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Bases of Chambers of Linear Coxeter Groups 

John H. Walter 

§1. Introduction 

Let V be a vector space over the real numbers R The subgroups of 
GL(V) that are generated by reflections are called reflection groups. We 
study in this paper those reflection groups from which a polyhedral cone 
may be constructed and which lead to a chamber system in V. Using 
a result of J. Tits [5], it follows that these groups are obtained from 
representations of Coxeter groups. So they are called linear Coxeter 
groups. From this point of view, these groups were also extensively 
studied by E.B. Vinberg [6] in the case where they have a finite number 
of canonical generators. We extend this theory in order to investigate the 
reflection subgroups of a linear Coxeter group. We make no restriction 
on the number of generators or on the dimension of V. Our object is 
to present this subject using the concrete geometric methods that are 
associated with the chamber systems in a real vector space. 

We apply these results to give a proof that a reflection subgroup of 
a linear Coxeter group is again a linear Coxeter group. This generalizes 
the result that asserts that a reflection subgroup of a Coxeter group is 
a Coxeter group which was independently proved by M. Dyer [3] and 
V.V. Deodhar [2]. Our results also characterize a base for the reflection 
subgroup, which will be useful in a sequel to this paper. 

§2. Linear Coxeter Groups 

2.1. Polyhedral Cones 
Let V be a vector space over JR, and denote its dual by vv. Let 

T be a subset of V. We are interested in reflection groups that act on 
T. Commonly the choice for T will be V itself, but in dealing with 
reflection subgroups, it is useful to choose T to be the convex set that 
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is left invariant by the associated linear Coxeter group, namely, its Tits 
cone. 

Let A v be a subset of vv and set 

(1) C(A v) = {vET I A v (v) ~ 0 for all A v E A v}, 

(2) C(Av)o ={vET I .Xv(v) > 0 for all _xv E Av}. 

For A v E vv, respectively set D >.. v and D~ v to be the half-spaces 
C( {A v}) and C( {A v} )0 • Then 

(3) C(Av) = n D>..v and C(Av)o = n D~v. 
Likewise set H>..v = _xv- 1 (0) for _xv E vv. Then H>..v is the hyperplane 
in V which is the envelope for D >.. v. A convex subset C (A v) of V given 
in (3) is said to be a polyhedral cone in T if C(A v)o -/:- 0. If lA vi = 2, it 
is sometimes called a dihedral cone. 

Definition 2.1. Let rrv ~ vv. For av E rrv, set Fav(IIv) = 

Hav n C(IIv) = Hav n C(IIv \ {av}) and F,';v(IIv) = Hav n C(IIv \ 
{av})0 • Given Av ~ vv, a subset rrv is saidto be a base for C(Av) 
if C(IIv) = C(A v), and F,';v (IIv) -f:. 0 for all av E rrv. In this case, 
Fav (IIv) is said to be a face of C(IIv). We say that rrv is a base if it is 
a base for C(IIv). 

Clearly if rrv is a base, it is a base for C(A v) for any A v 2 rrv such 
that C(A v) 2 C(IIv). If rrv is a base for C(A v), then the hyperplanes 
Hav with av E rrv are called the walls of C(A v). Note that having 
F,';v (IIv) -f:. 0 is equivalent to having C(IIv) :::::l C(IIv \ { av} ). Thus if 
rrv is a minimal subset of A v such that C(IIv) = C(A v), it is a base for 
C(Av). 

2.2. Reflection Groups 
Denote the pairing vv x V ---+ lR given by (.XV, x) ~------+ (.X v, x) = 

.xv(x). A reflection r E GL(V) is determined by two elements arE V 
and a: E vv with 

(4) 

so that 

(5) 

The vectors a~ and ar respectively are said to be a coroot and root 
of r. Hence Hr = a~- 1 (0) is the fixed hyperplane of r and Rar is its 
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complementary eigenspace. When a~ and ar satisfy (4), they are said 
to be paired to r. Thus (ca~, c-1ar ), c =I= 0, are the coroots and roots 
that are paired to r. 

Given a setS of reflections, W(S) will designate the reflection group 
given by W ( S) = ( s I s E S). Designate by w v the transformation of 
V which is contragredient tow E GL(V). Associated with W(S) is the 
contragredient group W ( S) v = { w v I w E W ( S)} , which acts on vv. If 
r is given by (5), then rv: xv--+ xv- (xv,ar)a~. Because (a~,x) = 0 
implies (wva~,wx) = 0, it follows that wHa-; = Hwva';· 

Set 1{ (W(S)) = {Hr Iris a reflection in W(S)}. 

