C¢
whose imaginary part H' = Im(H) is integer-valued on L, i.e. defines
an alternating bilinear form

H:L®L—Z.

The R-linear extension of H' to CY satisfies H'(z,y) = H'(iz,y) and
determines H by the relation

H(z,y) = H'(iz,y) +iH'(z,y).
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H is positive definite if and only if H’ is non-degenerate. In this case H
(or equivalently H’) is called a polarization. By the elementary divisor
theorem there exists then a basis of L with respect to which H' is given
by the form

€1
0 F
A= ( -E 0 ) » B= g ’
where the ej,...,e4 are positive integers such that ejles...|eg. The
g-tuple (e1,...,ey) is uniquely determined by H and is called the type
of the polarization. If e; = ... = e; = 1 one speaks of a principal

polarization. A (principally) polarized - abelian variety is a pair (A, H)
consisting of a torus A and a (principal) polarization H.

Assume we have chosen a basis of the lattice L. If we express each
basis vector of L in terms of the standard basis of C9 we obtain a matrix
Q € M(2g x g,C) called a period matriz of A. The fact that H is
hermitian and positive definite is equivalent to

FOAIQ =0, and i IQATIO > 0.

These are the Riemann bilinear relations. We consider vectors of C9
as row vectors. Using the action of GL(g,C) on row vectors by right
multiplication we can transform the last g vectors of the chosen basis of
L to be (e4,0,...,0),(0,€e2,0,...,0),...,(0,...,0,eq). Then  takes on

the form
r
ben-(7)

and the Riemann bilinear relations translate into

r="*%, Im7>0.

In other words, the complex (g x g)-matrix 7 is an element of the Siegel
space of degree g

H, = {r € M(g x g,C);7 ="*r,Im7 > 0}

Conversely, given a matrix 7 € H, we can associate to it the period
matrix 0, and the lattice L = L, spanned by the rows of Q,. The
complex torus A = C9/L, carries a Riemann form given by

H(z,y) = zIm(1)"! 4.
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This defines a polarization of type (ei,...,ey). Hence for every given
type of polarization we have a surjection

Hy — {(4,H); (A, H) is an (e1,...,eg)-polarized ab.var.}/ isom.

To describe the set of these isomorphism classes we have to see what
happens when we change the basis of L. Consider the symplectic group

Sp(A,Z) = {h € GL(2g,Z); hA'h = A}.

As usual we write elements h € Sp(A,Z) in the form
A B
h_(C D)’ A,...,DeM(gxg,Z).

It is useful to work with the “right projective space P of GL(g,C)” i.e.
the set of all (2g x g)-matrices of rank g divided out by the equivalence
relation

M, MM
( My ) ~ ( Mo M ) for any M € GL(g,C).

Clearly P is isomorphic to the Grassmannian G = Gr(g, C?9). The group
Sp(A,Z) acts on P by

A B M, | | AMy+ BM,
C D M2 - CMl + DM2
where [ ] denotes equivalence classes in P. One can embed Hy into P by

T [ ; . Then the action of Sp(A,Z) restricts to an action on the

image of Hy and is given by

(21 g ) [;JJ _ [ g:igg ] _ [ (AT+BE)((,:ET+DE)-1E}

In other words, Sp(A, Z) acts on H, by

( a7 ) . 7 (A7 + BE)(Cr + DE)'E.

We can then summarize our above discussion with the observation that
for a given type (e1,...,e4) of a polarization the quotient

Ael,,..,eg = SP(A7 Z)\Hg
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parametrizes the isomorphism classes of (eq,...,eq)-polarized abelian
varieties, i.e. Ag, .. ., is the coarse moduli space of (e1, ..., eq)-polarized
abelian varieties. (Note that the action of Sp(A,Z) on H, depends on
the type of the polarization.) If we consider principally polarized abelian
varieties, then the form A is the standard symplectic form

_ 0 1,
J—<‘19 O>

and Sp(A,Z) = Sp(2g,Z) is the standard symplectic integer group. In
this case we use the notation

Ag = Ai,..1 = Sp(29,Z)\H,.

This clearly generalizes the situation which we encountered with ellip-
tic curves. The space H; is just the ordinary upper half plane and
Sp(2,Z) = SL(2,Z). We also observe that multiplying the type of a po-
larization by a common factor does not change the moduli space. Instead
of the group Sp(A,Z) one can also use a suitable conjugate which is a
subgroup of Sp(.J,Q). One can then work with the standard symplectic
form and the usual action of the symplectic group on Siegel space, but
the elements of the conjugate group will in general have rational and no
longer just integer entries.

One is often interested in polarized abelian varieties with extra struc-
tures, the so-called level structures. If L is a lattice equipped with a
non-degenerate form A the dual lattice LV of L is defined by

LY={yeL®Q; A(z,y) € Zfor all x € L}.

Then LY /L is non-canonically isomorphic to (Ze, X ... X Z,)?. The
group LY /L carries a skew form induced by A and the group (Z,, X ... X
Ze,)? has a Q/Z-valued skew form which with respect to the canonical

generators is given by
0 E-1
—-E7! 0 ’

If (A, H) is a polarized abelian variety, then a’canonical level structure
on (A, H) is a symplectic isomorphism

a:LV/L — (Zey X ... X Ze,)?

where the two groups are equipped with the forms described above.
Given A we can define the group.

Sp'(A, Z) := {h € Sp(A, Z); hlpv/p =id v/}
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The quotient space

Alev = Splev(A’ Z)\Hg

€1,.-3€g
has the interpretation

ALY e, = (A H,a); (A, H) is an (ey, . . ., eg)-polarized abelian
variety, o is a canonical level structure}/ isom.

If A is a multiple n.J of the standard symplectic form then Sp(nJ,Z) =
Sp(J,Z) but

[4(n) :=Sp'¥(nJ,Z) = {h € Sp(J,Z); h =1 mod n}.

This group is called the principal congruence subgroup of level n. A
level-n structure on a principally polarized abelian variety (A, H) is a
canonical level structure in the above sense for the polarization nH.
The space

Ag(n) :=Ty(n)\Hy

is the moduli space of principally polarized abelian varieties with a level-
n structure.

The groups Sp(A, Z) act properly discontinuously on the Siegel space
Hy. If e > 3 then Sp'®'(A,Z) acts freely and consequently the spaces
A e, are smooth in this case. The finite group Sp(A, Z)/ Sp'*(A, Z)
acts on Afeel",” . with quotient A, .. . . In particular, these spaces have
at most finite quotient singularities.

A torus A = C9/L is projective if and only if there exists an ample
line bundle £ on it. By the Lefschetz theorem the first Chern class
defines an isomorphism

e

c1: NS(A) = H?*(A,Z)n H-(A,C).

The natural identification Hi(A,Z) = L induces isomorphisms
2 2
H*(A,Z) = Hom(/\" Hi(A,Z),Z) & Hom(\\ L, Z).

Hence given a line bundle £ the first Chern class ¢; (£) can be interpreted
as a skew form on the lattice L. Let H' := —c;(£) € Hom(A® L, 7Z).
Since ¢;(£) is a (1, 1)-form it follows that H'(x,y) = H’(iz,iy) and hence
the associated form H is hermitian. The ampleness of £ is equivalent
to positive definiteness of H. In this way an ample line bundle defines,
via its first Chern class, a hermitian form H. Reversing this process one
can also associate to a Riemann form an element in H2?(A,Z) which is
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the first Chern class of an ample line bundle £. The line bundle £ itself
is only defined up to tramslation. One can also view level structures
from this point of view. Consider an ample line bundle £ representing
a polarization H. This defines a map

A: A — A=Pic’A
x — tLL?

where t, is translation by z. The map A depends only on the polariza-
tion, not on the choice of the line bundle £. If we write A = C9/L then
we have Ker A\ = LY /L and this defines a skew form on Ker \, the Weil
pairing. This also shows that Ker A and the group (Ze, x ... X Z,)?
are (non-canonically) isomorphic. We have already equipped the lat-
ter group with a skew form. From this point of view a canonical level
structure is then nothing but a symplectic isomorphism

o:Ker A (Ze, X ... % Ze,)>.

I1.2. Compactifications of Siegel modular varieties

We have already observed that the j-function defines an isomor-
phism of Riemann surfaces

j:X°(1) = SL(2,Z)\H, = C.

Clearly this can be compactified to X (1) = P! = CU{oo}. It is, however,
important to understand this compactification more systematically. The
action of the group SL(2,Z) extends to an action on

El = Hl UQU{’LOO}

The extra points QU {ico0} form one orbit under this action and we can

set
X(1) = SL(2,Z)\H;.

To understand the structure of X(1) as a Riemann surface we have to
consider the stabilizer :

P(m):{i(é ’f);nez}

of the point 700. It acts on H; by 7 — 7 + n. Taking the quotient by
P(ic0) we obtain the map

Hi — Di={z€C; 0<|z|<1}

T = t=e¥mT,
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Adding the origin gives us the “partial compactification” Dy of Dj. For
¢ sufficiently small no two points in the punctured disc D} of radius ¢ are
identified under the map from Dj to the quotient SL(2,Z)\H;. Hence
we obtain X (1) by

X(1) = X°(1) Up; D..

This process is known as “adding the cusp ic0”. If we take an arbitrary
arithmetic subgroup I' C SL(2,Z) then QU {ico} will in general have
several, but finitely many, orbits. However, given a representative of
such an orbit we can always find an element in SL(2, Z) which maps this
representative to ico. We can then perform the above construction once
more, the only difference being that we will, in general, have to work
with a subgroup of P(ico). Using this process we can always compactify
the quotient X°(I') = I'\H;, by adding a finite number of cusps, to a
compact Riemann surface X (T').

The situation is considerably more complicated for higher genus g
where it is no longer the case that there is a unique compactification of
a quotient A(I") = T'\H,. There have been many attempts to construct
suitable compactifications of A(T'). The first solution was given by Sa-
take ([Sa]) in the case of A,. Satake’s compactification 4, is in some
sense minimal. The boundary flg\.Ag is set-theoretically the union of
the spaces A;,7 < g — 1. The projective variety .Zg is normal but highly
singular along the boundary. Satake’s compactification was later gener-
alized by Baily and Borel to arbitrary quotients of symmetric domains
by arithmetic groups. By blowing up along the boundary, Igusa ([I3])
constructed a partial desingularization of Satake’s compactification. The
boundary of Igusa’s compactification has codimension 1. The ideas of
Igusa together with work of Hirzebruch on Hilbert modular surfaces
were the starting point for Mumford’s general theory of toroidal com-
pactifications of quotients of bounded symmetric domains ([Mu3]). A
detailed description of this theory can be found in [AMRT]. Namikawa
showed in [Nam2] that Igusa’s compactification is a toroidal compacti-
fication in Mumford’s sense. Toroidal compactifications depend on the
choice of cone decompositions and are, therefore, not unique. The dis-
advantage of this is that this makes it difficult to give a good modular
interpretation for these compactifications. Recently, however, Alexeev
and Nakamura (JAN], [Alel]) partly improving work of Nakamura and
Namikawa ([Nakl], [Naml]) have made progress by showing that the
toroidal compactification .A; which is given by the second Voronoi de-
composition represents a good functor. We shall return to this topic in
chapter VI of our survey article.
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This survey article is clearly not the right place to give a complete
exposition of the construction of compactifications of Siegel modular
varieties. Nevertheless we want to sketch the basic ideas behind the
construction of the Satake compactification and of toroidal compactifi-
cations. We shall start with the Satake compactification. For this we
consider an arithmetic subgroup I' of Sp(2g,Q) for some g > 2. (This
is no restriction since the groups Sp(A, Z) which arise for non-principal
polarizations are conjugate to subgroups of Sp(2g,Q)). A modular form
of weight k with respect to the group I' is a holomorphic function

F:H, —C

with the following transformation behaviour with respect to the group
I

F(M7) = det(CT + D)*F(7) forall M = ( é g ) er.

(For g = 1 one has to add the condition that F' is holomorpic at the
cusps, but this is automatic for g > 2). If T' acts freely then the auto-
morphy factor det(C7 + D)* defines a line bundle L* on the quotient
I'\H,. In general some elements in I' will have fixed points, but ev-
ery such element is torsion and the order of all torsion elements in I' is
bounded (see e.g. [LB, p.120]). Hence, even if I' does not act freely, the
modular forms of weight nkq for some suitable integer kg and n > 1 are
sections of a line bundle L™*°. The space M(T') of modular forms of
fixed weight k& with respect to I is a finite-dimensional vector space and
the elements of M, (T') define a rational map to some projective space
PN, If n is sufficiently large it turns out that this map is actually an
immersion and the Satake compactification A(T") can be defined as the
projective closure of the image of this map.

There is another way of describing the Satake compactification which
also leads us to toroidal compactifications. The Cayley transformation

®:H; — Sym(g,C)
T o (r—il)(r+i1)""

realizes H; as the symmetric domain
Dy ={Z € Sym(g,C); 1 — ZZ > 0}.

Let D, be the topological closure of Dy in Sym(g,C). The action of
Sp(2g,R) on H, defines, via the Cayley transformation, an action on
D, which extends to Dy;. Two points in D, are called equivalent if
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they can be connected by finitely many holomorphic curves. Under this
equivalence relation all points in D, are equivalent. The equivalence
classes of Dy\D, are called the proper boundary components of Dy.
Given any point Z € D, one can associate to it the real subspace U(Z) =
Ker ¢(Z) of R?9 where

¢(Z):R29—>Cg,l/r——>1/( i1+ 2) )
1-7

Then U(Z) is an isotropic subspace of R?9 equipped with the standard
symplectic form J. Moreover U(Z) # 0 if and only if Z € D,\D, and
U(Z,) = U(Z3) if and only if Z; and Z, are equivalent. This defines
a bijection between the proper boundary components of D, and the
non-trivial isotropic subspaces of R?9.

For any boundary component F' we can define its stabilizer in
Sp(2g,R) by

P(F) = {h € Sp(2¢,R); h(F) = F}.

If U = U(F) is the associated isotropic subspace, then
P(F) =P(U) = {h € Sp(29,R); Uh™' =U}.

A boundary component F is called rational if P(F) is defined over the
rationals or, equivalently, if U(F’) is a rational subspace, i.e. can be gen-
erated by rational vectors. Adding the rational boundary components
to Dy one obtains the rational closure ’D;at of Dy. This can be equipped
with either the Satake topology or the cylindrical topology. The Satake
compactification, as a topological space, is then the quotient F\D;at.
(The Satake topology and the cylindrical topology are actually differ-
ent, but the quotients turn out to be homeomorphic.) For g = 1 the
above procedure is easily understood: the Cayley transformation ¢ maps
the upper half plane H; to the unit disc D,. Under this transformation
the rational boundary points QU {ico} of H; are mapped to the rational
boundary points of D;. The relevant topology is the image under ¢ of
the horocyclic topology on H; = H; UQ U {ico}.

