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Rationally Determined Group Modules

Everett C. Dade

Abstract.

Green’s correspondence of group modules finds its simplest ex-
pression when a finite multiplicative group G has a trivial intersec-
tion Sylow p-subgroup P, for some prime p. Then it is between all
isomorphism classes of projective-free RG-lattices L and all isomor-
phism classes of projective-free R N-lattices K, where R is a suitable
valuation ring and N is the normalizer of P in G. In that case we
show in Theorem 3.2 below that the RG-lattice L is determined by
its associated lattices over the residue field and field of fractions of
R if and only if K has this same property. By Theorem 3.7 some
important RG-lattices L have this property of being “rationally de-
termined.” So it would be worthwhile to see if the RN-lattices with
this property (and perhaps with other properties preserved by this
Green correspondence) could be classified.

§1. Projective-Free Lattices

Let S be any principal ideal domain. As usual, an S-order O is just
an associative S-algebra with identity element 1 = 1¢ such that O is
free of finite rank when considered as an S-module. When we speak of
an O-lattice L we mean a unitary right O-module such that L is also free
of finite rank as an S-module. Of course, a homomorphism ¢: L — K of
O-lattices is just a homomorphism between O-modules L and K which
are O-lattices. We write any such ¢ on the left, so that it sends any
leLto¢(l) e K.

In the special case where the principal ideal domain S is a field, an
S-order is just a finite-dimensional associative S-algebra O with identity
element. Furthermore, an O-lattice is just a unitary right O-module L
which is finite-dimensional as a vector space over S.
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Throughout this note we fix a finite group G and a prime p. We
also fix R, p, F and F satisfying

(1.1) R s a local principal ideal domain (i.e., a real discrete valuation
ring) with unique mazximal ideal p, such that the field of fractions F of
R is a splitting field of characteristic zero for every subgroup of G, and
the residue class field F = R/p of R has characteristic p.

Notice that each of R, F and F is a principal ideal domain S, to which
all the above definitions apply. Furthermore, the group algebra SH over
S of any subgroup H of G is an S-order. The following result says that
S H-lattices have the Krull-Schmidt property.

Proposition 1.2. Suppose that S is either F, F or R, and that
H s any subgroup of G. Then any SH -lattice L is isomorphic to a finite
direct sum Ly @ - - - ® Ly of indecomposable SH -lattices L;. Furthermore,
this direct sum is uniquely determined to within order and isomorphisms
by the SH-lattice L, i.e., if L is also isomorphic to a finite direct sum
K; @ - ® Ky of indecomposable S H-lattices K;, then k =1 and there
is some permutation w of 1,2,...,k such that K; is SH-isomorphic to
L. fori=1,2,... k.

Proof. When S is a field F or F, this is the usual Krull-Schmidt
Theorem for the finite-dimensional S-algebra SH. When S is R, its field
of fractions F is a splitting field of characteristic zero for the finite group
H by (1.1). So FH is a split, semi-simple algebra of finite dimension over
F. Since RH is an R-order spanning FH over F, the basic hypotheses
[1, 4.1] and [1, 4.2] of [1, §4] are satisfied by D = RH. The proposition
for S = R now holds by [1, 4.7]. Q.E.D.

In the situation of the preceding proposition we follow ‘Green [2] in
saying that an SH-lattice K divides an S H-lattice L if L is isomorphic
to the direct sum K & M of K and some SH-lattice M. We say that
L is projective-free if the only projective SH-lattice P dividing L is
P = 0. The Krull-Schmidt property implies that any SH-lattice L is
isomorphic to a direct sum Lps @ Ly, of a projective-free SH-lattice Lp¢
and a projective SH-lattice Ly, either or both of which could be zero.
Furthermore, these conditions determine both Ly and Ly to within
S H-isomorphisms. We call Lyr and Ly, the projective-free part and the
projective part, respectively, of L.

If L is an RH-lattice, then we denote by L its residual F H-lattice

L=L/(pL).
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We write 7y, for the natural epimorphism of L onto its factor RH-module
L. When L is the regular RH-lattice RH, its residual F H-lattice L can
be identified with FH. In that case 7y, is the natural epimorphism 7r g
of RH onto FH as R-algebras.

Our hypotheses (1.1) allow us to lift projective lattices.