Definition 2.2. Let T be a subset of V, and rrv = {a( E vv I i E I}. 
Take C(IIv) to be a polyhedral cone in T. Let S = S(IIv) be a set of 
reflections si, i E I, where for each i E I, a( is a coroot of si. Assume 
that Tis W(S(IIv))-invariant. Then C(IIv) is said to be a chamber of 
W(S(IIv)) for the action of W(S(IIv)) on T if 

(6) 

for all w E W(S(Ilv)) and a( E rrv. 

Set 7i(W(S);IIv) = {Hf3v I {3v E W(S)vrrv}. As wHat= Hwva£' 
(6) is equivalent to having Hf3v nC(II)0 = 0 for all Hf3v E 1i (W(S), rrv). 

Definition 2.3. If C(IIv) is a chamber such that wC(IIv) = C(IIv) 
implies w = 1, then C(IIv) is said to be a regular chamber for the action 
of W(S(IIv)) on T and W(S(IIv)) is said to be a linear Coxeter group 1 • 

The translates wC(IIv) of C(IIv), w E W(S), will also be called 
chambers of W ( S (IT)), and we set C (W ( S)) to be the set of chambers 
of W(S). When considering a given reflection group W(S(IIv)) acting 
on a set T, it will be understood that the chambers in C (W ( S)) are 
chambers for the action on T. The set C(W(S)) is sometimes called the 
chamber system for W ( S). When C (IIv) is a regular chamber, then 

(7) 

for every w E W(S(IIv)) \ {1}, in which case C(IIv)o is a fundamen
tal domain for the action of W(S(IIv)) on the subset T(W(S(ITv))) = 

UwEW(S) wC(IIv). 

Proposition 2.1. Let rrv = {a( I i E I} ~ vv. Take S(IIV) to be 
a set of reflections Si with coroots a(, i E I, and letT be a W(S(ITv))
invariant subset of V. A polyhedral cone C(IIv) is a chamber for the 

1Linear Coxeter groups were defined as such by E.B.Vinberg [6]. 
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action of W(S(ITv)) on T if and only if for all w E W(S(IIv)), either 
wC(IIv)onC(IIv)o = 0 or wC(IIv)o = C(IIv)0 • If it is a regular cham
ber, then HrnwC(IT) 0 = 0 for all Hr E 1i (W (S)) and wE W(S(IIv)). 

Proof. Assume that C(IIY) is a chamber so that wHa_v nC(IIY)o = 
0 for all i E I and w E W(S(IIv)). So either wv a{(C(frv)o) > 0 or 
wva{(C(IIv)0 ) < 0 fori E I. If wva{(C(IIY)o) > 0 for all i E I, 
then wC(IIv)o = C(wvrrv)o 2 C(IIv)o. But also wv a{(x) = a{(wx) 
for x E V; then a{(wC(IIv)o) > 0 for all i E I. Hence C(IIv)o 2 
C(wvrrv)o = wC(IIv)o. Thus C(IIv)o = wC(IIv)o. On the other hand, 
if wv a{(C(IIv)o) < 0 for some i E I, then wC(IIv)onc(rrv)o ~ -D~t n 

D~v = 0. 
'Conversely, assume that wC(IIv)o n C(IIv)o = 0 or wC(IIvt = 

C(Ilv)o. Then in first instance, wHav n C(Ilv)o = 0 for i E J. In the 
second instance, wHav intersects only the envelope C(IIv) \ C(IIv)o of 
C(IIv), and again wHav n C(IIv)o = 0 for i E I. 

Finally consider that C(IIv) is a regular chamber. Suppose that Hrn 
wC(IIv)o =f. 0 for some reflection r E W(S(IIv)) and w E W(S(IIv)). 
Then rwC(IIv) = wC(IIv). But then the regularity of C(IIv) implies 
that w-1rw = 1 and so r = 1. Hence Hr n C(IIv)o = 0. Q.E.D. 

Take rrv = {a{ I i E I} ~ vv, and let S(IIv) be a set of reflections 
si, i E I, in GL(V) each with coroot a{ in rrv. Suppose that C(IIv) 
is a polyhedral cone. Let Ev (W(S(IIv))) be the set of coroots of the 
reflections in W(S(IIv)). To each avE Ev(W(S(IIv))) such that Hav n 
C(IIv)o = 0, either a v ( C(IIv)o) > 0 or a v ( C(IIv)o) < 0. Let 

(8) Ev+(W(S(IIv))) ={avE Ev(W(S(IIv))) I av(C(IIv)o) > 0}. 

The elements of EV+(W(S(IIv))) will be said to be positive with respect 
to C(IIY). Because rrv ~ EV+(w(s(rrv))), the following proposition 
follows from Proposition 2.1. 