Given two boundary components F and F’ with F' # I’ we say that
F is adjacent to F' (denoted by F’ = F) if F C F’. This is the case if
and only if U(F') G U(F). In this way we obtain two partially ordered
sets, namely

(X1,<) = ({proper rational boundary components F' of Dy}, >)
(X2,<) = ({non-trivial isotropic subspaces U of Q¢},G).

The group Sp(2¢,Q) acts on both partially ordered sets as a group of
automorphisms and the map f : X; — X, which associates to each
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F' the isotropic subspace U(F') is an Sp(2g, @)-equivariant isomorphism
of partially ordered sets. To every partially ordered set (X, <) one can
associate its simplicial realization SR(X) which is the simplicial complex
consisting of all simplices (o, ...,z,) where zo,...,z, € X and z¢ <
Ty < ... < z,. The Tits building T of Sp(2g, Q) is the simplicial complex
7 = SR(X1) = SR(X2). If T is an arithmetic subgroup of Sp(2g,Q),
then the Tits building of T is the quotient 7(T") =T'\7.

The group P(F’) is a maximal parabolic subgroup of Sp(2g,R). More
generally, given any flag U, ;Ct ;Ct U, of isotropic subspaces, its sta-
bilizer is a parabolic subgroup of Sp(2g,R). Conversely any parabolic
subgroup is the stabilizer of some isotropic flag. The maximal length
of an isotropic flag in R?9 is g and the corresponding subgroups are the
minimal parabolic subgroups or Borel subgroups of Sp(2g, R). We have
already remarked that a boundary component F' is rational if and only
if the stabilizer P(F’) is defined over the rationals, which happens if and
only if U(F) is a rational subspace. More generally an isotropic flag
is rational if and only if its stabilizer is defined over Q. This explains
how the Tits building 7 of Sp(2¢,Q) can be defined using parabolic
subgroups of Sp(2g,R) which are defined over Q. The Tits building of
an arithmetic subgroup I of Sp(2g, Q) can, therefore, also be defined in
terms of conjugacy classes of groups I' N P(F).

As an example we consider the integer symplectic group Sp(2g, Z).
There exists exactly one maximal isotropic flag modulo the action of
Sp(2g,Z), namely

{0}SULIGU, G ... G Uy U =span(ey,...,e).

Hence the Tits building 7(Sp(2g,Z)) is a (g — 1)-simplex whose ver-
tices correspond to the space U;. This corresponds to the fact that
set-theoretically

jg:AgH.Ag_lu H.AlﬂAo

With these preparations we can now sketch the construction of a
toroidal compactification of a quotient A(I'} = I'\H, where I' is an
arithmetic subgroup of Sp(2g,Q). We have to compactify A(L') in the
direction of the cusps, which are in 1-to-1 correspondence with the ver-
tices of the Tits building 7(T"). We shall first fix one cusp and consider
the associated boundary component F', resp. the isotropic subspace
U = U(F). Let P(F) be the stabilizer of F' in Sp(2g,R). Then there is

an exact sequence of Lie groups

1—P(F)—PF)—-P'"(F)—1
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where P’(F) is the centre of the unipotent radical R, (P(F)) of P(F).
Here P'(F) is a real vector space isomorphic to Sym(g’,R) where
¢ = dimU(F). Let P(F) = P(F)nT,P(F) = P(F)NT and
P"(F) = P(F)/P'(F). The group P'(F) is a lattice of maximal rank
in P'(F). To F one can now associate a torus bundle X(F) with fibre
T = P'(F) ®z C/P'(F) = (C*)9 over the base S = F x V(F) where
V(F) = Ry(P(F))/P'(F) is an affine abelian Lie group and hence a
vector space. To construct a partial compactification of A(T") in the
direction of the cusp corresponding to F', one then proceeds as follows:

(1) Consider the partial quotient X(F) = P/(F)\H,. This is a
torus bundle with fibre (C*)29'(9'+1) over some open subset of
Cz(9(g+1)=4'(g"+1) and can be regarded as an open subset of the
torus bundle X' (F).

(2) Choose a fan ¥ in the real vector space P'(F) = Sym(g’,R) and
construct a trivial bundle Xs(F') whose fibres are torus embed-
dings.

(3) If X is chosen compatible with the action of P”(F'), then the ac-
tion of P”(F) on X (F) extends to an action of P"(F) on Xx(F).

(4) Denote by X5 (F) the interior of the closure of X(F) in Xx(F).
Define the partial compactification of A(T) in the direction of F
as the quotient space Ys(F) = P"(F)\ Xz (F).

To be able to carry out this programme we may not choose the fan
Y arbitrarily, but we must restrict ourselves to admissible fans ¥ (for
a precise definition see [Nam2, Definition 7.3]). In particular ¥ must
define a cone decomposition of the cone Sym  (¢’, R) of positive definite
symmetric (¢’ x ¢')-matrices. The space Y5 (F') is called the partial
compactification in the direction F'.

The above procedure describes how to compactify A(T') in the di-
rection of one cusp F. This programme then has to be carried out for
each cusp in such a way that the partial compactifications glue together
and give the desired toroidal compactification. For this purpose we have
to consider a collection ¥ = {X(F)} of fans %(F) c P'(F). Such a
collection is called an admissible collection of fans if

(1) Every fan X(F) C P'(F') is an admissible fan.

(2) If F = g(F") for some g € I', then X(F) = g(X(F")) as fans in
the space P'(F) = g(P'(F")).

(3) If F/ = F is a pair of adjacent rational boundary components,
then equality X(F') = X(F) N P'(F') holds as fans in P'(F’) C
P'(F).
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The conditions (2) and (3) ensure that the compactifications in the di-
rection of the various cusps are compatible and can be glued together.
More precisely we obtain the following;:

(2") If g € T with F = g(F”), then there exists a natural isomorphism
§: X (F') = Xsmy(F).

(3') Suppose F’ = F is a pair of adjacent rational boundary compo-
nents. Then P/(F') C P'(F') and there exists a natural quotient
map mo(F', F) : X(F') — X(F). Because of (3) this extends to
an étale map: 7(F', F) : Xy ) (F') = Xsp) (F).

We can now consider the disjoint union
X =][Xsrm(F)
F

over all rational boundary components F. One can define an equivalence
relation on X as follows: if z € X5y (F) and 2’ € X5pr)(F”), then

(a) x ~ 2’ if there exists g € " such that F = g(F”) and = = g(=').
(b) z ~z' if F' = F and n(F', F)(z') = z. »
The toroidal compactification of A(T) defined by the admissible col-
lection of fans 3 is then the space

AT = X/ ~ .

Clearly A(T')* depends on £. We could also have described A(I')* as
Y/ ~ where Y = II Yxr)(F) and the equivalence relation ~ on Y is
induced from that on X. There is a notion of a projective admissible
collection of fans (see [Nam2, Definition 7.22]) which ensures that the
space A(I')* is projective.

For every toroidal compactification there is a natural map =n :
A(T)* — A(T') to the Satake compactification. Tai, in [AMRT], showed
that if A(T")* is defined by a projective admissible collection of fans, then
7 is the normalization of the blow-up of some ideal sheaf supported on
the boundary of A(T).

There are several well known cone decompositions for Sym  (¢’, R):
see e.g. [Nam2, section 8]. The central cone decomposition was used
by Igusa ([I1]) and leads to the Igusa compactification. The most
important decomposition for our purposes is the second Voronoi de-
composition. The corresponding compactification is simply called the
Voronoi compactification. The Voronoi compactification A(T')* = A
for ' = Sp(2g,Z) is a projective variety ([Alel]). For g = 2 all standard
known cone decompositions coincide with the Legendre decomposition.
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II. Classification theory

Here we discuss known results about the Kodaira dimension of Siegel
modular varieties and about canonical and minimal models. We also re-
port on some work on the fundamental group of Siegel modular varieties.

I1.1. The canonical divisor

If one wants to prove results about the Kodaira dimension of Siegel
modular varieties, one first has to understand the canonical divisor. For
an element 7 € Hy we write

T11 T1,9—1 T1g
T= =
Ti,g-1 "*° Tg—1,9-1 | Tg-1,g
Tig 0 Tg-1g Tgg
Let

dr =dm1 Admia A ... /\d’ng.

If F is a modular form of weight g + 1 with respect to an arithmetic
group I, then it is easy to check that the form w = Fdr is I'-invariant.
Hence, if ' acts freely, then

Kiry = (g+1)L

where L is the line bundle of modular forms, i.e. the line bundle given
by the automorphy factor det(Cr + D). If T' does not act freely, let
A(I') = A(T)\R where R is the branch locus of the quotient map Hy, —
A(T'). Then by the above reasoning it is still true that

Koy = (g + 1) L{og(ry-

In order to describe the canonical bundle on a toroidal compactification
A(T')* we have to understand the behaviour of the differential form w
at the boundary. To simplify the exposition, we shall first consider the
case I'y = Sp(2¢,Z). Then there exists, up to the action of T, exactly
one maximal boundary component F. We can assume that U(F) =
U = span(ey). The stabilizer P(F') = P(U) of U in T'y is generated by
elements of the form

A0 B O 1,, 0 0 0
o100 0 +1 0 0
“=lcobDo|l” 7| 0o o0 1,4, 0 |’

00 0 1 0 0 0 1
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1,0 0 0 N 1,0 0 0 0
| M 1 N o | o 1 o s
93 = 0 0 1,0, —tM |’ 97 0 0 1,4 0 |’
0 0 0 1 0 0 0 1
where é, IB; ) €ly_1, M\,N€Z% " and S € Z.

The group P/(F) is the rank 1 lattice generated by g4, and the
partial quotient with respect to P'(F’) is given by

e(F): Hy — Hg_1 x Co-1 x C*

T — (T, z,t = e?™7a9),

Here H,_; x C9~! x C* is a rank 1 torus bundle over Hg_1 x Cst =
F x V(F). Partial compactification in the direction of F' consists of
adding Hy_; x C97! x {0} and then taking the quotient with respect to
P"(F). Since drgg = (27i)~'dt/t it follows that

1Fd7'11 A .../\d’Tg_lyg Adt

w=(2mi)” ;

has a pole of order 1 along the boundary, unless F' vanishes there. More-
over, since F(gs4(7)) = F(7) it follows that F' has a Fourier expansion

F(r) =) Fu(7, 2)t".

n>0

A modular form F' is a cusp form if Fy(7/,2z) = 0, i.e. if F vanishes along
the boundary. (If I' is an arbitrary arithmetic subgroup of Sp(2g,Q)
we have in general several boundary components and then we require
vanishing of F' along each of these boundary components.) The above
discussion can be interpreted as follows. First assume that T' is neat
(i.e. the subgroup of C* generated by the eigenvalues of all elements
of T is torsion free) and that A(I")* is a smooth compactification with
the following property: for every point in the boundary there exists a
representative x € Xy ) (F) for some boundary component such that
Xs(r)(F) is smooth at z and P"(F') acts freely at . (Such a toroidal
compactification always exists if I' is neat.) Let D be the boundary
divisor of A(T")*. Then

Kary- =(9+1)L-D.

Here L is the extension of the line bundle on modular forms on A(T’) to
A(T')*. This makes sense since by construction the line bundle extends
to the Satake compactification A(T") and since there is a natural map
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7 : A([')* — A(T'). We use the same notation for L and 7*L. If " does
not act freely we can define the open set S4(I")* consisting of A(I") and
those points in the boundary which have a representative 2 € Xy ) (F)
where P"(F) acts freely at z. In this case we still have

Koary» = ((9+ 1)L — D)leary~-

This shows in particular that every cusp form F' of weight g 4+ 1 with
respect to I' defines via w = Fdr a differential N-form on %A(T")* where
N = @ is the dimension of A(I"). It is a non-trivial result of Freitag
that every such form can be extended to any smooth projective model
of A(T"). If we denote by Si(I') the space of cusp forms of weight k with
respect to I', then we can formulate Freitag’s result as follows.

Theorem IL.1.1 ([F]). Let A(T) be a smooth projective model of
A(T'). Then every cusp form F of weight g+ 1 with respect to I' defines
a differential form w = Fdr which extends to fl(I‘) In particular, there
s a natural isomorphism

D(AT),w gry) & Sg41(T)

and hence py(A(T)) = dim Sg41(T).
Proof. See [F, Satz I11.2.6] and the remark following this. Q.E.D.

Similarly a form of weight k(g + 1) which vanishes of order k along
the boundary defines a k-fold differential form on ‘.’A(I‘)".~ In general,
however, such a form does not extend to a smooth model A(T") of A(T").

I1.2. The Kodaira dimension of Ag4(n)

By the Kodaira dimension of a Siegel modular variety A(I") we mean
the Kodaira dimension of a smooth projective model of A(T'). Such a
model always exists and the Kodaira dimension is independent of the
specific model chosen. It is a well known result that Ay is of general
type for g > 7. This was first proved by Tai for g > 9 ([T1]) and then
improved to g > 8 by Freitag ([F]) and to g > 7 by Mumford ([Mu4]).
In this section we want to discuss the proof of the following result.

Theorem I1.2.1 ([T1], [F], [Mu4] and [H2]). A,(n) is of general
type for the following values of g and n > nyp:

g2 3 45 6 >1
np|4 3 2 2 2 1°

We have already seen that the construction of differential forms is closely
related to the existence of cusp forms. Using Mumford’s extension of
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Hirzebruch proportionality to the non-compact case and the Atiyah-Bott
fixed point theorem it is not difficult to show that the dimension of the
space of cusp forms of weight k grows as follows:

dim Sg(L'y) ~ 27V =9kN v r=

where

N = @ = dim A4(n)

and Vj is Siegel’s symplectic volume
V_2g2+1 N < (]_1)'3
9= 1] ot B
j=1

Here B; are the Bernoulli numbers.

Every form of weight k(g + 1) gives rise to a k-fold differential form
on A (n). If k = 1, we have already seen that these forms extend
by Freitag’s extension theorem to every smooth model of Ag(n). This
is no longer automatically the case if & > 2. Then one encounters
two types of obstructions: one is extension to the boundary (since we
need higher vanishing order along D), the other type of obstruction
comes from the singularities, or more precisely from those points where
I'y(n) does not act freely. These can be points on Ay(n) or on the
boundary. If n > 3, then I'y(n) is neat and in particular it acts freely.
Moreover we can choose a suitable cone decomposition such that the
corresponding toroidal compactification is smooth. In this case there
are no obstructions from points where I'y(n) does not act freely. If
n = 1 or 2 we shall, however, always have such points. It is one of
the main results of Tai ([T1, Section 5]) that for ¢ > 5 all resulting
singularities are canonical, i.e. give no obstructions to extending k-fold
differential forms to a smooth model. The remainder of the proof of Tai
then consists of a careful analysis of the obstructions to the extension of
k-forms to the boundary. These obstructions lie in a vector space which
can be interpreted as a space of Jacobi forms on H,_; x C¢~!. Tai gives
an estimate of this space in [T1, Section 2] and compares it with the
dimension formula for Si(T).