Lemma 1.3. If Q is a projective F H-lattice, for some subgroup
H of G, then there is some projective RH -lattice P whose residual FH -
lattice P is isomorphic to Q.

Proof. The completion R* of R. is a local principal ideal domain
with unique maximal ideal p* = pR*. Since F is a splitting field of
characteristic zero for H (see (1.1)), Heller’s Theorem [4, 2.5] tells us
that the map sending any R H-lattice L to its completion L* induces a
bijection of the isomorphism classes of R H-lattices onto those of R*H-
lattices. Clearly any free R* H-lattice is the completion of a free RH-
lattice. Because completion preserves direct sums, we conclude that any
projective R* H-lattice (i.e., any direct summand of a free R* H-lattice)
is the completion of some projective R.H-lattice.

We may identify F = R/p with the residue class field R*/p* of
R*. Since R* is complete, there is some projective R*H-lattice P*
such that P*/p*P* is isomorphic to the projective FH-lattice Q. As
we saw above, P* is isomorphic to the completion of some projective
R H-lattice P. Then P = P/pP is isomorphic to both P*/p*P* and Q
as an F H-lattice. Q.E.D.

Once we can lift projective FH-lattices to projective R.H-lattices,
all the standard results about p-adic lattices become available. As an
example we have the following lemma from [5].

Lemma 1.4. Suppose that H is a subgroup of G, that L is an
RH-lattice, and that Q is a projective FH-lattice dividing L. Then
there is some projective RH-lattice P such that P is FH -isomorphic to
Q. Furthermore, any such P divides L.

Proof. Lemma 1.3 gives us some projective RH-lattice P whose
residual F H-lattice P is isomorphic to Q. Once we know that such a P
exists, the rest of the proof of [5, Lemma 1] can be followed almost word
for word to prove the rest of the present lemma. Q.E.D.

The preceding lemma allows us to characterize both projective and
projective-free RH-lattices by their residuals.

Proposition 1.5. Let H be any subgroup of G, and L be any RH -
lattice. Then L s projective or projective-free if and only if its residual
F H-lattice L is respectively projective or projective-free.
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Proof. If the finitely-generated RH-module L is projective, then
it divides the direct sum (RH)™ of n copies of the regular RH-module
RH, for some integer n > 0. It follows that L divides the direct sum
(FH)™ of n copies of FH. So L is a projective F H-lattice.

Conversely, if L is FH-projective, then Lemma 1.4 with Q = L
gives us some projective RH-lattice P dividing L such that P is FH-
isomorphic to L. This can only happen when L ~ P is projective. Thus
L is projective if and only if L is projective.

If some non-zero projective R H-lattice P divides L, then its residual
F H-lattice P is non-zero and divides L. We saw above that P is projec-
tive. Hence L is not projective-free whenever L is not projective-free.

Conversely, suppose that some non-zero projective FH-lattice Q
divides L. Then Lemma 1.4 gives us some projective RH-lattice P
dividing L such that P ~ Q # 0. Evidently P is not zero. Thus L is
not projective-free if and only if L is not projective-free. Q.E.D.

Another consequence of Lemma 1.4 is the standard correspondence
between projective RH-lattices and projective F H-lattices.

Proposition 1.6. If H is a subgroup of G, then there is a one to
one correspondence between all isomorphism classes of indecomposable
projective RH -lattices P and all isomorphism classes of indecomposable
projective FH -lattices Q. Here the isomorphism class of P corresponds
to that of Q if and only if P is FH-isomorphic to Q.

Proof. Any projective RH-lattice P has a projective residual FH-
lattice P by Proposition 1.5. Any projective F H-lattice Q is isomorphic
to such a residual P by Lemma 1.3. If Py is also a projective R H-lattice,
then any isomorphism P ~ Py of R H-lattices induces an isomorphism
P ~ Py of residual F H-lattices. So we only need show that P is RH-
isomorphic to Py whenever P is F H-isomorphic to Py. But in that case
Lemma, 1.4, with Py and Pyq in place of L and Q, respectively, implies
that P divides Pg. Since P is isomorphic to Py, this can only happen
when P is isomorphic to Py. Q.E.D.