Proposition 2.2. A polyhedral cone C(IIv) with base rrv is a reg
ular chamber if and only if 

(9) n 
To each (3v E W(S(IIv))vrrv, Sf3v = Swvav = WSavw- 1 is in 

W(IIv)). So for all H13v such that (3v E W(S(IIv)trrv and 
H13v n C(IIv)o = 0, either (3v ( C(IIv)o) > 0 or s13v (3v ( C(IIv)) > 0. 
Set Ev (IIv) = {f3v E Ev (W(S(IIv))) I H13v n C(IIv)o = 0} and set 
Ev+(rrv) = Ev(rrv) n Ev+(W(S(IIv))). Then C(IIv) is a chamber of 
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W(S(IIv)) if and only if Ev(rrv) = W(S(IIv))rrv. This is equivalent to 
having D13v ;;;:> C(IIv) for f3v E Ev+(rrv). But Ilv ~ Ev(rrv); so the 
following proposition follows. 

Proposition 2.3. A polyhedral cone C(IIv) with base rrv is a cham
ber for W(S(IIv)) if and only if 

(10) n 
2.3. Dihedral Groups 

The argument which we present is directed towards the utilization of 
Theorem 3.1 which establishes that (W(S(IIv), S(IIv)) is a Coxeter sys
tem if each C(IIij) is a regular chamber, II0 being any pair contained in 
rrv. Thus the case where W ( S (IIv)) is a dihedral group requires special 
attention. 2 

Theorem 2.4. Let S = {r, s} where r and s are reflections in 
GL(V). Respectively, let av, a and f3v, f3 be coroot and root pairs for r 
and s. Let rrv = {a v, f3v} , and let C (IIv) be the dihedral cone given by 
C(IIv) = Dav n D13v n T where T is a W(S)-invariant subset of V and 
S = S(IIv). The following conditions on the roots and coroots of r and 
s are necessary and sufficient for C(IIv) to be a chamber for the action 
ofW(S) on T. 

(11) 

(12) 

(13) 

(a v, /3) ::; 0 and (f3v, a) ::; 0, 

(av, /3) = 0 if and only if (f3v, a) = 0, 
7r 

(av,f3)(/3v,a) = 4cos2 -, 
n 

~n E Z \ {0}, when (av,f3)(/3v,a) ::; 4. Furthermore, W(S(IIv)) is 
finite if and only if {13) holds. If C(IIv) is a chamber, then it is a 
regular chamber. 

Proof. Since Dav n D13v is a chamber for the action of W(S(IIv)) 
on V if and only if Dav n D 13v n T is also a chamber for the action 
of W(S(IIv)) on T, we take T = V. Thus C(Ilv) = Dav n Df3v. Let 
V0 = Hav n H13v. Then V0 is the fixed subspace for the action of W(S) 
on V, and Vo ~ C(IIv). Clearly W(S) acts faithfully on V/Vo and 
C(IIv)/Vo is a chamber of W(S) on V/Vo if and only if C(IIv) is a 
chamber on V. Without loss of generality, we may assume that Vo = 0. 
Then dim V = 2, and C(IIv) is bounded by the half lines Kav = Hav n 

2 This result clarifies a result stated by Vinberg [6]. 
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C(IJY) and Kf3v = Hf3v n C(IIv). Set Cs(Ilv) = C(IIv) U sC(IIv). Since 
C(IJY) n sC(IIv) = Kf3v, C8 (Ilv) is the sector in V that is bounded by 
KOf.v and sKOf.v. 

Consider first that C (IIv) is a chamber and that (a v, (3) ~ 0. Let 
~+ be the set of positive real numbers. Then ( 4) implies that ~+ (3 ~ 
C(IIv). Hence -IR+ (3 = siR+ (3 ~ sC(IIv). Because C8 (Ilv) contains 
IR(3 = IR+(3 U -IR+(3, the angle 08 from KOf.v to sKOtv satisfies 08 ~ 1r. 

But sHOf.v nC(IIv)o = 0; so HOf.v nsC(IIv)o = 0. Therefore 08 = 1r. Hence 
HOf.v :2 IR(3, which is equivalent to (av, (3) = 0. Because HOf.v is a wall of 
C8 (Ilv), V = C8 (IIv)UsC8 (Ilv) = C(IIv)usC(IIv)urC(IIv)UrsC(IIv). 
Consequently W(S) is a fours group; so rs = sr. This implies IRa ~ Hf3v; 
thus ((3v, a) = 0. Likewise (av, (3) = 0 is a consequence of ((3v, a) ~ 0. 
This establishes (11) and (12). The condition (13) is established at the 
end of this argument. 