The approach developed by Mumford in [Mu4] is more geometric in
nature. First recall that

1) Kloas(ny = (g + D)L = D)leas (n)-

Let ©,,11 be the closure of the locus of pairs (A, ©) where A is an abelian
variety and O is a symmetric divisor representing a principal polarization



108 K. Hulek and G. K. Sankaran

such that © has a singularity at a point of order 2. Then one can show
that for the class of Oy, on A% (n):

(2) [Onun] = 2972(29 + 1)L — 2*97°D.

One can now use (2) to eliminate the boundary D in (1). Since the
natural quotient A7 (n) — Aj is branched of order n along D one finds
the following formula for K:

2972(29 + 1 1 ~

(3) Kl"A;(n) = ((g + 1) - —AT_Z_)) W[@null]'
In view of Tai’s result on the singularities of A;(n) this gives general
type whenever the factor in front of L is positive and n > 3 or g > 5.
This gives all cases in the list with two exceptions, namely (g,n) = (4, 2)
and (7,1). In the first case the factor in front of L is still positive, but
one cannot immediately invoke Tai’s result on canonical singularities.
As Salvetti Manni has pointed out, one can, however, argue as follows.
An easy calculation shows that for every element o € T'y(2) the square
02 € T'y(4). Hence if o has a fixed point then o2 = 1 since I';(4) acts
freely. But now one can again use Tai’s extension result (see [T1, Remark
after Lemma 4.5] and [T1, Remark after Lemma 5.2]).

This leaves the case (g,n) = (7,1) which is the main result of [Mu4].
Mumford considers the locus

No = {(A,©); Sing© # 0}

in Ag. Clearly this contains Onu, but is bigger than Oy, if g > 4.
Mumford shows that the class of the closure Ny on AZ is

_ + 1! +1)!
) [No] = (——(g ) +g!> p- 2y
2 12
and hence one finds for the canonical divisor:
12(¢® — 4g — 17) 12
K oA*(n - L N .
500 e AN PRV

Since the factor in front of L is positive for ¢ = 7 one can once more use
Tai’s extension result to prove the theorem for (g,n) = (7,1).

The classification of the varieties A4(n) with respect to the Kodaira
dimension is therefore now complete with the exception of one important
case:

Problem. Determine the Kodaira dimension of Ag.
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All other varieties Ay4(n) which do not appear in the above list are
known to be either rational or unirational. Unirationality of A was
proved by Donagi ([D]) and independently by Mori and Mukai ([MM])
and Verra ([V]). Unirationality of A4 was shown by Clemens ([Cl]) and
unirationality of A,,g < 3 is easy. For g = 3 there exists a dominant
map from the space of plane quartics to Mg which in turn is birational
to Az. For g = 2 one can use the fact that My is birational to Ay
and that every genus 2 curve is a 2:1 cover of P! branched in 6 points.
Rationality of these spaces is a more difficult question. Igusa ([I1])
showed that A is rational. The rationality of M3, and hence also of
As, was proved by Katsylo ([K]). The space A3(2) is rational by the
work of van Geemen ([vG]) and Dolgachev and Ortland ([DOJ]). The
variety A2(3) is birational to the Burkhardt quartic in P* and hence
also rational. This was proved by Todd in 1936 ([To]) and Baker in 1942
(see [Ba2]), but see also the thesis of Finkelnberg ([Fi]). The variety
A(2) is birational to the Segre cubic (cf. [vdG1]) in P* and hence also
rational. The latter two cases are examples of Siegel modular varieties
which have very interesting projective models. We will come back to
this more systematically in chapter IV. It should also be noted that
Yamazaki ([Ya]) was the first to prove that A3(n) is of general type for
n > 4.

All the results discussed above concern the case of principal polar-
ization. The case of non-principal polarizations of type (ey,...,e,) was
also studied by Tai.

Theorem I1.2.2 ([T2]). The moduli space Ae,, ..., of abelian va-
rieties with a polarization of type (e1,...,eg) s of general type if either
g > 16 or g > 8 and all e; are odd and sums of two squares.

The essential point in the proof is the construction of sufficiently
many cusp forms with high vanishing order along the boundary. These
modular forms are obtained as pullbacks of theta series on Hermitian or
quaternionic upper half spaces.

More detailed results are known in the case of abelian surfaces (g =
2). We will discuss this separately in chapters III and V.

By a different method, namely using symmetrization of modular
forms, Gritsenko has shown the following:

Theorem I1.2.3 ([Grl]). For every integer t there is an integer
g(t) such that the moduli space A; . 1, is of general type for g > g(t).

geeeyly

In particular Ay, 12 is of general type for g > 13.

Proof. See [Grl, Satz 1.1.10]; where an explicit bound for g(t) is
given. Q.E.D.
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Once one has determined that a variety is of general type it is natural
to ask for a minimal or canonical model. For a given model this means
asking whether the canonical divisor is nef or ample. In fact one can ask
more generally what the nef cone is. The Picard group of A7,g = 2,3
is generated (modulo torsion) by two elements, namely the (Q-) line
bundle L given by modular forms of weight 1 and the boundary D.

In [H2] one of us computed the nef cone of A}, g = 2, 3. The result is
given by the theorem below. As we shall see one can give a quick proof
of this using known results about _/\71_9 and the Torelli map. However this
approach cannot be generalized to higher genus since the Torelli map is
then no longer surjective, nor to other than principal polarizations. For
this reason an alternative proof was given in [H2] making essential use
of a result of Weissauer ([We]) on the existence of cusp forms of small
slope which do not vanish on a given point in Siegel space.

Theorem I1.2.4. Let g =2 or 3. Then a divisor aL —bD on Aj
s nef if and only if b >0 and a — 12b > 0. '

Proof. First note that the two conditions are necessary. In fact let
C be a curve which is contracted under the natural map = : A7 — Ay
onto the Satake compactification. The divisor —D is m-ample (cf. also
[Mu4]) and L is the pull-back of a line bundle on A,. Hence (aL —
bD).C > 0 implies b > 0. Let C be the closure of the locus given by
split abelian varieties E X A’ where F is an arbitrary elliptic curve and
A’ is a fixed abelian variety of dimension g — 1. Then C is a rational
curve with D.C =1 and L.C = 1/12. This shows that a — 12b > 0 for
every nef divisor D.

To prove that the conditions stated are sufficient we consider the
Torelli map t : My — A, which extends to a map ¢ : My — Aj. This
map is surjective for g = 2,3. Here M, denotes the compactification of
M, by stable curves. It follows that for every curve C in A} there exists
a curve C’ in M, which is finite over C. Hence a divisor on A}, g = 2,3
is nef if and only if this is true for its pull-back to _./\Zg. We can now
use Faber’s paper ([Fa]). Then t*L = X where X is the Hodge bundle
and t*D = &,. Here & is the boundary (g = 2), resp. the closure of
the locus of genus 2 curves with one node (¢ = 3). The result now
follows from [Fa] since aX — b8y is nef on My, g = 2,3 if b > 0 and
a—12b> 0. Q.ED.

Corollary I1.2.5. The canonical divisor on Aj(n) is nef but not
ample for n = 4 and ample for n > 5. In particular A3(4) is a minimal
model and A3(n) is a canonical model for n > 5.
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This was first observed, though not proved in detail, by Borisov in an
early version of [Bori].

Corollary I1.2.6. The canonical divisor on Aj(n) is nef but not
ample for n =3 and ample for n > 4. In particular A%(3) is a minimal
model and Aj(n) is a canonical model for n > 4.

Proof of the corollaries. Nefness or ampleness of K follows immediately
from Theorem I1.2.4 since

Il

12 n>4 if g
_ > =
(g+1) n_0<:>{n23 i og—

To see that K is not ample on A5(4) nor on A3%(3) we can again use
the curves C coming from products E x A’ where A’ is a fixed abelian
variety of dimension g — 1. For these curves K.C = 0. O

2

For g > 4 it is, contrary to what was said in [H2], no longer true
that the Picard group is generated by L and D. Here we simply state
the

Problem. Describe the nef cone of .A;.

In [H3] the methods of [H2] were used to prove ampleness of K in the
case of (1, p)-polarized abelian surfaces with a canonical level structure
and a level-n structure, for p prime and n > 5, provided p does not
divide n.

Finally we want to mention some results concerning the Chow ring
of A;. The Chow groups considered here are defined as the invariant
part of the Chow ring of Aj(n). The Chow ring of M, was computed
by Mumford [Mu5]. This gives also the Chow ring of A%, which was also
calculated by a different method by van der Geer in [vdG3|.

Theorem I1.2.7 ([Mu5] and [vdG3]). Let A\; = A and Az be the
tautological classes on A%5. Let o1 be the class of the boundary. Then

CHg(A3) = Q[A1, Az, 01]/1
where I is the ideal generated by the relations

(T+M+ )0 =X +A)=1,
)\20‘1 = O,
02 = 22012 — 1203,

The ranks of the Chow groups are 1,2,2,1.
Van der Geer also computed the Chow ring of Aj.



112 K. Hulek and G. K. Sankaran

Theorem I1.2.8 ([vdG3]). Let A1, A2,A3 be the tautological
classes in A% and 01,09 be the first and second symmetric functions
in the boundary divisors (viewed as an invariant class on Aj(n)). Then

CHg(A3) = Q[A1, A2, A3,01,02]/J
where J is the ideal generated by the relations

(1+)\1+)\2+)\3)(1—)\1 +)\2—/\3) =1,
)\30’1 = )\30’2 = )\%0’2 = 0,

0} = 2016)3 — 4\loy — 24\102 + Log0,
02 = 360\30; — 45)20% + 15X 0207.

The ranks of the Chow groups are 1,2,4,6,4,2, 1.

Proof. See [vdG3]. The proof uses in an essential way the descrip-
tion of the Voronoi compactification A3 given by Nakamura ([Nakl])
and Tsushima ([Ts]). Q.E.D.

I1.3. Fundamental groups

The fundamental group of a smooth projective model A(T") of A(T)
is independent of the specific model chosen. We assume in this section
that g > 2, so that the dimension of A(T’) is at least 3.

The first results about the fundamental group of A(T') were obtained
by Heidrich and Knoller ([HK], [Kn]) and concern the principal congru-
ence subgroups I'(n) C Sp(2g,Z). They proved the following result.

Theorem I1.3.1 ([HK|,[Kn]). Ifn >3 orifn=g=2 then .Zg(n)
is simply-connected.

As an immediate corollary (first explicitly pointed out by Heidrich-
Riske) one has

Corollary 11.3.2 ([H-R]). If T is an arithmetic subgroup of
Sp(2g,Q), then the fundamental group of A(T') is finite.

Corollary 11.3.2 follows from Theorem I1.3.1 because any subgroup
of Sp(2¢, Z) of finite index contains a principal congruence subgroup of
some level.

Proof. The proof of Theorem I1.3.1 uses the fact that there is, up
to the action of the group Sp(2g, Z, ), only one codimension 1 boundary
component F' in the Igusa compactification Aj(n). Suppose for simplic-
ity that n > 4, so that I'(n) is neat. A small loop passing around this
component can be identified with a loop in the fibre C* of X (F) and
hence with a generator up of the 1-dimensional lattice P’(F). This loop
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determines an element g, usually non-trivial, of 71 (Ag(n)) (which is
simply I'(n), since I'(n) is torsion-free and hence acts freely on H,). The
element ~yr is in the kernel of the map m; (Ag(n)) —m (.Zg (n)), so ugp is
in the kernel of I'(n) — m (.Zg (n)). But it turns out that the normalizer
of P'(F) in I'(n) is the whole of I'(n), as was shown by Mennicke ([Me])
by a direct calculation. Q.E.D.

We (the authors of the present article) applied this method in [HS2]
to the case of lf‘z’, for p > 5 prime, where there are many codimension 1
boundary components. A minor extra complication is the presence of
some singularities in I'\Hp, but they are easily dealt with. In [S1] one
of us also considered the case of A; ,. We found the following simple

result.

Theorem I1.3.3 ([HS2] and [S1]). Ifp > 5 is prime then AfY and
A, are both simply-connected.

In some other cases one knows that A(I') is rational and hence
simply-connected. In all these cases, as F. Campana pointed out, it
follows that the Satake compactification, and any other normal model,
is also simply-connected.

By a more systematic use of these ideas, one of us [S1] gave a more
general result, valid in fact for all locally symmetric varieties over C.
From it several results about Siegel modular varieties can be easily de-
duced, of which Theorem I1.3.4 below is the most striking.

Theorem I1.3.4 ([S1]). For any finite group G there exists a g > 2
and an arithmetic subgroup I' C Sp(2g,Z) such that T (A(T)) = G.

Proof. We choose an [ > 4 and a faithful representation p : G —
Sp(2g,F,) for some prime p not dividing 2!|G|. The reduction mod p
map ¢, : ['(l) — Sp(2g,F,) is surjective and we take I' = ¢ (p(G)).
As this is a subgroup of I'(l) it is neat, and under these circumstances
the fundamental group of the corresponding smooth compactification of
A(T) is T'/Y, where T is a certain subgroup of I' generated by unipo-
tent elements (each unipotent element corresponds to a loop around a
boundary component). From this it follows that T C Ker¢, = I'(pl).
Then from Theorem I1.3.1 applied to level pl it follows that T = T'(pl)
and hence that the fundamental group is T'/T'(pl) = G. Q.E.D.

For G = Dg we may take g = 2; in particular, the fundamental group
of a smooth projective model of a Siegel modular threefold need not be
abelian. Apart from the slightly artificial examples which constitute
Theorem I1.3.4, it is also shown in [S1] that a smooth model of the
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double cover N of Nieto’s threefold A5 has fundamental group Z; x Zs.
The space N5 will be discussed in Section IV below: it is birational with
the moduli space of abelian surfaces with a polarization of type (1, 3)
and a level-2 structure.

III. Abelian surfaces

In the case of abelian surfaces the moduli spaces A;; and 1197‘{ of
abelian surfaces with a (1, t)-polarization, resp. with a (1, t)-polarization
and a canonical level structure were investigated by a number of authors.
One of the starting points for this development was the paper by Hor-
rocks and Mumford ([HM]) which established a connection between the

lev

Horrocks-Mumford bundle on P* and the moduli space AYY.