§2. Green Correspondents

Let S be either R or F. Then any integer n relatively prime to the
characteristic p of F = R/p has an image nlg which is a unit of S.
This and the Krull-Schmidt property are enough to imply all of Green’s
theory in [2] and [3] for SH-lattices.

We're going to apply his theory when G has subgroups P and N
" satisfying
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(2.1) P is a Sylow p-subgroup of G, and N is its normalizer Ng(P)
in G. Furthermore, the intersection P N P° of P with its conjugate
P? =07 'Po by any 0 € G — N is the trivial subgroup 1 of G.

Of course this last condition just says that P is a trivial intersection
subgroup of G. Green’s correspondence in this case simplifies to

Proposition 2.2. If (2.1) holds and S is either R or F, then
there is a one to one correspondence between all isomorphism classes of
projective-free SG-lattices L and all isomorphism classes of projective-
free SN -lattices K. Here the isomorphism class of L corresponds to that
of K if and only if L is isomorphic to the projective-free part (KG)pf
of the SG-lattice K¢ induced by K. This happens if and only if K
is isomorphic to the projective-free part (Ln)ps of the SN-lattice Ly
restricted from L.

Proof. Because S H-lattices have the Krull-Schmidt property, for
any subgroup H of G, we may apply all the arguments in [3] to our
present situation. Following the notation of that paper as closely as
possible, we denote by a(H) the Green ring for the SH-lattices. So a(H)
is generated as an additive group by the Green symbols (U), one for each
SH-lattice U, subject only to the relations that (U) = (U’) whenever
U and U’ are isomorphic SH-lattices, and that (U) + (U’) = (U U’)
for any SG-lattices U and U’. (Multiplication in a(H) is irrelevant to
our purposes.) The Krull-Schmidt property implies that a(H) is a free
additive group with one basis element (U) for each isomorphism class
of indecomposable SH-lattices U. Those (U) in this basis for which
U is projective-free form a basis for an additive subgroup ap¢(H) of
a(H). Those for which U is projective form a basis for another additive
subgroup ap,(H). Furthermore, a(H) is the direct sum

(2.3) a(H) = apt(H) @ ape (H)

of these two subgroups.

As the subgroups D and H of G used in [3] we take the present P
and N, respectively. Then H = N contains the normalizer Ng(D) = N
of D = P, as required on page 75 of [3]. The index [G : D] of the Sylow
p-subgroup D = P is relatively prime to p. Hence its image [G : D]lg
is a unit of S. As in [2, Theorem 2], this implies that any SG-lattice is
D-projective. So the additive subgroup ap(G), generated by the (L) for
D-projective SG-lattices L, is all of a(G). Similarly, a(N) is equal to its
subgroup ap(N).

Because D = P is a trivial intersection subgroup of G, the family
X = X(D, H) of all intersections D° N D witho € G— H =G - N
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just consists of the trivial subgroup 1 of G. Hence the additive sub-
group ax(G) = > piex ap'(G) of a(G) is just the additive subgroup
a1(G) generated by the (P), where P runs over the 1-projective SG-
lattices. Since the 1-projective SG-lattices are just the projective ones,
we conclude that ax (G) = ap(G). This and (2.3) imply that

ap(G)/ax(G) = a(G)/ap:(G) = ape(G)
as additive groups. Similarly
ap(N)/ax(N) = a(N)/ap:(N) ~ ape(N).

In view of these natural isomorphisms, [3, Theorem 1] implies the present
proposition. Q.E.D.

When S is either R or F, we say that a projective-free SG-lattice
L is an SG-Green correspondent of a projective-free SN-lattice K (or
that K is an SN-Green correspondent of L) if the isomorphism classes
of L and K correspond in the above proposition.

Proposition 2.4. Let a projective-free RN -lattice K be an RN -
Green correspondent of a projective-free RG-lattice L. Then both the
residual FN-lattice K of K and the residual FG-lattice L of L are
projective-free. Furthermore, K is an FN-Green correspondent of L.

Proof. Proposition 1.5 implies that both K and L are projective-
free. The isomorphism Ly ~ (Ly)pt ® (Ln)pr of RN-lattices induces
an isomorphism

Ly =~ (Ln)pt @ (Ln)pr

of the FN-residuals of those lattices. By Proposition 1.5 the F N-lattices
(L )pe and (L )pr are respectively projective-free and projective. Hence
they are respectively isomorphic to the projective free part (Ly)ps and
projective part (Ly)pr of Liy.