Now consider that (11), (12) and (13) hold. If (av, (3) = ((3v, a) = 0, 
then W(S) must be a fours group, in which case, C(IIv) is a regular 
chamber. So consider that (av,(3) < 0 and ((3v,a) < 0. Replace the 

pair (3v, (3 by the pair c(3v, c-1 (3 where c2 = ~~~ :~; . Then (a v, (3) = 
((3v,a), and C(IIv) remains unchanged along with (av,(3)((3v,a). Let 
¢ : vv ~ V be the correlation that is defined by ¢ : a v f-+ a and 
¢ : (3v f-+ (3. Let f : V x V ~ IR be the bilinear form that is given by 
setting f(x, y) = (¢-1 (x), y). Then f is W(S)-invariant and symmetric. 
Also (av,(3) = f(a,(3). By (4), f(a,a) = !((3,(3) = 2; set a= f(a,(3). 
The discriminant of f is 4 - a2 = 4 - (a v, (3) ((3v, a). So f is indefinite, 
degenerate or positive definite according as a 2 > 4, a 2 = 4, or a2 < 4. 
Let u = sr, and set U = (u). Since IW(S)I > 4, u2 "f. 1. The discriminant 
of the characteristic polynomial of u is a2 (4- a2 ). Sou has 2, 1, or 0 
eigenspaces according as f is indefinite, degenerate or positive definite. 
In the first two cases, u has real eigenvalues; so lui = oo. Then u and u2 

have the same eigenspaces. These must be the isotropic lines of f. 
When (av, (3) ((3v, a) > 4, f is indefinite, its isotropic lines di

vide v into four sectors vl, "\12, V3, ¥4, which are permuted by the group 
W(S)/U. These lines are interchanged by r and s; hence they are the 
eigenspaces for u. As Cs(IIV) n sCs(IIY) = uKOf.v = tKOf.v' Cs(IIV) is 
contained in one of these sectors, say, V1 . It follows then that V1 = 
u~=~= uncs(IIY) and that u acts regularly on {uncs(IIY) InEZ} 0 

From this, it follows that w ( S) acts regularly on {we (IJV) I w E w ( S)} 0 

Therefore C (IIv) is a regular chamber. 
The situation is similar when (av, (3) ((3v, a) = 4 and f is degener

ate. The difference is that in this case there two sectors V1 and V2 which 
are separated by the unique isotropic line. This forces IRa= IR(3. 
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Next suppose that(av,!J) (!Jv,a) < 4, in which case f is positive 
definite and W(S) is finite. Then f gives rise to a scalar product3 where 
a = a · !) = 2 cos () and () is the angle between the half lines JR.+ a and 
JR.+!). The difference Bo =II-() is the angle between the half lines Kav 
and KfJv and hence ()0 is the angle of the sector C(IIv). So 2()0 is the 
angle of the sector C8 (IIv), which is also the angle of the rotation u. Let 
n be the least positive integer such that Cs(IIV) n uncs(IIV) # 0. Then 
Cs(IIv) is a chamber for U if and only if 2Bn = 27r. This is equivalent 
to having (av,!J)(!Jv,a) = f(a,!J? = a2 = 4cos2 ; where n E Z \ {0}. 
Clearly Cs(IIv) is a chamber for U if and only if C(IIv) is a chamber for 
W(S). This proves that C(IIv) is a chamber as well as showing that (13) 
is a consequence of C(IIv) being a chamber. Since IC(W(S))I = IW(S)I, 
C (IIv) is also regular. 

Finally, note that is finite if and only if u has no real eigenvalues, 
which is equivalent to (13) Also we have shown that (12), (11) and (13) 
imply that C(IIv) is regular and that these conditions are implied when 
C(IIv) is a chamber, in which case it must be regular. Q.E.D. 

§3. Characterizations 

3.1. Characterization of Linear Coxeter groups 

The next result is due to J. Tits [5]. This argument was developed 
from his result which establishes the contragredient representation of a 
Coxeter group ( cf. Bourbaki [1, V, §4.4] or Humphreys [4, p. 126]). 

Theorem 3.1. Let S be a set of reflections Si, i E I, in GL(V) 
and let a{, ai be a paired coroot and root of si. Set IIv = {a':( I i E I} and 
II = { ai I i E I}. Let T be a W ( S) -invariant subset of V. Suppose that 
C(IIv) is a chamber for the action ofW(S(IIv)) on T such that C(II0) 

is a regular chamber for W(S(IIi1)) for each pair II~1 ={a':(, aj} ~ IIv. 
Then (W(S), S) is a Coxeter system, and W(S) is a linear Coxeter 
group acting on T. 