ITI.1. The lifting method

Using a version of Maa8 lifting Gritsenko has proved the existence of
a weight 3 cusp forms for almost all values of ¢. Before we can describe
his lifting result recall the paramodular group Sp(A,Z) where

(%) e (o ?)

for some integer ¢t > 1, with respect to a basis (e, ez, €3, €4). This group
is conjugate to the (rational) paramodular group

1
I'i;=R'Sp(A,Z)R, R= ( 1 )
t

It is straightforward to check that

Z Z Z tZ
tZ Z t7 tZ
Fl,t _ g € Sp(47Q)7 g € Z Z Z tZ

Z t7'Z 7 Z

Then A, =T'y,\Hp is the moduli space of (1,t)-polarized abelian sur-
faces. In this chapter we shall denote the elements of Hy by

T = ( o ) S HQ.
T2 T3
The Tits building of T'; ;, and hence the combinatorial structure of the

boundary components of the Satake or the Voronoi (Igusa) compactifi-
cation of A, ; are known, at least if ¢ is square free: see [FrS], where Tits
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buildings for some other groups are also calculated. There are exactly
u(t) corank 1 boundary components, where p(t) denotes the number of
prime divisors of ¢ ([Grl, Folgerung 2.4]). If ¢ is square free, then there
exists exactly one corank 2 boundary component ([Fr, Satz 4.7]). In
particular, if ¢ > 1 is a prime number then there exist two corank 1
boundary components and one corank 2 boundary component. These
boundary components belong to the isotropic subspaces spanned by e3
and ey, resp. by es A eq. In terms of the Siegel space the two corank 1
boundary components correspond to 7, — ico and 73 — i00. For t =1
these two components are equivalent under the group I'1 1 = Sp(4, Z).

Gritsenko’s construction of cusp forms uses a version of Maa$ lifting.
In order to explain this, we first have to recall the definition of Jacobi
forms. Here we restrict ourselves to the case of I'y ; = Sp(4,Z). The
stabilizer of Qe4 in Sp(4,Z) has the structure

P(es) 2 SL(2,Z) x H(Z)
where SL(2,7) is identified with

a 0 b O )
01 0 0 a b
c 0 d O ’(c d)ESL(z’Z)
0 0 0 1 )
and
1 00 p )
_ Al opor |
H(Z)'— 0 0 1 _)\ 7)‘a/'L7T€Z
0 0 0 1 J

is the integral Heisenberg group.

Every modular form F € M(Sp(4,Z)) of weight k with respect
to Sp(4,Z) has a Fourier extension with respect to 73 which is of the
following form

F(r) = Z fon(71,T2)e2™mTs,
m>0 .
The same is true for modular forms with respect to I'y ¢, the only differ-
ence is that the factor exp(2mim73) has to be replaced by exp(2mimtrs).
The coefficients fn(71,72) are examples of Jacobi forms. Formally Ja-
cobi forms are defined as follows:

Definition. A Jacobi form of index m and weight k is a holomor-

phic function
D =&(r,2):H; xC—-C



116 K. Hulek and G. K. Sankaran

which has the following properties:
(1) It has the transformation behaviour

2micmz?

(a) @ (Z‘:—l“:db’ cri—d) = (CT + d)ke er+d (I)(’/'" Z),

( ’ Z ) € SL(2,7)

(b) ®(7,z + AT + p) = e~ 2mm*TH2ANH(7, 2), A\ p € Z.
(2) It has a Fourier expansion

o(r,z)= Y.,  fn, D)),
nJl€Z,n>0
4nm>1?

A Jacobi form is called a cusp form if one has strict inequality 4nm > [2
in the Fourier expansion.

Note that for z = 0 the transformation behaviour described by (1)(a)
is exactly that of a modular form. For fixed 7 the transformation law
(1)(b) is, up to a factor 2 in the exponent, the transformation law for
theta functions. One can also summarize (1)(a) and (1)(b) by saying
that ® = ®(r,2) is a modular form with respect to the Jacobi group
SL(2,Z) x H(Z). (Very roughly, Jacobi forms can be thought of as
sections of a suitable Q-line bundle over the universal elliptic curve,
which doesn’t actually exist.) The Jacobi forms of weight k and index
m form a vector space Ji,m of finite dimension. The standard reference
for Jacobi forms is the book by Eichler and Zagier ([EZ]).

As we have said before, Jacobi forms arise naturally as coefficients
in the Fourier expansion of modular forms. These coefficients are func-
tions, or more precisely sections of a suitable line bundle, on a boundary
component of the Siegel modular threefold. The idea of lifting is to re-
verse this process. Starting with a Jacobi form one wants to construct
a Siegel modular form where this Jacobi form appears as a Fourier co-
efficient. This idea goes back to Maafl ([Ma2]) and has in recent years
been refined in several ways by Gritsenko, Borcherds and others: see
e.g.[Grl], [Gr3], [GrN] and [Borc|. The following lifting result is due to
Gritsenko.

Theorem III.1.1 ([Grl]). There is a lifting, i.e. an embedding
Lift : Jk,t — Mk(Fl,t)

of the space of Jacobi forms of weight k and index t into the space of
modular forms of weight k with respect to the paramodular group T’y ;.
The lifting of a Jacobi cusp form is again a cusp form.
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Proof. For details see [Grl, Hauptsatz 2.1] or {Gr2, Theorem 3].
For a Jacobi form ® = ®(72z) with Fourier expansion

B(r,z)= ) fln, )T
n,leZ
4ant>1?

the lift can be written down explicitly as

Lift ®(r) = Z Z ak1f ('n,m £> 2mi(nTiHlryfmtrs)

2 b
4tmn>12 a|(n,l,m) ¢ “
QED.

Since one knows dimension formulae for Jacobi cusp forms one obtains
in this way lower bounds for the dimension of the space of modular
forms and cusp forms with respect to the paramodular group. Using
this together with Freitag’s extension theorem it is then easy to obtain
the following corollaries.

Corollary II1.1.2. Let py(t) be the geometric genus of a smooth
projective model of the moduli space A ¢ of (1,t)-polarized abelian sur-

faces. Then
t—1 .2
2B (Ci+2a-|Z])

where

fmhia { E3 if m#2 mod 12

|%|-1 i m=2 mod12

and |x| denotes the integer part of x.

This corollary also implies that py(t) goes to infinity as t goes to
infinity.

Corollary IIL.1.3. The Kodaira dimension of Ai; 1is non-
negative if t > 13 and t # 14,15,16,18, 20,24, 30, or 36. In particular
these spaces are not unirational.

Corollary II1.1.4. The Kodaira dimension of Ay, s positive if
t > 29 and t # 30, 32, 35, 36, 40, 42, 48, or 60.

On the other hand one knows that A; . is rational or unirational
for small values of t. We have already mentioned that Igusa proved
rationality of A; 1 = As in [I1]. Rationality of A, o and A; 3 was proved
by Birkenhake and Lange ([BL]). Birkenhake, Lange and van Straten
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([BLvS]) also showed that A; 4 is unirational. It is a consequence of
the work of Horrocks and Mumford ([HM]) that .A[§ is rational. The
variety AYY is birational to a Fano variety of type Vas ([MS]) and hence
also rational. The following result of Gross and Popescu was stated in
[GP1] and is proved in the series of papers [GP1]-[GP4].

Theorem IIL.1.5 ([GP1], [GP2], [GP3] and [GP4]). Ay} is ratio-
nal for 6 <t < 10 and t = 12 and unirational, but not rational, for
t = 11. Moreover the variety Ay ; is unirational for t = 14,16, 18 and
20.

We shall return to some of the projective models of the modular
varieties A; ¢ in chapter V. Altogether this gives a fairly complete pic-
ture as regards the question which of the spaces A; ; can be rational or
unirational. In fact there are only very few open cases.

Problem. Determine whether the spaces A, ; for ¢t = 15,24, 30,
or 36 are unirational.

ITI.2. General type results for moduli spaces of abelian sur-
faces

In the case of moduli spaces of abelian surfaces there are a number

of concrete bounds which guarantee that the moduli spaces A ¢, resp.

‘f"; are of general type. Here we collect the known results and comment
on the different approaches which enable one to prove these theorems.

Theorem II1.2.1 ([HS1] and [GrH1]). Let p be a prime number.

The moduli spaces A'f"l’, are of general type if p > 37.

Proof. This theorem was first proved in [HS1] for p > 41 and was
improved in [GrH1] to p = 37. The two methods of proof differ in one
important point. In [HS1] we first estimate how the dimension of the
space of cusp forms grows with the weight k£ and find that

: ey _ PP —1)
(5) dim Sgk (Fll,p) = —é;ﬁ—'—ks + O(k2)

These cusp forms give rise to k-fold differential forms on ¢ lf"z’, and we
have two types of obstruction to extending them to a smooth projec-
tive model of A}y one comes from the boundary and the other arises
from the elliptic fixed points. To calculate the number of obstructions
from the boundary we used the description of the boundary of the Igusa
compactification (which is equal to the Voronoi decomposition) given in

[HKW2]. We found that the number of obstructions to extending k-fold
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differentials is bounded by

2
-1
(6) Hp(p, k) = p i )(Qp +2p + 11)k% + O(k?).
The singularities of the moduli spaces .A‘e‘;, and of the Igusa compact-
ification were computed in [HKW1]. This allowed us to calculate the
obstructions arising from the fixed points of the action of the group
['y. The result is that the number of these obstructions is bounded by

M Hseb) = 156 - ) (f5p-1) B+ 00

The result then follows from comparing the leading terms of (6) and (7)
with that of (5).

The approach in [GrH1] is different. The crucial point is to use
Gritsenko’s lifting result to produce non-zero cusp forms of weight 2.
The first prime where this works is p = 37, but it also works for all
primes p > 71. Let G be a non-trivial modular form of weight 2 with
respect to I'; 37. Then we can consider the subspace

Vi = G*My (T%;) C My (T%7) -

The crucial point is that the elements of V} vanish by construction to
order k on the boundary. This ensures that the extension to the bound-
ary imposes no further conditions. The only possible obstructions are
those coming from the elliptic fixed points. These obstructions were
computed above. A comparison of the leading terms again gives the

result. Q.E.D.

The second method described above was also used in the proof of
the following two results.

Theorem II1.2.2 ([OG] and [GrS]). The moduli space AT, is of
general type for every prime p > 11.

This was proved in [GrS] and improves a result of O’Grady ([OG])
who had shown this for p > 17. The crucial point in [GrS] is that,
because of the square p?, there is a covering Aj p2 — Az,1. The proof in
[GrS] then also uses the existence of a weight 2 cusp form with respect
to the group I'y ;2 for p > 11. The only obstructions which have to be
computed explicitly are those coming from the elliptic fixed points. The
essential ingredient in O’Grady’s proof is the existence of a map from a
partial desingularization of a t0r01dal compactification to the space My
of semi-stable genus 2 curves.
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A further result in this direction is

Theorem II1.2.3 ([S2]). The moduli spaces Ay are of general
type for all primes p > 173.

It is important to remark that in this case there is no natural map
from A; ;, to the moduli space A; ; = Aj of principally polarized abelian
surfaces. A crucial ingredient in the proof of the above theorem is the
calculation of the singularities of the spaces A; , which was achieved by
Brasch ([Br]). Another recent result is

Theorem II1.2.4 ([H3]). The moduli spaces of (1,d)-polarized
abelian surfaces with a full level-n structure are of general type for all
pairs (d,n) with (d,n) =1 and n > 4.

A general result due to L. Borisov is

Theorem II1.2.5 ([Bori]). There are only finitely many subgroups
H of Sp(4,Z) such that A(H) is not of general type.

Note that this result applies to the groups I‘lf";] and I'y y2 which
are both conjugate to subgroups of Sp(4,Z), but does not apply to the
groups I'y 5, which are not. (At least for p > 7: the subgroup of C*
generated by the eigenvalues of non-torsion elements of I'; , contains pth
roots of unity, as was shown by Brasch in [Br], but the corresponding
group for Sp(4,Z) has only 2- and 3-torsion.)

We shall give a rough outline of the proof of this result. For details
the reader is referred to [Bori]. We shall mostly comment on the geo-
metric aspects of the proof. Every subgroup H in Sp(4,Z) contains a
principal congruence subgroup I'(n). The first reduction is the obser-
vation that it is sufficient to consider only subgroups H which contain
a principal congruence subgroup I'(p') for some prime p. This is essen-
tially a group theoretic argument using the fact that the finite group
Sp(4,Z,) is simple for all primes p > 3. Let us now assume that H
contains I'(n) (we assume n > 5). This implies that there is a finite
morphism Ay(n) — A(H). The idea is to show that for almost all
groups H there are sufficiently many pluricanonical forms on the Igusa
(Voronoi) compactification X = A%(n) which descend to a smooth pro-
jective model of A(H). For this it is crucial to get a hold on the possible
singularities of the quotient Y. We have already observed in Corollary
I1.2.6 that the canonical divisor on X is ample for n > 5. The finite
group H = T'y(n)/H acts on X and the quotient Y = H\X is a (in
general singular) projective model of A(H). Since X is smooth and H
is finite, the variety Y is normal and has log-terminal singularities, i.e.

if m: Z =Y is a desingularization whose exceptional divisor E = >_ F;
i
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has simple normal crossings, then

Kz =7n*Ky + Z(—'l + 61)EZ with §; > 0.

Choose § > 0 such that —1+ 6 is the minimal discrepancy. By Lx, resp.
Ly we denote the QQ-line bundle whose sections are modular forms of
weight 1. Then Ly = p*Ly where p: X — Y is the quotient map.

The next reduction is that it suffices to construct a non-trivial sec-
tion s € H®(m(Ky — Ly)) such that s, € Oy (m(Ky - Ly)m;n(l_é)
for all y € Y where Y has a non-canonical singularity. This is enough
because 7*(sH%(mLy)) C H°(mKz) and the dimension of the space
H°(mLy) grows as m3.

The idea is to construct s as a suitable H-invariant section

s € H(u*(m(Ky — Ly)))”

satisfying vanishing conditions at the branch locus of the finite map
p: X — Y. For this one has to understand the geometry of the quotient
map u. First of all one has branching along the boundary D = Y D; of
X. We also have to look at the Humbert surfaces

1
0 . -1
Hl:{T:(E T3>;7’1,T3€H1}: Fix 1
—1
and
0 1
_ _ T1 T2 . - _ . 1 0
H4—{’T—(T2 Ts),Tl——Tg}——FlX 0 1
1 0
Let
F= U o)) , 6= |J 9(H)
9€5Sp(4,2) 9€Sp(4,2)
and let

F=n(F), G=m(9)
where 7 : Hy — I'(n)\H; C X is the quotient map. One can then show
that the branching divisor of the map A(I'y(n)) — A(H) is contained
in F'UG and that all singularities in A(H) which lie outside u(F U G)
are canonical. Moreover the stabilizer subgroups in Sp(4,Z) of points
in F UG are solvable groups of bounded order. Let F = > F; and
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G = Y G, be the decomposition of the surfaces F' and G into irreducible
components. We denote by d;, f; and g; the ramification order of the
quotient map p : X — Y along D;, F; and G;. The numbers f; and g;
are equal to 1 or 2. One has

p*(m(Ky — Ly)) = m(Kx — Lx) — Zm(di —1)D; — Zm(f,. —1)F,
=D _mlgi —1)Gs.