Since K is an RN-Green correspondent of L, it is RN-isomorphic
to (Ly)pt- So K is FN-isomorphic to (Ly)pt = (E)pf. But Ly is
equal to the restriction Ly of L to an FN-lattice. Hence K ~ (EN)pf
is an FN-Green correspondent of L. Q.E.D.

§3. Rationally Determined Lattices

Any RH-lattice L, for any subgroup H of G, extends to an FH-
lattice FL. ~ F ®gr L, determined to within isomorphisms by the fact
that any basis for the free module L over R is also a basis for the vector



Rationally Determined Modules 285

space FL over F. Thus any RH-lattice L determines both an FH-
lattice L = L/(pL) and an FH-lattice FL. Since F and F are the two
“domains of rationality” associated with R, it is reasonable to make the

Definition 3.1. An RH-lattice L is rationally determined if it is
determined to within isomorphisms by its associated F H-lattice L and
FH-lattice FL, i.e., if L is RH-isomorphic to any R H-lattice K such
that L is F H-isomorphic to K and FL is F H-isomorphic to FK.

The main observation of this note is

Theorem 3.2. Suppose that (1.1) and (2.1) hold, that K is a
projective-free RN -lattice, and that L is an RG-Green correspondent of
K. Then the projective-free RG-lattice L is rationally determined if and
only if the RN -lattice K is rationally determined.

Proof. Assume that L is rationally determined. We must show
that K is rationally determined. In view of Definition 3.1 it suffices to
prove that K is RN-isomorphic to Kg whenever Kg is an RN-lattice
whose residual FN-lattice K is isomorphic to K, and whose associated
F N-lattice FKj is isomorphic to FK.

The projective-free R N-lattice K has a projective-free residual FN-
lattice K by Proposition 1.5. The isomorphic FN-lattice K, is also
projective-free. So Proposition 1.5 implies that Ky is a projective-free
R N-lattice. Hence some projective-free RG-lattice Ly is a Green cor-
respondent of K. Since the Green correspondence is the bijection of
isomorphism classes in Proposition 2.2, we can prove that K is RN-
isomorphic to Ky by showing that L is RG-isomorphic to L. Because
L is rationally determined, it will suffice to show that L is FG-isomorphic
to Lo, and that FL is FG-isomorphic to FLyg.

The isomorphic FN-lattices K ~ K induce isomorphic FG-lattices

—G J— —
K ~ KOG. Hence we have FG-isomorphisms

(3.3) (K)ot =~ (Ko )pt and (K )pr =~ (Ko )pr-

By definition (KG)pf and (K_()G)pf are FG-Green correspondents of K
and Kj, respectively. So Proposition 2.4 tells us that (Kc)pf is FG-
isomorphic to the residual L of the Green correspondent L of K. Simi-
larly (K—OG)pf is FG-isomorphic to Lg. Therefore the first isomorphism
in (3.3) implies that L is FG-isomorphic to L.

Evidently KG is FG-isomorphic to the residual K& of the RG-
lattice K& induced by K. As in the proof of Proposition 2.4, this im-

plies that (R_G)pr is FG-isomorphic to the residual (K&),, of (K%),,.
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Similarly (_KEG)pr is FG-isomorphic to the residual (K§)pr of (K§)pr-
So the second isomorphism in (3.3) implies that the projective RG-
lattices (K%),; and (K§)pr have isomorphic FG-residuals. By Proposi-
tion 1.6 this forces (K%),; to be RG-isomorphic to (K§)p:. It follows
that F(K®),, is FG-isomorphic to F(K§ ).

The isomorphism FK ~ FK, of FN-lattices induces isomorphisms
F(K®) ~ (FK)¢ ~ (FK)¢ ~ F(K§) of FG-lattices. Since K& and
K§ are RG-isomorphic to (K)pt & (K%, and (K§)pt ® (K§)pr, re-
spectively, this gives us FG-isomorphisms

F(K%),t ® F(K),, ~ F(K) ~ F(K§) ~ F(K§)pt ® F(K§)pr-

We saw above that F(K%),, ~ F(K§)p: as FG-lattices. So the Krull-
Schmidt property for FG-lattices implies that FL ~ F(K%),¢ is FG-
isomorphic to FLo =~ F(K§)pt-

We have now shown that L is FG-isomorphic to Lg, and that FL is
FG-isomorphic to FLy. As we remarked above, this is enough to imply
that K is rationally determined whenever L is. A similar argument,
using restriction of lattices from G to N instead of induction from N to
G, shows that the converse statement also holds. Q.E.D.