Proof. The proof of Theorem 3.1 as we have stated it is obtained 
from Tits [5, Lemme 1]. Tits' argument is centered about the proof of 
the following statement4 : 

3 cf. Bourbaki [1, V, §2.3]. 
4 Actually by replacing w by sw,the second statement becomes a conse

quence of the first; so the argument is directed to proving the first statement. 
Also Tits' statement does not require that s be a reflection. 
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(P) Let w E W ( S). Then, given s E S with cor·oot a~, either 
wC(IIv) <;;; sDa-; and C(sw) = C(w)-1 or wC(IIv) <;;; Da-; and C(sw) = 

£(w)+l. 

where £( w) is the number of factors from S in a shortest expression of w 
as a product of elements of S. The argument is by induction on £( w). As
suming that (P) holds for each dihedral group W(S(IIij)), i,j E I, Tits 
argues by induction on £(w) that (P} holds for W(S). Either Lemma 
1 of [1, V, §4.5] or the description of the action of W(S(IIij)) on its 
chambers given in Theorem 2.4 can be used to establish (P) for the sub
groups W(S(IIij)). The condition (P) for the group W(S) immediately 
implies the regularity of its chambers in the following way. Suppose that 
w(C(IIv) = C(IIv) for some w E W(S). Then wC(IIv) <;;; Dav for all 
i E I. So by (P}, C(savw) = C(w) + 1 for all Sav E S. But this fails when 

J J 

w # 1 since there exist a'j E IIv such that C(sayw) < £(w). Because 

W ( S) can be regarded as a Coxeter group acting on the chamber sys
tem C (W ( S)) the above argument also shows that this action is effective. 
Hence (W(S), S) is a Coxeter system. Q.E.D. 

Let S = { Si I i E I} be a set of reflections of a reflection group W. 
Let a'( and ai respectively be paired coroots and roots for Si, i E I. Set 
IIv = {a'( I i E I} and II= { ai I i E I}. We say that the sets IIv and II 
have the Cartan property if every pair (a'(, aj), i ,j E I, i # j, satisfies 
the conditions (11), (12) and (13) of Theorem 2.4. A direct application 
of Theorem 3.1 and Theorem 2.4 gives the following corollary. 

Corollary 3.2. Let S be a set of reflections si, i E I, in GL(V) 
and let a'(, ai be a coroot and root of si. Set IIv = {a'( I i E I} and 
II = { ai I i E I}. Suppose that C(IIv) is a polyhedral cone in a W(S)
invariant subset T ofV. IfC(IIv) is a chamber for the action ofW(S) 
on T and if IIv and II have the Cartan property, then W(S) is a linear 
Coxeter group. 

Theorem 3.3. Let S be a set of reflections si, i E I, in GL(V) 
and let a'( and ai, respectively, be a paired coroot and root of ri. Set 
IIv = {a'( I i E I} and II = { ai I i E I} so that S = S(IIv). Let C(IIv) 
be a chamber for the action ofW(S) on a W(S)-invariant subset T, and 
let IIv be a base for C(IIv). Then the sets IIv and II have the Cartan 
property, and W(S(IIv)) is a linear Coxeter group acting on T. 

Proof. For each pair II{j = {a'(, a'j} <;;; IIv, we argue that C(II;j) is 
a chamber for W(S(IIij)). By (10), C(IIV) = n {Dav I avE I;V+(IIv)}. 
It is required to show that Hav n C(II{j)0 = 0 for av E I;V+(II;j). 
So suppose that for some av E I;v+(II;j), Hav n C(II{j) 0 =F 0. Now 
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C(IF) <;;;; C( {a;;;', a}) where k = i or j. For definiteness, suppose k = i. 
Let V0 = Ho:v nHo:v; then Ho:v ;;;;> V0 and Ho:v nC( { av, a{}) = Vo. Hence 

' J J 

Ho:v n C(IIv)o = 0 inasmuch as C(IIv)o <;;;; C({av,ak}). In particular, 
J 

this implies that F~v (Ilv) n C(Ilv) = 0. But rrv is a base; so we have 
J 

a contradiction. Therefore, C(II0) is a chamber for W(S(II0)). By 
Theorem 2.4, it is a regular chamber and II0 and IIij = { ai, aj} have 
the Cartan property. Thus also rrv and II have the Cartan property. 
Corollary 3.2 implies that W(S(IIv)) is a linear Coxeter group. Q.E.D. 

3.2. The Tits Cone 

In this section, all linear Coxeter groups will be regarded as acting 
on V. We consider a linear Coxeter group W(S) where S is the set 
of reflections S = { si I i E I}, and C(IIv) is a regular chamber such 
that rrv = {a£ I i E I}, a£ being a coroot of si. For 0 C J <;;;; I, set 
VJ = njEJ Haj; then V0 = V and II0 = 0. Set FJ = C(IIv) n VJ and 

(14) 

where 0 <;;;; J <;;;; I. The subset F'} (IIv) is called a facet of C (IIv) provided 
that it is nonempty. Then C(IIv) = U0cJCJ F'}(Ilv). The subspace Vj 
is said to be the support of FJ(Ilv) and-FJ(IIv). The subgroup WJ = 
(sj I j E J) is called a parabolic subgroup of W(S). Set IIj = { a'j E 

rrv I j E J}. Theorem 3.1 implies that WJ is a linear Coxeter group 
for which C(IIj) is a chamber. Since WJ leaves fixed VJ, it also leaves 
fixed FJ(IIv). If 0 <;;;; J C K <;;;; I, then VJ ;;;;> VK. Let J* be the subset 
of I such that Ho:v ;;;;> VJ for j E J*. Then J* is the maximal subset of I 