Recall that the finite group H is a subgroup of the group G =
I'/T(n) = Sp(4,Z,). The crucial point in Borisov’s argument is to show,
roughly speaking, that the index [G : H] can be bounded from above in
terms of the singularities of Y. There are several such types of bounds
depending on whether one considers points on the branch locus or on one
or more boundary components. We first use this bound for the points
on X which lie on 3 boundary divisors. Using this and the fact that Y
has only finite quotient singularities one obtains the following further
reduction: if R is the ramification divisor of the map p : X — Y, then
it is enough to construct a non-zero section in H°(m(Kx — Lx — R))

for some m > 0 which lies in m;"k(StabH 2) for all points x in X which lie
over non-canonical points of Y and which are not on the intersection of
3 boundary divisors. Here k(Stab™ z) is defined as follows. First note
that Stab z is solvable and consider a series

{0} =Ho<H;<...aH; = Stab" z

with H;/H;_1 abelian of exponent k;. Take k' = k; - ... k;. Then
k(Stab® ) is the minimum over all ¥’ which are obtained in this way. To
obtain an invariant section one can then take the product with respect to
the action of the finite group H. Now recall that all non-canonical points
on A(H) lie in (F UG). The subgroup Z Stab™ D; of Stab” D; which
acts trivially on D; is cyclic of order d;. Moreover if x lies on exactly one
boundary divisor of X then the order of the group Stab® z/Z Stab” D;
is bounded by 6 and if = lies on exactly 2 boundary divisors, then the
order of this group is bounded by 4. Using this one can show that there
is a constant ¢ (independent of H) such that it is sufficient to construct
a non-zero section in m(Kx — Lx — cR) for some positive m. By results
of Yamazaki [Ya] the divisor mKx — 2mLyx is effective. It is, therefore,
sufficient to prove the existence of a non-zero section in m(Kx — 2cR).
The latter equals

mKx —2¢Y m(di —1)D; —2c Y _m(f; — 1)F; —2¢ Y _m(g: — 1)Gi.
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We shall now restrict ourselves to obstructions coming from components
Fj; the obstructions coming from G;, D; can be treated similarly. Since
RO(mKx) > c1n'®m3 for some ¢; > 0, m > 0 one has to prove the
following result: let £ > 0; then for all but finitely many subgroups H
one has

Z (RP(mKx) — h°(mKx — 2emfiF;)) < en'®m?® for m >0
fi=2

and all n. This can finally be derived from the following boundedness
result. Let £ > 0 and assume that

#{F;; fi=2}
#{Fi}

then the index [G : H] is bounded by an (explicitly known) constant
depending only on ¢. The proof of this statement is group theoretic
and the idea is as follows. Assume the above inequality holds: then
H contains many involutions and these generate a subgroup of Sp(4,Z)
whose index is bounded in terms of €.

2,

II1.3. Left and right neighbours

The paramodular group I'y ; C Sp(4,Q) is (for ¢ > 1) not a maximal
discrete subgroup of the group of analytic automorphisms of H,. For
every divisor d||t (i.e. d|t and (d,t/d) = 1) one can choose integers x
and y such that

xd —ytg =1, where ty =t/d.

The matrix

de —1 0 0
V—L —yt d 0 0
= al o 0 d oyt
0 0 1 dzx

is an element of Sp(4, R) and one easily checks that
Vel  Val V' =Ty
The group generated by I't + and the elements Vg, i.e.
Fjl:,t = (T, Va; d|t)

does not depend on the choice of the integers z,y. It is a normal exten-
sion of I'; ; with
T}, /T1 & (Zo)H
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where p(t) is the number of prime divisors of t. If t is square-free,
it is known that I‘it is a maximal discrete subgroup of Sp(4,R) (see
[Al],[Gu]). The coset I'y ;V; equals I'y ;V;/ where

o vi' o o
Vi = Vi o0 0 0
d 0 0 Vi

0
o 0o vi' o

This generalizes the Fricke involution known from the theory of elliptic
curves. The geometric meaning of the involution V; : Ay — Ay in-
duced by V; is that it maps a polarized abelian surface (A, H) to its dual.
A similar geometric interpretation can also be given for the involutions
Va (see [GrH2, Proposition 1.6] and also [Br, Satz (1.11)] for the case
d =1t). We also consider the degree 2 extension

I, = (T, Vi)

of I'y;. If t = p™ for a prime number p, then I‘It = I"‘it. The groups
I‘it and Fft define Siegel modular threefolds

'A:i,t = Ff{,t \ Hg, A_1+_,t = I‘_1‘-,)5 \H2'

Since Fit is a maximal discrete subgroup for t square free the space
A}, was called a minimal Siegel modular threefold. This should not be
confused with minimal models in the sense of Mori theory.

The paper [GrH2] contains an interpretation of the varieties Ait

and .A1+’t as moduli spaces. We start with the spaces A{,t.

Theorem II1.3.1 ([GrH2]).

(i) Let A, A’ be two (1,t)-polarized abelian surfaces which define the
same point in Ait. Then their (smooth) Kummer surfaces X, X'
are isomorphic.

(ii) Assume that the Néron-Severi group of A and A’ is generated by
the polarization. Then the converse is also true: if A and A’ have
isomorphic Kummer surfaces, then A and A’ define the same
point in Ait.

The proof of this theorem is given in [GrH2, Theorem 1.5]. The cru-
cial ingredient is the Torelli theorem for K3 surfaces. The above theorem
says in particular that an abelian surface and its dual have isomorphic
Kummer surfaces. This implies a negative answer to a problem posed by
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Shioda, who asked whether it was true that two abelian surfaces whose
Kummer surfaces are isomorphic are necessarily isomorphic themselves.
In view of the above result, a general (1, t)-polarized surface with ¢ > 1
gives a counterexample: the surface A and its dual A have isomorphic
Kummer surfaces, but A and A are not isomorphic as polarized abelian
surfaces. If the polarization generates the Néron-Severi group this im-
plies that A and A are not isomorphic as algebraic surfaces. In view
of the above theorem one can interpret Ait as the space of Kummer
surfaces associated to (1,t)-polarized abelian surfaces.

The space Af’t can be interpreted as a space of lattice-polarized
K 3-surfaces in the sense of [N3] and [Dol]. As usual let Eg be the even,
unimodular, positive definite lattice of rank 8. By FEg(—1) we denote
the lattice which arises from Fg by multiplying the form with —1. Let
(n) be the rank 1 lattice ZI with the form given by I2 = n.

Theorem I11.3.2 ([GrH2]). The moduli space .Att is isomorphic
to the moduli space of lattice polarized K3-surfaces with a polarization

of type (2t) ® 2Eg(—1).
For a proof see [GrH2, Proposition 1.4]. If

L =7e, ® Zey ® Zes @ Zey,
then A\’ L carries a symmetric bilinear form ( , ) given by
4
zAy=(z,y)e1 NeaNez Neg € /\ L.

If w; = e1 A es + tea A ey, then the group

- 2
Fig={g9: Lo L; /\ g(wi) = w}

is isomorphic to the paramodular group I'y ;. The lattice L; = wi- has
rank 5 and the form ( , ) induces a quadratic form of signature (3, 2) on
L;. If O(L,) is the orthogonal group of isometries of the lattice L;, then
there is a natural homomorphism

A

This homomorphism can be extended to F:IC,t and

2 -
=T — O(Ly).

I}, /D1 = O(LY /L) = (Zo)*®)

where L, is the dual lattice of L;. This, together with Nikulin’s theory
([N2], [N3]) is the crucial ingredient in the proof of the above theorems.
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The varieties Aft and .A:{,t are quotients of the moduli space A+
of (1,t)-polarized abelian surfaces. In [GrH3] there is an investigation
into an interesting class of Galois coverings of the spaces A; ;. These
coverings are called left neighbours, and the quotients are called right
netghbours. To explain the coverings of \4; ; which were considered in
[GrH3], we have to recall a well known result about the commutator
subgroup Sp(2g,Z)’ of the symplectic group Sp(2g,Z). Reiner [Re] and
Maafl [Mal] proved that

Zyy forg=1
Sp(29,2)/Sp(29,Z) = Zy;  forg=2.
1 forg >3

The existence of a character of order 12 of Sp(2,Z) = SL(2,Z) follows
from the Dedekind n-function

oo
77(7-) — q1/24 H(l _ qn), g= e2miT

n=1

This function is a modular form of weight 1/2 with a multiplier system
of order 24. Its square n? has weight 1 and is a modular form with
respect to a character v, of order 12. For g = 2 the product

A5 (T) = H Omm’ (7', 0)

(m,m’) even

of the 10 even theta characteristics is a modular form for Sp(4,Z) of
weight 5 with respect to a character of order 2.

In [GrH3| the commutator subgroups of the groups I';; and I‘It
were computed. For t > 1 we put

ty = (£,12),  ty = (2t,12).

Theorem II1.3.3 ([GrH3]|). For the commutator subgroups T} ; of
Ty and (Tf,) of Fitt one obtains
() T1,/T1; =2 Ze, X Ly,
(i) Tf/(TY,) & Zo X Za,.

This was shown in [GrH3, Theorem 2.1].

In [Mul] Mumford pointed out an interesting application of the
computation of Sp(2,Z)’ to the Picard group of the moduli stack A, .
He showed that

PiC(Al) = Zio.
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In the same way the above theorem implies that
Pic(A,) = Pic(A, 1) 2 Z x Zg

and
Tors Pic(A, ;) = Zt, X Zs,.

The difference between the cases A, ; and A, ;, t > 1 is that one knows
that the rank of the Picard group of A, = A, ; is 1, whereas the rank
of the Picard group of A, ;, t > 1 is unknown. One only knows that
it is positive. This is true for all moduli stacks of abelian varieties of
dimension g > 2, since the bundle L of modular forms of weight 1 is
non-trivial. The difference from the genus 1 case lies in the fact that
there the boundary of the Satake compactification is a divisor.

Problem. Determine the rank of the Picard group Pic(A4, ,).

We have already discussed Gritsenko’s result which gives the exis-
tence of weight 3 cusp forms for I'; ; for all but finitely many values of
t. We call these values

t=1,2,...,12,14,15,16,18, 20,24, 30, 36

the exceptional polarizations. In many cases the results of Gross and
Popescu show that weight 3 cusp forms indeed cannot exist. The best
possible one can hope for is the existence of weight 3 cusp forms with
a character of a small order. The following result is such an existence
theorem.

Theorem I11.3.4 ([GrH3|). Let t be exceptional.
(i) If t # 1,2,4,5,8,16 then there exists a weight 3 cusp form with
respect to I'y; with a character of order 2.
(ii) Fort = 8,16 there exists a weight 3 cusp form with a character
of order 4.
(ili) Fort =0 mod 3,t # 3,9 there exists a weight 3 cusp form with
a character of order 3.

To every character x : I'y ; — C* one can associate a Siegel modular

variety
A(x) = Ker x \ Ha.

The existence of a non-trivial cusp form of weight 3 with a character x
then implies by Freitag’s theorem the existence of a differential form on
a smooth projective model A(x) of A(x). In particular the above result
proves the existence of abelian covers A(x) — A; ¢ of small degree with

Pg('zt(X)) > 0.



128 K. Hulek and G. K. Sankaran

The proof is again an application of Gritsenko’s lifting techniques.
To give the reader an idea we shall discuss the case t = 11 which is
particularly interesting since by the result of Gross and Popescu A, 11 is
unirational, but not rational. In this case I'y 11 has exactly one character
x2. This character has order 2. By the above theorem there is a degree
2 cover A(x2) — Aj11 with positive geometric genus. In this case the
lifting procedure gives us a map

Lift: qulslp( x vg) — S3(T1,11, x2)-

Here vy, is the multiplier system of the Dedekind #-function and v}lz isa
character of order 2. The character vH is a character of order 2 of the

integer Heisenberg group H = H(Z). B J;“lslp (1;,27 x vg) we denote the
12

Jacobi cusp forms of weight 3 and index 11/2 Wlth a character v,” X vg.
Similarly S3(T'1,11, x2) is the space of weight 3 cusp form with respect
to the group I'y 11 and the character x,. Recall the Jacobi theta series

19(7', z) = Z (_:4_> qmz/S,’,m/2 (q _ e27'rz7' — e21riz)

m
meZ

( 4)_ +1 ifm=41 mod4
m/) |0 ifm=0 mod 2.
This is a Jacobi form of weight 1/2, index 3/2 and multiplier system

vf’] X vy. For an integer a we can consider the Jacobi form

where

Vol 2) = O(7,az2) € J%,%az(vz X v ).
One then obtains the desired Siegel cusp form by taking
F = Lift(n°9%95) € S3(T'111, x2)-

Finally we want to consider the maximal abelian covering of A, ;, namely
the Siegel modular threefold

com 1-\11 . \ ]HI2

By Com we denote a smooth projective model of A{%".

Theorem II1.3.5 ([GrH3]).
(i) The geometric genus of A9 is 0 if and only if t = 1,2,4,5.
(ii) The geometric genus of A{%* and A$%" is 1.
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The proof can be found as part of the proof of [GrH3, Theorem 3.1].

At this point we should like to remark that all known construction
methods fail when one wants to construct modular forms of small weight
with respect to the groups I‘ft or 1":{7,5. We therefore pose the

Problem. Construct modular forms of small weight with respect
to the groups I‘f’t and I‘it.

IV. Projective models

In this section we describe some cases in which a Siegel modular
variety is or is closely related to an interesting projective variety. Many
of the results are very old.

IV.1. The Segre cubic
Segre’s cubic primal, or the Segre cubic, is the subvariety Sz of P°
given by the equations

5 5
in=Za}f’=O

=0 =0

in homogeneous coordinates (zo : ... : ¥5) on P°. Since it lies in the hy-
perplane (Z T = 0) C P? it may be thought of as a cubic hypersurface
in P4, but the equations as given here have the advantage of showing
that there is an action of the symmetric group Sym(6) on Ss.

These are the equations of S3 as they are most often given in the
literature but there is another equally elegant formulation: Ss is given
by the equations

o1(z;) = o3(zi) =0

where oy (z;) is the kth elementary symmetric polynomial in the z;,
#I=kicl

To check that these equations do indeed define S3 it is enough to notice

that
3o3(x;) = (Z xi)g -3 (sz) (Z xf) - fo’

Lemma IV.1.1. 83 is invariant under the action of Sym(6) and
has ten nodes, at the points equivalent to (1:1:1: —1:—1:—1) under
the Sym(6)-action. This is the mazimum possible for a cubic hyper-
surface in P*, and any cubic hypersurface with ten nodes is projectively
equivalent to Ss.



130 K. Hulek and G. K. Sankaran

Many other beautiful properties of the Segre cubic and related va-
rieties were discovered in the nineteenth century.