Surprisingly enough, for any subgroup H of G there are some impor-
tant rationally determined R H-lattices. After embedding an arbitrary
R H-lattice L in an FH-lattice FL, we can multiply it by any central
idempotent e in F H, obtaining an RH-sublattice Le spanning the FH-
submodule (FL)e = F(Le) of FL.

Proposition 3.4. Suppose that H is a subgroup of G, that P is a
projective RH -lattice, and that e is a central idempotent of FH. Then
the RH -lattice L = Pe is rationally determined.

Proof. Let K be any RH-lattice such that K is F H-isomorphic to
L and FK is FH-isomorphic to FL. We must prove that K is RH-
isomorphic to L.

Right multiplication by e is an RH-epimorphism p of P onto L =
Pe. If we follow p by the natural epimorphism 7z, of L onto L = L/(pL),
and by some F H-isomorphism 7 of L onto K, we obtain a homomorphism
ton,op: P — K of RH-modules. We also have the natural epimorphism
mg of K onto K = K/(pK) as RH-modules. Because P is a projective
R H-module, there is some homomorphism 6: P — K of RH-lattices
such that

(3.5) ngol=TtonLop: P> K.
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The RH-homomorphism 6: P — K extends by F-linearity to an
FH-homomorphism 6F: FP — FK. This last homomorphism com-
mutes with multiplication by the central idempotent e of FH. So it
restricts to an RH-homomorphism ¢ = (%), of L = Pe into Ke. But
right multiplication by the idempotent e is the identity on both L = Pe
and FL = FPe. Hence it is the identity on both the F H-lattice FK iso-
morphic to FL, and on the RH-sublattice K of FK. We conclude that
¢t is an RH-homomorphism of L into K = Ke. Since the epimorphism
p in the equation (3.5) is just multiplication by e, that equation implies
that

Tong=nkout: L — K.

Thus ¢: L — K is a homomorphism of RH-lattices inducing the isomor-
phism 7: L. — K of FH-lattices. Hence ¢ is an RH-isomorphism of L
onto K. Q.E.D.

The R H-lattice Pe in the preceding proposition is projective-free in
the most important case.

Proposition 3.6. Suppose that H is a subgroup of G, that P is an
indecomposable projective RH -lattice, and that e is a central idempotent
of FH. Then the RH-lattice Pe is either equal to P or projective-free.

Proof. Assume that Pe is not projective-free. We must show that
it is equal to P, i.e., that right multiplication by e is the identity on P.
Since right multiplication by the idempotent e is certainly the identity
on Pe, it will suffice to show that P is RH-isomorphic to Pe.

Because Pe is not projective-free, it is divisible by some non-zero
projective RH-lattice Q. So there is some RH-epimorphism 7 -of Pe
onto Q. Right multiplication by e is an RH-epimorphism p of P onto
Pe. Hence the composite map wo p: P — Q is an epimorphism of RH-
lattices. Since Q is RH-projective, there is some RH-monomorphism
p: Q — P such that m o po u is the identity map of Q onto itself. In
particular, the non-zero RH-lattice Q divides the indecomposable RH-
lattice P. This can only happen when 7 o p is an isomorphism of P
onto Q, with u as its inverse. But then the epimorphism p must be an
R H-isomorphism of P onto Pe. As we remarked above, this is enough
to prove the proposition. Q.E.D.

Putting the preceding results together, we obtain

Theorem 3.7. Suppose that (1.1) and (2.1) hold, that P is an
indecomposable projective RG-lattice, and that e is a central idempotent
of FG such that Pe # P. Then the RG-lattice Pe is projective-free,
and its RN-Green correspondents are rationally determined.
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Proof. The RG-lattice Pe is projective-free by Proposition 3.6, and
is rationally determined by Proposition 3.4. So its RN-Green correspon-
dents are rationally determined by Theorem 3.2. Q.E.D.
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