J 

such that VJ* = VJ. Hence a'j (F'}(IIv)) = 0 for all j E J*. So F'}(IIv) = 
VJ n C(Ilv \ IIj) 0 = VJ· n C(IIv \ IIj. )0 = F'}. (IIv). Let M (IIv) be the 
set of such maximal subsets J* of I. Thus the set F ( C (IIv)) of facets 
contained in C(rrv) is given by F ( C (rrv)) = { F'} (IIv) I J E M (IIv)}. 
It is clear that the facets in F ( C (IIv)) are mutually disjoint and that 
C(IIV) = u {F'}(IIV) I Fj(IIV) E F(C (IIV))}. 

Set 

(15) T(W(S)) = U wC(IIv). 
wEW(S) 

Denote the complement of the envelope of the convex hull of T(W(S)) 
by T(W(S)) 0 • The set T(W(S)) is convex. Consequently T(W(S)) is 
called a Tits cone. For w E W(S) and 0 C J <;;;; I, wF'}(IIv) is a facet 
of wC(IIv) with support w VJ. The corresponding parabolic subgroup is 
wWJw- 1 . Designate F(W(S)) to be the set of facets of the chambers 
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of W(S). By (15), 

(16) T (W ( S)) = U F (W (S)) . 

Standard arguments5 give the next two propositions and, together 
with (16), show that two chambers inC (W (S)) can intersect only in a 
common facet and that the decomposition (16) is a partition ofT(W(S)). 

Proposition 3.4. Let FJ(IIv), F_K(II) E F(C(IIv)) and take wE 
W(S). Then if FJ(IIv) n wF_K(IIv) =f. 0, J = K and wE WJ. In partic
ular, for wFJ(IIv) E F(W(S)), 

wWJw- 1 = {u E W(S) I uwFJ(IIv) = wFJ(IIv)}. 

Proposition 3.5. T(W(S)) is convex. 

Proposition 3.6. Let W(S) be any linear Coxeter group acting 
on V. Let C(IIv) be a chamber for W(S) with a base rrv. Then W(S) 
is finite if and only if -C(IIv) ~ T (W (S)) and thus if and only if 
T(W(S)) = V. 

Proof The convex hull of C(IIv) U -C(IIv) is V. So T(W(S)) = 
V if and only if -C(IIv) ~ T(W(S)). Let rrv = {a£ I i E J} where 
S = {si I i E J} and a£ is a coroot of si. It is well-known6 that a linear 
Coxeter group W(S) with a finite set S of generating reflections is finite 
if and only if -C(IIv) ~ T(W(S)). Of course, if W(S) is finite, then S 
is finite. Therefore, it remains to show that if -C(ITv) is a chamber for 
W(S), then Sis finite. So assume that there exists w0 E W(S) such that 
woC(IIV) = -C(IIv). Then woC(IIv) ~ siDav = -D01v for all i E I. 
However, by (P) of §3.1, this occurs only if ~i appear~ in a reduced 
expression of wo as a product of reflections in S. Since £( w) < oo, this 
implies that S is finite. Q.E.D. 

If WJ is finite, then F.J(IIv) is said to have finite type. Set 
£ (W (S)) to be the subset ofF (W (S)) consisting of facets of finite 
type. Clearly £(W(S)) is W(S)-invariant. Finally set 

(17) E(W(S)) = U£ (W (S)) 

5 cf. [1, V, §4.6]. This argument is an induction based on the mutual 
disjointness of the facets in :F (C (IIv)). 

6 cf. [1, Ex. 2, p.130]. This exercise pertains to the present situation 
since (P) of §3.1 is available. 
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Define the star of a facet wFl(IIv) to be the subset 

stwF.J(IIv) = {uFJ((ITv) E F(W(B)) I uFK(ITv) 2 wF.J(IIv)} 

ofF (W(B)). It is clear that uC(IIv) = uF0(IIv) 2 uFK (rrv). Therefore 
the facets in st wF.J(IIv) are those that are contained in a chamber 
uC(ITv) = C(uvrrv) for which uvrrv 2 wviTj. Set 

(18) C (wF.J(ITv)) = {C E C (W (B)) I co E stwF.J(IIv)}. 