The dual variety of the Segre cubic is a quartic hypersurface Z; C P4,
the Igusa quartic. If we take homogeneous coordinates (yp : ... : y5) on
PS5 then it was shown by Baker ([Bal]) that Z, is given by

5
Zyi=a2+b2+c2—2(ab+bc+ca) =0
i=0

where

a=(y1—ys)(ya—y2), b= (y2—y3)(ys—wo) and c = (Yo —ys)(¥3 —¥1)-

This can also be written in terms of symmetric functions in suitable
variables as
0'1(2177;) = 40'4(5(:7;) — 0'2(.’171')2 =0.

This quartic is singular along (g) =15 lines £;;, 0 <4 < j <5, and
£;; Ny, = 0 if and only if {7, 5} N {m,n} # 0. There are %(g) =10
smooth quadric surfaces @y in Zy, such that, for instance, £o1, £12 and
ZQO lie in one ruling of Q012 = Q345 and 634, £45 and €53 lie in the other
ruling. The birational map Z, --+ S3 given by the duality blows up the
15 lines £;;, which resolves the singularities of Z4, and blows down the
proper transform of each Q;jx (still a smooth quadric) to give the ten
nodes of Ss.

5
It has long been known that if H C P? = ( > yz) is a hyperplane
=0

which is tangent to Z, then H N7, is a Kummer quartic surface. This
fact provides a connection with abelian surfaces and their moduli. The
Igusa quartic can be seen as a moduli space of Kummer surfaces. In this
case, because the polarization is principal, two abelian surfaces giving
the same Kummer surface are isomorphic and the (coarse) moduli space
of abelian surfaces is the same as the moduli space of Kummer surfaces.
This will fail in the non-principally polarized case, in IV.3, below.

Theorem IV.1.2. &3 is birationally equivalent to a compactifica-
tion of the moduli space Ax(2) of principally polarized abelian surfaces
with a level-2 structure.

The Segre cubic is rational. An explicit birational map P? --» S3
was given by Baker ([Bal]) and is presented in more modern language
in [Hun].

Corollary IV.1.3. A%(2) is rational.
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A much more precise description of the relation between S; and
A(2) is given by this theorem of Igusa.

Theorem IV.1.4 ([I2]). The Igusa compactification A%(2) of the
moduli space of principally polarized abelian surfaces with a level-2 struc-
ture is isomorphic to the the blow-up 33 of 83 in the ten nodes. The Sa-
take compactification A3(2) is isomorphic to Iy, which is obtained from
S3 by contracting 15 rational surfaces to lines.

Proof. The Satake compactification is Proj M(T'2(2)), where
M(T) is the ring of modular forms for the group I'. The ten even
theta characteristics determine ten theta constants 0., (7),. .., 0me(T)
of weight % for T'3(2), and 6%, (1) is a modular form of weight 2 for
['2(2). These modular forms determine a map f : A3(2) — P° whose
image actually lies in a certain P* C P®. The integral closure of the
subring of M(T'2(2)) generated by the 67, is the whole of M (I'2(2))
and there is a quartic relation among the 65, (as well as five linear
relations defining P* C PY) which, with a suitable choice of basis, is
the quartic a? + b% + ¢ — 2(ab + bc + ca) = 0. Furthermore, f is an
embedding and the closure of its image is normal, so it is the Satake
compactification. Q.E.D.

The Igusa compactification is, in this context, the blow-up of the
Satake compactification along the boundary, which here consists of the
fifteen lines ¢;;. The birational map 74 --+ Ss3 does this blow-up and
also blows down the ten quadrics Q;;x to the ten nodes of Ss.

For full details of the proof see [I2]; for a more extended sketch
than we have given here and some further facts, see [Hun]. We mention
that the surfaces Q;jx, considered as surfaces in A(2), correspond to
principally polarized abelian surfaces which are products of two elliptic
curves.

Without going into details, we mention also that 7, may be thought
of as the natural compactification of the moduli of ordered 6-tuples of
distinct points on a conic in P2. Such a 6-tuple determines 6 lines in
P2 which are all tangent to some conic, and the Kummer surface is
the double cover of P2 branched along the six lines. The order gives
the level-2 structure (note that I'2/I'2(2) = Sp(4, Z2) = Sym(6).) The
abelian surface is the Jacobian of the double cover of the conic branched
at the six points. On the other hand, S3 may be thought of as the
natural compactification of the moduli of ordered 6-tuples of points on
a line: for this, see [DO].

The topology of the Segre cubic and related spaces has been studied
by van der Geer ([vdG1]) and by Lee and Weintraub ([LW1], [LW2]).
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The method in [LW1] is to show that the isomorphism between the open
parts of S3 and .A5(2) is defined over a suitable number field and use the
WEeil conjectures.

Theorem IV.1.5 ([LW1] and [vdG1]). The homology of the Igusa
compactification of Ay(2) is torsion-free. The Hodge numbers are h®° =
K33 =1, R1! = h%2 =16 and hP? = 0 otherwise.

By using the covering A(4) — A(2), Lee and Weintraub [LW3]
also prove a similar result for A3(4).

IV.2. The Burkhardt quartic
The Burkhardt quartic is the subvariety B, of P given by the equa-
tion
Yo — yo(y3 + 5 + 3 + i) + 3y1y2ysa = 0.

This form of degree 4 was found by Burkhardt ([Bu]) in 1888. It is the
invariant of smallest degree of a certain action of the finite simple group
PSp(4,7Z3) of order 25920 on P*, which arises in the study of the 27
lines on a cubic surface. In fact this group is a subgroup of index 2 in
the Weyl group W (Eg) of Eg, which is the automorphism group of the
configuration of the 27 lines. The 27 lines themselves can be recovered
by solving an equation whose Galois group is W(Eg) or, after adjoining
a square root of the discriminant, PSp(4, Z3).

Lemma IV.2.1. B, has forty-five nodes. Fifteen of them are
equivalent to (1: —1:0:0: 0: 0) under the action of Sym(6) and the
other thirty are equivalent to (1:1: &3 : €3 : €2 : £2), where &3 = e2mi/3,
This is the greatest number of nodes that a quartic hypersurface in P*
can have and any quartic hypersurface in P* with 45 nodes is projectively
equivalent to By.

This lemma is an assemblage of results of Baker ([Ba2|) and de Jong,
Shepherd-Barron and Van de Ven ([JSV]): the bound on the number of
double points is the Varchenko (or spectral) bound [Va], which in this
case is sharp.

We denote by 8,5(T), a, B € Z3, the theta constants

Oap(T) =06 [ 2 g ] (r,0) = Z exp{mi ‘ntn + 2mi(an, + Bna)}
neZ?

where 7 € Hy. Here we identify a € Z3 with «/3 € Q. The action of
I'2(1) = Sp(4,Z) on Hy induces a linear action on the space spanned
by these 03, and I'2(3) acts trivially on the corresponding projective
space. Since —1 € I'y(1) acts trivially on Hy, this gives an action of
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PSp(4,Z)/T2(3) = PSp(4,Z3) on P8. The subspace spanned by the
YoB = 2(0043 + 0_q,_p) is invariant. Burkhardt studied the ring of
invariants of this action. We put yo = —yo0, ¥1 = 2¥10, ¥2 = 2¥o1,
y3 = 2y11 and yq = 2y; 1.

Theorem IV.2.2 ([Bu] and [vdG2]). The quartic form y§ —
Yoy + v3 + y3 + v3) + 3y1y2y3ys is an invariant, of lowest degree, for
this action. The map

T+—->(y0:y1:y2:y3:y4)

defines a map Hg/Fz(S) — By which extends to a birational map
A2(3) -=3 84

This much is fairly easy to prove, but far more is true: van der Geer,
in [vdG2], gives a short modern proof as well as providing more detail.
The projective geometry of B, is better understood by embedding it in
P, as we did for S5. Baker [Ba2] gives explicit linear functions xo, .. ., x5
of yy, ..., ys such that By C P? is given by

al(:ci) = 0'4(3%') =0.

The details are reproduced in [Hun).

Theorem IV.2.3 ([To] and [Ba2]). B, is rational: consequently
A%(3) is rational.

This was first proved by Todd ([To]); later Baker ([Ba2]) gave an
explicit birational map from P3 to Bs.

To prove Theorem IV.2.2 we need to say how to recover a princi-
pally polarized abelian surface and a level-3 structure from a general
point of B4. The linear system on a principally polarized abelian surface
given by three times the polarization is very ample, so the theta func-
tions O,5(T, z) determine an embedding of A, = C%/Z? + Z*r (1 € Hy)
into P®. Moreover the extended Heisenberg group G3 acts on the linear
space spanned by the 6,3. The Heisenberg group of level 3 is a central
extension

0—+,u3—>H3——>Z§——>0

and G3 is an extension of this by an involution ¢. The involution acts
by z — —z and Z2 acts by translation by 3-torsion points. The space
spanned by the y,g is invariant under the normalizer of the Heisenberg
group in PGL(4,C), which is isomorphic to PSp(4,Zs3), so we get an
action of this group on P* and on B, C P*.

For a general point p € By the hyperplane in P* tangent to By
at p meets By in a quartic surface with six nodes, of a type known as a
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Weddle surface. Such a surface is birational to a unique Kummer surface
(Hudson ([Hud]) and Jessop ([Je]) both give constructions) and this is
the Kummer surface of A.,.

It is not straightforward to see the level-3 structure in this picture.
One method is to start with a principally polarized abelian surface (4, ©)
and embed it in P® by |3©|. Then there is a projection P® — P3 under
which the image of A is the Weddle surface, so one identifies this P3
with the tangent hyperplane to B;. The Heisenberg group acts on P8
and on H°(P® Ops(2)), which has dimension 45. In P, A is cut out
by nine quadrics in P8. The span of these nine quadrics is determined
by five coeflicients ayp, ..., a4 which satisfy a homogeneous Heisenberg-
invariant relation of degree 4. As the Heisenberg group acting on P* has
only one such relation this relation must again be the one that defines By.
Thus the linear space spanned by nine quadrics, and hence A with its
polarization and Heisenberg action, are determined by a point of By.
The fact that the two degree 4 relations coincide is equivalent to saying
that B4 has an unusual projective property, namely it is self-Steinerian.

It is quite complicated to say what the level-3 structure means for
the Kummer surface. It is not enough to look at the Weddle surface:
one also has to consider the image of A in another projection P® — P4,
which is again a birational model of the Kummer surface, this time as a
complete intersection of type (2, 3) with ten nodes. More details can be
found in [Hun].

The details of this proof were carried out by Coble ([Cob}), who also
proved much more about the geometry of B4 and the embedded surface
A, C P8. The next theorem is a consequence of Coble’s results.

Theorem IV.2.4 ([Cob]). Let 7 : By — By be the blow-up of By
in the 45 nodes. Then By & A%(3); the exceptional surfaces in B, corre-
spond to the Humbert surfaces that parametrize product abelian surfaces.
The Satake compactification is obtained by contracting the preimages of
40 planes in By, each of which contains 9 of the nodes.

One should compare the birational map A3(3) --+ B, with the bi-
rational map 7, --+ S3 of the previous section.

By computing the zeta function of B, over F, for ¢ = 1 (mod 3),
Hoffman and Weintraub ([HoW]) calculated the cohomology of A%(3).

Theorem IV.2.5 ([HoW]). H%(A%(3),Z) is free: the odd Betti
numbers are zero and by = by = 61.

In fact [HoW] gives much more detail, describing the mixed Hodge
structures, the intersection cohomology of the Satake compactifica-
tion, the PSp(4, Zs)-module structure of the cohomology and some of
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the cohomology of the group I'2(3). The cohomology of I';(3) was
also partly computed, by another method, by MacPherson and Mec-
Connell ([McMc]), but neither result contains the other.

IV.3. The Nieto quintic

The Nieto quintic N is the subvariety of P® given in homogeneous
coordinates xg, ..., Z5 by

o1(zi) = o5(z;) = 0.

This is conveniently written as Y x; = > zi, = 0. As in the cases of S3
and By, this form of the equation displays the action of Sym(6) and is
preferable for most purposes to a single quintic equation in P*. Unlike
S; and By, which were extensively studied in the nineteenth century, N5
and its relation to abelian surfaces was first studied only in the 1989
Ph.D. thesis of Nieto ([Ni]) and the paper of Barth and Nieto ([BN]).

We begin with a result of van Straten ([vS]).

Theorem IV.3.1 ([vS]). Nj; has ten nodes but (unlike S3 and By)
it also has some non-isolated singularities. However the quintic hyper-
surface in P* given as a subvariety of P by

o1(x;) = o5(x;) + 02(x;)03(2:) = 0.
has 130 nodes and no other singularities.

This threefold and the Nieto quintic are both special elements of the
pencil
o1(z;) = aos(@;) + Poa(zi)os(zi) =0

and the general element of this pencil has 100 nodes. Van der
Geer ([vdG2]) has analysed in a similar way the pencil

o1(x;) = aoy(x;) + Boa(z;)? =0

which contains By (45 nodes) and Z (15 singular lines) among the special
fibres, the general fibre having 30 nodes. '

No example of a quintic 3-fold with more than 130 nodes is known,
though the Varchenko bound in this case is 135.

N5, like Sz and By, is related to abelian surfaces via Kummer sur-
faces. The Heisenberg group Hz o, which is a central extension

0—>,u2—>H272—>Z‘21—>0

acts on P3 via the Schrédinger representation on C%. This is fundamental
for the relation between Nz and Kummer surfaces.
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Theorem IV.3.2 ([BN]). The space of Hy 2-invariant quartic sur-
faces in P? is 5-dimensional. The subvariety of this P> which consists
of those Has-tnvariant quartic surfaces that contain a line is three-
dimensional and its closure is projectively equivalent to Ns. There is a
double cover N5 — N such that N is birationally equivalent to A7 5(2).

Proof. A general Hy o-invariant quartic surface X containing a line
£ will contain 16 skew lines (namely the Hj o-orbit of £). By a theorem
of Nikulin ([N1]) this means that X is the minimal desingularization of
the Kummer surface of some abelian surface A. The Hj s-action on X
gives rise to a level-2 structure on A, but the natural polarization on A
is of type (1,3). There is a second Hzs-orbit of lines on X and they
give rise to a second realization of X as the desingularized Kummer
surface of another (in general non-isomorphic) abelian surface A, which
is in fact the dual of A. The moduli points of A and A (with their
respective polarizations, but without level structures) in A, 3 are related
by V3(A) = A, where V; is the Gritsenko involution described in I11.3,
above.

Conversely, given a general abelian surface A with a (1,3)-
polarization and a level-2 structure, let Km A be the desingularized
Kummer surface and £ a symmetric line bundle on A in the polarization
class. Then the linear system |£®2|~ of anti-invariant sections embeds
KmA as an Hj >-invariant quartic surface and the exceptional curves
become lines in this embedding. This gives the connection between N5

and A; 3(2). Q.E.D.

The double cover Ny — N is the inverse image of N5 under the
double cover of P® branched along the coordinate hyperplanes.

N5 is not very singular and therefore resembles a smooth quintic
threefold in some respects. Barth and Nieto prove much more.

Theorem IV.3.3 ([BN]). Both N5 and N are birationally equiv-
alent to (different) Calabi-Yau threefolds. In particular, the Kodaira
dimension of Af 5(2) is zero.

The fundamental group of a smooth projective model of Aj 5(2) is
isomorphic to Zs x Za (see [S1] and I1.3 above). Hence, as R. Livné
has pointed out, there are four unramified covers of such a model which
are also Calabi-Yau threefolds. In all other cases where the Kodaira
dimension of a Siegel modular variety (of dimension > 1) is known, the
variety is either of general type or uniruled.

It is a consequence of the above theorem that the modular group
I'1,3(2) which defines the moduli space A4; 3(2) has a unique weight-3
cusp form (up to a scalar). This cusp form was determined in [GrH4].
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Recall that there is a weight-3 cusp form A; for the group I'y 3 with
a character of order 6. The form A; has several interesting properties,
in particular it admits an infinite product expansion and determines

a generalized Lorentzian Kac-Moody superalgebra of Borcherds type
(see [GrN]).

Theorem IV.3.4 ([GrH4]). The modular form A1 is the unique
weight-3 cusp form of the group 'y 3(2).

Using this, it is possible to give an explicit construction of a Calabi-
Yau model of A4; 3(2) which does not use the projective geometry of [BN].

Nieto and the authors of the present survey have investigated the
relation between N5 and Aj 3(2) in more detail. N5 contains 30 planes
which fall naturally into two sets of 15, the so-called S- and V-planes.

Theorem IV.3.5 ([HNS1]). The rational map Ajf3(2) --» N
(which is generically 2-to-1) contracts the locus of product surfaces to
the 10 nodes. The locus of bielliptic surfaces is mapped to the V-planes
and the boundary of Aj 3(2) is mapped to the S-planes. Thus by first

blowing up the singular points and then contracting the surfaces in N
that live over the S-planes to curves one obtains the Satake compactifi-
cation.

In [HNS2] we gave a description of some of the degenerations that
occur over the S-planes.

One of the open problems here is to give a projective description of
the branch locus of this map. The projective geometry associated with
the Nieto quintic is much less worked out than in the classical cases of
the Segre cubic and the Burkhardt quartic.

Theorem IV.3.6 ([HSGS]). The varieties N5 and Ns have rigid
Calabi-Yau models. Both Calabi- Yaus are modular: more precisely, their
L-function is equal (up to the Euler factors at bad primes) to the Mellin
transform of the normalised weight 4 cusp form of level 6.

V. Non-principal polarizations

We have encountered non-principal polarizations and some of the
properties of the associated moduli spaces already. For abelian surfaces,
a few of these moduli spaces have good descriptions in terms of projective
geometry, and we will describe some of these results for abelian surfaces
below. We begin with the most famous case, historically the starting
point for much of the recent work on the whole subject.
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V.1. Type (1,5) and the Horrocks-Mumford bundle

In this section we shall briefly describe the relation between the
Horrocks-Mumford bundle and abelian surfaces. Since this material has
been covered extensively in another survey article (see [H1] and the
references quoted there) we shall be very brief here.

The existence of the Horrocks-Mumford bundle is closely related
to abelian surfaces embedded in P*. Indeed, let A C P* be a smooth
abelian surface. Since wyq = (4 it follows that the determinant of the
normal bundle of A in P* is det Nyjps = O4(5) = Ops(5))4, ice. it
can be extended to P*. It then follows from the Serre construction (see
e.g. [OSS, Theorem 5.1.1]) that the normal bundle N4/ps itself can
be extended to a rank 2 bundle on P*. On the other hand the double
point formula shows immediately that a smooth abelian surface in P*
can only have degree 10, so the hyperplane section is a polarization of
type (1,5). Using Reider’s criterion (see e.g. [LB, chapter 10, §4]) one
can nowadays check immediately that a polarization of type (1,n),n > 5
on an abelian surface with Picard number p(A) = 1 is very ample. The
history of this subject is, however, quite intricate. Comessatti proved
in 1916 that certain abelian surfaces could be embedded in P*. He con-
sidered a 2-dimensional family of abelian surfaces, namely those which
have real multiplication in Q(\/g) His main tool was theta functions.
His paper ([Com]) was later forgotten outside the Italian school of al-
gebraic geometers. A modern account of Comessatti’s results using,
however, a different language and modern methods was later given by
Lange ([L]) in 1986. Before that Ramanan ([R]) had proved a criterion
for a (1,n)-polarization to be very ample. This criterion applies to all
(1, n)-polarized abelian surfaces (A, H) which are cyclic n-fold covers of
a Jacobian. In particular this also gives the existence of abelian sur-
faces in P*. The remaining cases not covered by Ramanan’s paper were
treated in [HL].

With the exception of Comessatti’s essentially forgotten paper, none
of this was available when Horrocks and Mumford investigated the ex-
istence of indecomposable rank 2 bundles on P*. Although they also
convinced themselves of the existence of smooth abelian surfaces in P*
they then presented a construction of their bundle F in [HM] in cohomo-
logical terms, i.e. they constructed F' by means of a monad. A monad
is a complex

My ALBLC
where A, B and C are vector bundles, p is injective as a map of vector
bundles, ¢ is surjective and g o p = 0. The cohomology of (M) is

F =Kerq/Imp
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which is clearly a vector bundle. The Horrocks-Mumford bundle can be
given by a monad of the form

2
V@Op(2) B2\ Tp 5 V' @ Ops(3)

where V = C° and P* = P(V). The difficulty is to write down the maps
p and q. The crucial ingredient here is the maps

0 V— AV, fH(Cue) = Yvieira Aeirs
f7 0 V= APV, f(Cvie) = Y vieir1 Aeis

where (e;)icz, is the standard basis of V = C° and indices have to be
read cyclically. The second ingredient is the Koszul complex on P4,
especially its middle part

Ns

A’V ® Opa(1) AV @ Ops(2)

Kz /
A T (1)

where s : Ops(—1) — V ®@ Opa is the tautological bundle map. The maps
p and g are then given by

+ —
p:Veom2 V2L 2N veom@ Y 2A’Th
_te— tet
q:2 \? Tps 200 9 AV @0mB) T L) v g 0m(3).

Once one has come up with these maps it is not difficult to check that
p and g define a monad. Clearly the cohomology F' of this monad is a
rank 2 bundle and it is straightforward to calculate its Chern classes to
be

¢(F) =1+ 5h + 10R*

where h denotes the hyperplane section. Since this polynomial is irre-
ducible over the integers it follows that F' is indecomposable.

One of the remarkable features of the bundle F' is its symmetry
group. The Heisenberg group of level n is the subgroup H, of SL(n,C)
generated by the automorphisms

o eireiy, Tiejree (e=e2™/M).

Since [o, 7] = € - idy the group H, is a central extension

0— u, > Hy, — Zy, X Zy, — 0.
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Let N5 be the normalizer of the Heisenberg group Hy in SL(5,C). Then
Ns/Hs =2 SL(2,Zs) and N5 is in fact a semi-direct product

Ny = H5 A SL(2,Z5)

Its order is |N5| = |Hs| - | SL(2,Z5)| = 125-120 = 15,000. One can show
that N5 acts on the bundle F' and that it is indeed its full symmetry
group ([De]).

The Horrocks-Mumford bundle is stable. This follows since F'(—1) =
F ® Opa(—1) has ¢;(F(—1)) = 3 and h°(F(—1)) = 0. Indeed F is the
unique stable rank 2 bundle with ¢; = 5 and ¢; = 10 (|[DS]). The
connection with abelian surfaces is given via sections of F. Since F(—1)
has no sections every section 0 # s € H°(F) vanishes on a surface whose
degree is ca(F') = 10.

Proposition V.1.1. For a general section s € H°(F) the zero-set
Xs = {s =0} is a smooth abelian surface of degree 10.

Proof. [HM, Theorem 5.1]. The crucial point is to prove that X is
smooth. The vector bundle F' is globally generated outside 25 lines L;;
in P4. It therefore follows from Bertini that X, is smooth outside these
lines. A calculation in local coordinates then shows that for general s the
surface X is also smooth where it meets the lines L;;. It is then an easy
consequence of surface classification to show that X, is abelian. Q.E.D.

In order to establish the connection with moduli spaces it is useful
to study the space of sections H°(F') as an Ns-module. One can show
that this space is 4-dimensional and that the Heisenberg group Hs acts
trivially on H°(F). Hence H°(F) is an SL(2,Zs)-module. It turns
out that the action of SL(2,Zs) on H(F) factors through an action of
PSL(2,Zs) = As and that as an As-module H°(F) is irreducible. Let
U C P? = P(H°(F)) be the open set parametrising smooth Horrocks-
Mumford surfaces X;. Then X is an abelian surface which is fixed under
the Heisenberg group H;. The action of Hs on X, defines a canonical
level-5 structure on X5. Let A} be the moduli space of triples (4, H, @)
where (A, H) is a (1,5)-polarized abelian surface and « a canonical level
structure and denote by ¢ lf‘g the open part where the polarization H is
very ample. Then the above discussion leads to

Theorem V.1.2 ([HM]). The map which associates to a section
s the Horrocks-Mumford surface X; = {s = 0} induces an isomorphism
of U with °AT. Under this isomorphism the action of PSL(2,Zs) = As
on U is identified with the action of PSL(2,Zs) on A which permutes
the canonical level structures on a (1,5)-polarized abelian surface. In
particular AT is a rational variety.
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Proof. [HM, Theorem 5.2]. Q.E.D.

The inverse morphism
o1 AL = U C P(HO(F)) = P
can be extended to a morphism
¢+ (Ary)" — P(H(F))
where (Af%)* denotes the Igusa (=Voronoi) compactification of AFY.

This extension can also be understood in terms of degenerations of
abelian surfaces. Details can be found in [HKW2].

V.2. Type (1,7)

The case of type (1,7) was studied by Manolache and Schreyer
([MS)]) in 1993. We are grateful to them for making some private notes
and a draft version of [MS] available to us and answering our questions.
Some of their results have also been found by Gross and Popescu ([GP1]
and [GP3]) and by Ranestad: see also [S-BT].

Theorem V.2.1 ([MS]). AYY is rational, because it is birationally
equivalent to a Fano variety of type Vas.

Proof. We can give only a sketch of the proof here. For a general
abelian surface A with a polarization of type (1,7) the polarization is
very ample and embeds A in P6. In the presence of a canonical level
structure the P® may be thought of as P(V') where V is the Schrédinger
representation of the Heisenberg group H7;. We also introduce, for
Jj € Zr, the representation Vj, which is the Schrodinger representa-
tion composed with the automorphism of H7 given by e27%/7 s e87i/7,
These can also be thought of as representations of the extended Heisen-
berg group G7, the extension of Hy by an extra involution coming from
—1 on A. The representation S of Gy is the character given by this
involution (so S is trivial on Hy).

It is easy to see that A C P® is not contained in any quadric, that
is H°(Za(2)) = 0, and from this it follows that there is an Hr-invariant
resolution

0+—Zx« 3V, ® O(—-3) — TV ® 0(—4) — 6o ® O(*5)
—2VRO(-6)® O(-T7) « 20(-T) < 0.

By using this and the Koszul complex one obtains a symmetric resolution

0 04— 083V, 00(-3)225 0 B*23v; © 0(—0)2 0(-7) — 0.
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This resolution is Gr-invariant. Because of the G7-symmetry, o can
be described by a 3 x 2 matrix X whose entries lie in a certain 4-
dimensional space U, which is a module for SL(2,Z7). The symmetry
of the resolution above amounts to saying that o’ is given by the matrix
X' = ( _01 (1) ) tX, and the complex tells us that aa’ = 0. The three
2x 2 minors of X cut out a twisted cubic curve Cy4 in P(UV) and because
of the conditions on « the ideal I4 of this cubic is annihilated by the
differential operators

o2 o2
81 = o — b
Ougluy ouj
2 2
Ay = __8__ — %_8_2_,
8u06u2 8U3
2 2
A2 ;.

= Budus  20a2

where the u; are coordinates on U.

This enables one to recover the abelian surface A from C4. If we
write R = Clug, u1, uz2,us] then we have a complex (the Hilbert-Burch
complex)

0« R/I4 «— R« R(-2)® X R(-3)%% — 0.

It is exact, because otherwise one can easily calculate the syzygies of 14
and see that they cannot be the syzygies of any ideal annihilated by the
three A;. So I4 determines a (up to conjugation) and the symmetric
resolution of O 4 can be reconstructed from a.

Let H; be the component of the Hilbert scheme parametrising
twisted cubic curves. For a general net of quadrics § C P(UV) the
subspace H(8) C H; consisting of those cubics annihilated by § is, by a
result of Mukai ([Muk]), a smooth rational Fano 3-fold of genus 12,
of the type known as Va3. To check that this is so in a particular
case it is enough to show that H(§) is smooth. We must do so for
6 = A = Span(A;, AzA3z). Manolache and Schreyer show that H(A) is
isomorphic to the space VSP (X(7),6) of polar hexagons to the Klein
quartic curve (the modular curve X(7)):

VSP (X(7),6) = {{h,...,le} CHiIb®(B?) | Y "1} = zdz; +aimy+adzo}.
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(To be precise we first consider all 6-tuples (I1,...,lg) where the I; are
pairwise different with the above property and then take the Zariski-
closure in the Hilbert scheme.) It is known that VSP (X (7),6) is smooth,
so we are done. Q.E.D.

Manolache and Schreyer also give an explicit rational parametriza-
tion of VSP (X' (7), 6) by writing down equations for the abelian surfaces.
They make the interesting observation that this rational parametrization
is actually defined over the rational numbers.

V.3. Type (1,11)
The spaces 1167‘;1 for small d are studied by Gross and Popescu,
([GP1], [GP2], [GP3] and [GP4]). In particular, in [GP2], they obtain a

lev

description of AYY;.

Theorem V.3.1 ([GP2]). There is a rational map ©1; : A7y, --»
Gr(2,6) which is birational onto its image. The closure of Im©1; is a
smooth linear section of Gr(2,6) in the Pliicker embedding and is bira-

lev

tional to the Klein cubic in P*. In particular ATy is unirational but not
rational.

The Klein cubic is the cubic hypersurface in P* with the equation

4
2

E T;Tiy1 =0

—y

with homogeneous coordinates z;, ¢ € Zs. It is smooth, and all smooth
cubic hypersurfaces are unirational but not rational [CG] and [IM].