Each chamber C E C (wF.J(ITv)) has the form C = uwC(ITv) for some 
u E W (B). In particular, we may take u = 1 since clearly wC(IIv) 
is in C (wFJ(ITv)). Any two chambers v1wC(IIv) and v2wC(ITv) in 
C (wF.J(ITv)) intersect in F12 = v1wC(ITv) n v2wC(IIv) where Ff2 E 

stwF.J(IIv). For wF.J(ITv) E F(W (B)), set 

(19) 

Theorem 3. 7. Let F0 = F.J (rrv) E .r (W (B)) where rrv = { o:{ I 
i E I}, and let uC(ITv) = C(uvrrv) E C(F0 ) where u E W(B), Set Ju = 
{j E I I uvo:'j(F0 ) = 0} and Ku =I\ Ju = {j E I I uvo:k(F0 ) > 0}. 
Set rv = u { uvrr'k .. I C(uvrrv) E c (F0 )}. Then the following holds. 

(i) uC(ITj..) E C(WJ ). When C' E C(WJ ), then C' n C (rv) E 

C(F0 ), and C(F) = {uC(IIv) I u E WJ}. 
(ii) N(F0 ) = C(rv) ~ T(WJ ), and rv is a base for the polyhedml 

cone C(rv) where rv = U {(uvii'kJ I u E WJ}. 
(iii) F 0 ~ N(F0 ) 0 if and only if FoE e (W (B)). 

Proof. (i) The hyperplanes Huv a'j, o:'j E IIj,. are hyperplanes of 
reflections ruva.v E WJ. Clearly uC(ITj ) is a polyhedral cone. It is 

3 .. 

a chamber for WJ, for otherwise there would exist Hr E 1i (WJ) such 
that Hr n uC(IIjJ0 =f. 0 in contradiction to Hr n uC(IIv)o = 0. On the 
other hand, if C' E C (WJ). Then C' 2 VJ 2 F 0 ; hence it contains a 
chamber C1 E C (F0 ). Since the chambers in C(F0 ) belong to distinct 
chambers of the stabilizer of F 0 , which is WJ, C' contains only one 
chamber of W(S). This forces C' n C (rv) E C(F0 ). Clearly C(IIv) E 

C(F0 ); so rrv = IIjl u II'kl arid C(F) = {uC(rrv) I u E WJ} inasmuch 

as C(WJ) = {uC(IIjJ I u E WJ}. 
(ii) Now rv = u { (uVII'kJ I uC(ITV) 2 F 0 }. But because F 0 i 

Huv a~ for u v O:v E rv' F 0 ~ D~v ey_V. But then uC(rrv) ~ D~v ey_V for 
uC(ITv) E C (F0 ). Thus N(F0 ) ~ C(f0 ). However, T(W(B)) ~ T(WJ) 
and the set C (WJ) partitions T(WJ). Then the set {C' n C(f0 ) I C' E 
C (WJ)} partitions C(f0 ) into the set C(FD). Thus N(F0 ) = C(f0 ). 
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Now U v v Erv F 0 v v (rv) is the envelope B (rv) of C (rv), and each 
u ak u ak 

F 0 v v(rv) contains the face F 0 v v(uC(IIv) of uC(IIv) E stF0 • Conse-
u ak u ak 

quently F 0 v v(fv) -1- 0; so for each uvakv E rv, F 0 v v(fv) is a face of 
u ak u ak 

C(rv), and thus rv is a base. 
(iii) Because F 0 S: VJ, it is contained in the Tits cone T(W J) of W J. 

But F 0 S: T(WJ )0 if and only if T(WJ) = V. It follows from Proposition 
3.6 that T(W J) = V if and only if W J is finite, in which case F 0 E 
£ (W (S)). So it remains to show that F 0 S: N(F0 ) 0 if and only if 
T(WJ) = V. Now T(WJ) :2 T(W(S)). So F 0 rJ;_ T(WJ) 0 is equivalent to 
both T(WJ) -1- V and F 0 rJ;_ N(F0 ) 0 • On the other hand, F 0 S: T(WJ) 0 

is equivalent to T(WJ) = V and thus to having the envelope of C(rv) 
being contained in the walls H-yv, "Y E rv, of C(f0 ). But uv a'{, (F0 ) > 0 
for all uva't, E rv. This means that F 0 rJ;_ C(rvr = N(F0 ) 0 • Q.E.D. 

Corollary 3.8. Let W(S) be a linear Coxeter group acting on 
V, and let T(W(S)) 0 be the interior of its Tits cone T(W(S)). Then 
E(W(S)) = T(W(S)) 0 • 

Proof. By virtue of Theorem 3.7, it follows that F 0 S: N(F0 ) 0 = 
C(rv)o if and only F 0 E £ (W (S)) where rv is defined by (3.7). But 
C(rv)o S: T(W(S)). So po S: T(W(S)) 0 if F 0 E £ (W (S)). On the 
other hand, if F 0 rJ;_ T(W(S)) 0 , then F 0 72 E(W(S)), and it follows 
that F 0 rJ;_ T(wWJw- 1 ) 0 where wWJw- 1 is the subgroup of W(S) that 
fixes F 0 • As we argued in Theorem 3.7, this implies that WJ is infinite 
and so F 0 ¢:. E(W(S)). Then F 0 rJ;_ E(W(S)), and by (16), T(W(S)) 0 = 
E(W(S)) . Q.E.D. 