The rational map ©;1; arises in the following way. For a general
abelian surface A in AYY,, the polarization (which is very ample) and the
level structure determine an H;-invariant embedding of A into P1°. The
action of —1 on A lifts to P1° = P(H°(L)) and the (—1)-eigenspace of this
action on H°(L) (where £ is a symmetric bundle in the polarizing class)
determines a P*, called P~ C P'Y. We choose coordinates x, ..., z1o on
P19 with indices in Zi; such that zi,...,zs are coordinates on P, so
that on P~ we have o = 0, ; = —x_;. The matrix T is defined to be
the restriction of R to P~, where

Rij = xjpiwj—y, 0<e,j <5

(This is part of a larger matrix which describes the action on
H%(Op10(2)) of Hy;.) The matrix T is skew-symmetric and non-
degenerate at a general point of P~. However, it turns out that for
a general A € AYY; the rank of T' at a general point z € ANP~ is 4.
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For a fixed A, the kernel of T is independent of the choice of = (except
where the dimension of the kernel jumps), and this kernel is the point
011(A) € Gr(2,6).

From the explicit matrix R, finally, Gross and Popescu obtain the
description of the closure of Im ©;; as being the intersection of Gr(2, 6)
with five hyperplanes in Pliicker coordinates. The equation of the Klein
cubic emerges directly (as a 6 x 6 Pfaffian), but it is a theorem of
Adler ([AR]) that the Klein cubic is the only degree 3 invariant of
PSL(27211) in ]P)4

V.4. Other type (1,t) cases

The results of Gross and Popescu for ¢ = 11 described above are
part of their more general results about AFY and Ay, for t > 5. In the
series of papers [GP1]-[GP4] they prove the following (already stated
above as Theorem III.1.5).

Theorem V.4.1 ([GP1], [GP2|, [GP3] and [GP4]). AT is ratio-
nal for 6 <t < 10 and t = 12 and unirational, but not rational, for
t = 11. Moreover the variety Ay is unirational for t = 14,16,18 and
20.

The cases have a different flavour depending on whether ¢ is even
or odd. For odd t = 2d + 1 the situation is essentially as described for
t = 11 above: there is a rational map O2441 : A‘f‘{ --+ Gr{(d—3,d+ 1),
which can be described in terms of matrices or by saying that A maps
to the Hy-subrepresentation H%(Z4(2)) of H°(04(2)). In other words,
one embeds A in Pt~! and selects the Hi-space of quadrics vanishing
along A.

Theorem V.4.2 ([GP1]). Ift=2d+ 1 > 11 is odd then the ho-
mogeneous ideal of a general H,-invariant abelian surface in P*~1 is
generated by quadrics; consequently ©q441 is birational onto its image.

For ¢t = 7 and ¢ = 9 this is not true: however, a detailed analysis is
still possible and is carried out in [GP3] for t = 7 and in [GP2] for ¢t = 9.
For ¢t > 13 it is a good description of the image of ©; that is lacking.
Even for t = 13 the moduli space is not unirational and for large ¢ it is
of general type (at least for ¢ prime or a prime square).

For even t = 2d the surface A C P!~! meets P~ = P42 in four
distinct points (this is true even for many degenerate abelian surfaces).
Because of the H;-invariance these points form a Zso x Zs-orbit and there
is therefore a rational map O34 : AY} --» P~ /(Zg x Zy).
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Theorem V.4.3 ([GP1]). Ift =2d > 10 is even then the homoge-
neous ideal of a general H,-invariant abelian surface in P*~! is generated
by quadrics (certain Pfaffians) and ©24 is birational onto its image.

To deduce Theorem V.4.1 from Theorem V.4.2 and Theorem V.4.3

a careful analysis of each case is necessary: for ¢ = 6,8 it is again the
case that A is not cut out by quadrics in P!~!. In those cases when
rationality or unirationality can be proved, the point is often that there
are pencils of abelian surfaces in suitable Calabi-Yau 3-folds and these
give rise to rational curves in the moduli spaces. Gross and Popescu use
these methods in [GP2] (t = 9,11), [GP3] (t = 6,7, 8 and 10), and [GP4]
lev

(t = 12) to obtain detailed information about the moduli spaces AYY}.
In [GP4] they also consider the spaces A; ; for t = 14,16,18 and 20.

VI. Degenerations

The procedure of toroidal compactification described in [AMRT] in-
volves making many choices. Occasionally there is an obvious choice. For
moduli of abelian surfaces this is usually the case, or nearly so, since one
has the Igusa compactification (which is the blow-up of the Satake com-
pactification along the boundary) and all known cone decompositions
essentially agree with this one. But generally toroidal compactifications
are not so simple. One has to make further modifications in order to
obtain acceptably mild singularities at the boundary. Ideally one would
like to do this in a way which is meaningful for moduli, so as to obtain
a space which represents a functor described in terms of abelian vari-
eties and well-understood degenerations. The model, of course, is the
Deligne-Mumford compactification of the moduli space of curves.

VI.1. Local degenerations

The first systematic approach to the local problem of constructing
degenerations of polarized abelian varieties is Mumford’s paper [Mu2]
(conveniently reprinted as an appendix to [FC]). Mumford specifies de-
generation data which determine a family G of semi-abelian varieties
over the spectrum S of a complete normal ring R. Faltings and Chai
([FC]) generalized this and also showed how to recover the degeneration
data from such a family. This semi-abelian family can then be compact-
ified: in fact, Mumford’s construction actually produced the compacti-
fication first and the semi-abelian family as a subscheme. However, al-
though G is uniquely determined, the compactification is non-canonical.
We may as well assume that R is a DVR and that G, the generic fibre, is
an abelian scheme: the compactification then amounts to compactifying
the central fibre G in some way.
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Namikawa (see for instance [Nam3] for a concise account) and Naka-
mura ([Nak1]) used toroidal methods to construct natural compactifica-
tions in the complex-analytic category, together with proper degenerat-
ing families of so-called stable quasi-abelian varieties. Various difficul-
ties, including non-reduced fibres, remained, but more recently Alexeev
and Nakamura ([Alel] and [AN]) have produced a more satisfactory and
simpler theory. We describe their results below, beginning with their
simplified version of the constructions of Mumford and of Faltings and
Chai. See [FC|, [Mu2], or [AN] itself for more.

R is a complete DVR with maximal ideal I, residue field k = R/I
and field of fractions K. We take a split torus G over S = Spec R with
character group X and let G(K) = (K*)9 be the group of K-valued
points of G. A set of periods is simply a subgroup ¥ € G(K) which is
isomorphic to Z9. One can define a polarization to be an injective map
¢ :Y — X with suitable properties.

Theorem VI.1.1 ([Mu2] and [FC]). There is a quotient G = G|Y
which is a semi-abelian scheme over S : the generic fibre Gy, is an abelian
scheme over Spec K with a polarization (given by a line bundle L, in-
duced by ).

Mumford’s proof also provides a projective degeneration, in fact a
wide choice of projective degeneratlons each containing G as an open
subscheme.

Theorem VI.1.2 ([Mu2], [Ch], [FC|] and [AN]). There is an in-
tegral scheme P, locally of finite type over S, containing G as an open
subscheme, with an ample line bundle £ and an action of Y on (P, L).
There s an S-scheme P = P/ Y, projective over S, with P, = G, as
polarized varieties, and G can be identified with an open subscheme of P.

Many technical details have been omitted here. P has to satisfy
certain compatibility and completeness conditions: of these, the most
complicated is a completeness condition which is used in [FC] to prove
that each component of the central fibre Py is proper over k. Alexeev
and Nakamura make a special choice of P which, among other merits,
enables them to dispense with this condition because the properness is
automatic.

Mumford proved this result in the case of maximal degeneration,
when Gy is a torus over k. That condition which was dropped in [FC]
and also in [AN] where G is allowed to have an abelian part. Then G
and Gy are Raynaud extensions, that is, extensions of abelian schemes
by tori, over R and k respectively. The extra work entailed by this is
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carried out in [FC] but the results, though a little more complicated to
state, are essentially the same as in the case of maximal degeneration.

In practice one often starts with the generic fibre G,,. According to
the semistable reduction theorem there is always a semi-abelian family
G — S with generic fibre Gy, and the aim is to construct a uniformiza-
tion G = G/Y. It was proved in [FC] that this is always possible.

The proof of VI.1.1, in the version given by Chai ([Ch}) involves im-
plicitly writing down theta functions on G/(K) in order to check that the
generic fibre is the abelian scheme G,,. These theta functions can be writ-
ten (analogously with the complex-analytic case) as Fourier power series
convergent in the I-adic topology, by taking coordinates wy,...,wg on
G(K) and setting

6= Z o (6)w®
zeX
with 0,(8) € K. In particular theta functions representing elements
of H%(G,,L,) can be written this way and the coefficients obey the
transformation formula

Oota(y)(0) = a(y)b(y, x)o=(0)

for suitable functions ¢ : Y — K* and b: Y x X — K*.

For simplicity we shall assume for the moment that the polarization
is principal: this allows us to identify Y with X via ¢ and also means
that there is only one theta function, 1. The general case is only slightly
more complicated.

These power series have K-coefficients and converge in the I-
adic topology but their behaviour is entirely analogous to the familiar
complex-analytic theta functions. Thus there are cocycle conditions on
a and b and it turns out that b is a symmetric bilinear form on X x X
and a is an inhomogeneous quadratic form. Composing a and b with the
valuation yields functions A : X — Z, B : X x X — 7Z, and they are
related by ‘ )

T
Ax) = 2B(a:,ac) + 5
for some r € N. We fix a parameter s € R, so I = sR.

Theorem VI.1.3 ([AN]). The normalization of the scheme
Proj R[s*®w®0;x € X] is a relatively complete model P for the maz-
imal degeneration of principally polarized abelian varieties associated
with Gy,.

Similar results hold in general. The definition of P has to be modi-
fied slightly if G has an abelian part. If the polarization is non-principal
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it may be necessary to make a ramified base change first, since otherwise
there may not be a suitable extensionof A: Y — Zto A: X — Z. Even
for principal polarization it may be necessary to make a base change if
we want the central fibre Py to have no non-reduced components.
The proof of Theorem VI.1.3 depends on the observation that the
ring
R[s*@w®9; z € X]

is generated by monomials. Consequently P can be described in terms of
toric geometry. The quadratic form B defines a Delaunay decomposition
of X ® R = Xg. One of the many ways of describing this is to consider
the paraboloid in Reg 6 Xy given by

1
zo = A(z) = §B(x,x) + %,

and the lattice M = Zeg ® X. The convex hull of the points of the
paraboloid with z € X consists of countably many facets and the pro-
jections of these facets on Xg form the Delaunay decomposition. This
decomposition determines P. It is convenient to express this in terms
of the Voronoi decomposition Vorg of Xg which is dual to the Delaunay
decomposition in the sense that there is a 1-to-1 inclusion-reversing cor-
respondence between (closed) Delaunay and Voronoi cells. We introduce
the map dA : Xgr — Xj given by

dA(E) (@) = B(&,2) + .

Theorem VI.1.4 ([AN]). P is the torus embedding over R given
by the lattice N = M* C Ref @ X} and the fan A consisting of {0} and
the cones on the polyhedral cells making up (1, -dA(VorB)).

Using this description, Alexeev and Nakamura check the required
properties of P and prove Theorem VI.1.3. They also obtain a precise de-
scription of the central fibres Py (which has no non-reduced components
if we have made a suitable base change) and Py (which is projective).
The polarized fibres (Pp, Lo) that arise are called stable quasi-abelian
varieties, as in [Nak1]. In the principally polarized case Py comes with a
Cartier divisor ©¢ and (P, ©g) is called a stable quasi-abelian pair. We
refer to [AN] for a precise intrinsic definition, which does not depend on
first knowing a degeneration that gives rise to the stable quasi-abelian
variety. For our purposes all that matters is that such a characterization
exists.
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VI.2. Global degenerations and compactification

Alexeev, in [Alel], uses the infinitesimal degenerations that we have
just been considering to tackle the problem of canonical global moduli.
For simplicity we shall describe results of [Alel] only in the principally
polarized case.

We define a semi-abelic variety to be a normal variety P with an
action of a semi-abelian variety G having only finitely many orbits, such
that the stabilizer of the generic point of P is a connected reduced sub-
group of the torus part of G. If G = A is actually an abelian variety
then Alexeev refers to P as an abelic variety: this is the same thing as a
torsor for the abelian variety A. If we relax the conditions by allowing P
to be semi-normal then P is called a stable semi-abelic variety or SSAV.

A stable semi-abelic pair (P,©) is a projective SSAV together with
an effective ample Cartier divisor © on P such that © does not con-
tain any G-orbit. The degree of the corresponding polarization is
g'h°(Op(0)), and P is said to be principally polarized if the degree
of the polarization is g! If P is an abelic variety then (P, ©) is called an
abelic pair.

Theorem VI.2.1 ([Alel]). The categories A, of g-dimensional
principally polarized abelian varieties and AP, of principally polarized
abelic pairs are naturally equivalent. The corresponding coarse moduli
spaces Ay and AP, exist as separated schemes and are naturally iso-
morphic to each other.

Because of this we may as well compactify AP, instead of Ay if
that is easier. Alexeev carries out this program in [Alel]. In this way,
he obtains a proper algebraic space Tﬁg which is a coarse moduli space
for stable semi-abelic pairs.

Theorem VI1.2.2 ([Alel]). The main irreducible component of
AP, (the component that contains AP, = Ag) is isomorphic to the
Voronoi compactification Ay of A,. Moreover, the Voronoi compactifi-
cation in this case is projective.

The first part of Theorem VI.2.2 results from a careful comparison
of the respective moduli stacks. The projectivity, however, is proved by
elementary toric methods which, in view of the results of [FC], work over
SpecZ.

‘ In general 74739 has other components, possibly of very large dimen-
sion. Alexeev has examined these components and the SSAVs that they
parametrize in [Ale2].

Namikawa, in [Naml], already showed how to attach a stable quasi-
abelian variety to a point of the Voronoi compactification. Namikawa’s
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families, however, have non-reduced fibres and require the presence of a
level structure: a minor technical alteration (a base change and normal-
ization) has to be made before the construction works satisfactorily. See
[AN] for this and also for an alternative construction using explicit local
families that were first written down by Chai ([Ch]). The use of abelic
rather than abelian varieties also seems to be essential in order to ob-
tain a good family: this is rather more apparent over a non-algebraically
closed field, when the difference between an abelian variety (which has
a point) and an abelic variety is considerable.

Nakamura, in [Nak2], takes a different approach. He considers de-
generating families of abelian varieties with certain types of level struc-
ture. In his case the boundary points correspond to projectively stable
quasi-abelian schemes in the sense of GIT. His construction works over
SpecZ[{n,1/N] for a suitable N. At the time of writing it is not clear
whether Nakamura’s compactification also leads to the second Voronoi
compactification.
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