3.3. Reflection Subgroups 

A Coxeter group is given by a Coxeter system (W(S), S), which 
specifies its presentation, and W(S) may always be represented as a lin
ear Coxeter group 7 by means of the contragredient representation. The 
involutions in W(S) that correspond to the reflections in this representa
tion are those that belong to the set R of the conjugates of the elements 
of S. Independently by M. Dyer [3] and V.V. Deodhar [2] showed that 
a subgroup of a Coxeter group that is generated by these involutions 
is again a Coxeter group. Also J. Tits has noted that Theorem 3.1 is 
applicable to this problem. Here we offer a direct proof that a reflec
tion subgroup of a linear Coxeter group is a linear Coxeter group. This 
immediately implies that it is a Coxeter group. The importance of a 
direct proof lies in the geometrical insight which it provides, which is 

7 cf. Bourbaki (1]. 
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useful when investigating particular reflection subgroups which can be 
identified by an explicit construction of the base of a chamber. 

In this section, we work with a given linear Coxeter group W = 
W(S) and a reflection subgroup Wo. We take T = E(W) to be the 
underlying set T that is used to define the chambers of W and W 0 by 
means of (1). 

Theorem 3.9. Let W be a linear Coxeter group acting on V with 
a regular chamber C(IF) that has a base IIv. Let W 0 be a reflection 
subgroup of W that is generated by a set of reflections. Then W 0 zs a 
linear Coxeter group with a chamber C(IIti) that contains C(IIv). 

Proof. Set 

(20) 

It follows from Corollary 3.8 that E(W) = T(W) 0 ; so C(IIv)o =/= 0. 
Because C0 2 C(IIv)o, it follows from (10) that C0 is a chamber for W0 . 

By virtue of Theorem 3.3, it remains to show that C0 has a base. Let 
IIti be the subset of~;;'+ consisting of those coroots 'Yv such that H 7 v 
is a wall of a chamber w7 vC(IIv) of W that is contained in C0 ; then 
"(v = w7 va'( for some a'( E IIV and 

F~v (IIti) = H 7 v n C(IIti \{"tv} t 2 H 7 v n C(w7 v IIv \ { w7 vaj} t =/= 0. 

Therefore IIti is a base. By virtue of (20), C(IIti) 2 C0 . 

So it suffices to show that C0 2 C(IIti). Let B 0 be the envelope 
Co\ C0 of Co. By virtue of Theorem 3.4, Bo = U{wFJ(II) E F(W) I 
wFJ(II) ~ B0 }. Take wFJ(IIv) E F (W) where wFJ(IIv) ~ B0 . Then 
by Theorem 3.7, N(wFJ(IIv)) is polyhedral cone, and as T(W) = 

E(W), wF0 (IIv) ~ N(wF0 (IIv)) 0 . So as wFJ(IIv) ~ B0 , C0 n 
N(wFJ(IIvW =!= 0. Hence C0 nN(wFJ(IIv)) is a polyhedral cone C(Ati) 
where Ati ~ ~v. 

As wFJ(IIv) ~ B 0 , it follows from Theorem 3.7 that wFJ(IIv) rJ;. 
C(A6')0 • This means that wFJ(IIv) is contained in the envelope of 
C(Ati). Because wFJ(IIv) E £ (W (S)), the parabolic subgroup wWJw- 1 

is finite. Therefore Ati is finite and C(Ati) has a base IIv(wFJ(IIv)). 
Let IIti(wFJ(IIv)) denote the subset of IIv(wFJ(IIv)) which consists 
of those 'Yv E ~;;+ such that H 7 v 2 wFJ(IIv). Then IIti(wFJ(IIv)) ~ 
~b' and C0 n N(wFJ(IF)) = C(IIti(wFJ(IIv))) n N(wFJ(IIv)). Since 
H7 v n N(wFJ(IIv))o =/= 0 for 'Yv E IIti(wFJ(IIv)), it follows that 
IIti ( wFJ(IIv)) ~ II6'. Set II{ = UwF~(rrv)~Bo II6' ( wFJ(IIv) ). Then II{ ~ 
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II6 and C(IIn 2 C(II6). By virtue of Corollary 3.2 and Theorem 3.3, 
IIi inherits the Cartan property from II6. Therefore IIi is a base for the 
polyhedral cone C(IIn, and C(IIn = nwF.J(ITV)<:;;Bo C(IIV(wF.J(IIv))). 
Since B0 = U { wF.J (II) I wF.J (II) ~ B0 }, B0 is contained in the enve
lope of C(IIn. Since Co is the convex hull of B 0 , we now have C0 2 
C (IIn 2 C(II6). Q.E.D. 
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