Advanced Studies in Pure Mathematics 32, 2001
Groups and Combinatorics — in memory of Michio Suzuki
pp. 209-244

A characterization of 2Eg(2)

Michael Aschbacher

§1. Introduction

This paper is part of a program to provide a uniform, self-contained
treatment of part of the foundations of the theory of the sporadic finite
simple groups. More precisely our eventual aim is to provide complete
proofs of the existence and uniqueness of the twenty-six sporadic groups
and to derive the basic structure of each sporadic. The two books [SG]
and [3T] make a beginning on that program.

In this paper we provide a uniqueness proof for the group 2Es(2).
Of course ?FEg(2) is a group of Lie type, not a sporadic group, but in
order to treat the Monster and the Baby Monster, one first needs to
treat 2Eg(2). Thus this paper begins that part of the program dealing
with the large sporadics.

Suzuki was one of the pioneers in identifying finite groups from in-
formation on subgroup structure. His characterization of L3(2") in [S]
identifies those groups by producing a BN-pair. That approach is not so
different from the one adopted in our program. Indeed in the work of S.
Smith and the author on quasithin groups, the groups L3(2"), n even,
can not quite be handled using our standard methods, so we appropriate
a clever counting argument of Suzuki’s from [S] to fill the gap. Hope-
fully Suzuki would regard this paper as continuing a tradition which he
pioneered.

Define a finite group G to be of type 2Eg(2) if G possesses an invo-
lution z such that F*(Cg(z)) = O2(Cq(2)) is extraspecial of width 10,
Ci(2)/02(Ca(z)) = Us(2), and z not weakly closed in O2(Cg(z)) with
respect to G.

Define G to be of type Zo/?E¢(2) if G possesses an involution z such
that F*(Cg(z)) = O2(Cg(2)) is extraspecial of width 10 and Cg(z) has
a subgroup H of index 2 such that H/O5(Cq(z)) = Us(2), and z is not
weakly closed in O3(Cg(z)) with respect to G.
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Our main theorems are:
Theorem 1. Each group of type 2Eg(2) is isomorphic to 2Eg(2).

Theorem 2. If G is of type Zy/?E¢(2) then F*(G) is of index 2
in G and F*(G) 2 2E4(2).

Theorems 1 and 2 are proved in sections 8 and 9, respectively, where
they appear as Theorems 8.7 and 9.1. Many lemmas are included in the
paper which are not used in the proof of the main theorems. They will
be used later in the program and appear here because it is convenient to
provide an exposition of related results in one place. Similarly the proof
of the following two lemmas will appear in later papers in this series for
the same reason, as will the proof of the third part of lemma 5.8.

(1.1) Let T be a building of type Fy and A the collinearity graph of
I'. Then A is simply connected.

(1.2) Let G be a group and V a faithful finite dimensional F2G-
module. Assume u € V# such that the full group T of transvections on
V with center u is contained in G. Let U = (u®) and L = (T'%). Then
Autr(U) = GL(U).

§2. Presentations for modules

In this section 2 is a graph with vertex set {2 and Q(z) denotes the
set of vertices adjacent to a vertex x of 2. Assume G is a group of
automorphism of {2 transitive on the vertices of the graph and let V' be
the permutation module for G on Q over F5. Thus  is a basis for the
Fs-space V and G < GL(V) is transitive on the basis Q.

Define a bilinear form 8 on V by

B(z,y) = 0if and only if y € Q(z) U {z} for z,y € Q.

As the relation defining the graph 2 is symmetric, the bilinear form £
is symmetric.
Let R = Rad(3) be the radical of the bilinear form 3; that is

R={veV:B(u,v)=0foraluecV}.

Finally let V = V/R and write § for the bilinear form induced by 3 on
V. That is ~
ﬂ(’l_},’l_l,) = Ig(u”u)
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which is well defined as R is the radical of 3. Further as R is the radical
of /3, the induced form 3 is nondegenerate, so (3 is a symplectic form on
V. As G is a group of automorphisms of the graph €, G preserves the
form (3, and hence also the induced form 3. We summarize all this as:

(2.1) (V, B) is a symplectic space over Fo and G < Sp(V) is a group
of isometries of this symplectic space transitive on the generating set (2
of V.

(2.2) Assume U is an FoG-module and p : Q@ — U 1s a map such
that U = (p(Q)) and p: Q — p(Q) is an equivalence of G-sets. Assume
further that v is a symplectic form on U with

Bz, y) = v(p(z), p(y)) for all z,y € Q.
Then p extends to an FoG-isometry p: (V,3) — (U, 7).

Proof. As U = (p(Q)), the map p extends to a surjective FoG-
homomorphism p : V — U. Let v € V; then v = ZyeS(v) Yy, where
S(v) is the support of v with respect to the basis Q. Further for z € €,
B(v,z) = |I(z) N S(v)| mod 2, where I'(z) = Q — z+. Now p(v) =
Eyes(v) p(y) and

Yp(),p(@) = Y ¥(p(),p(x)) = T(z) N S(v)] mod 2= p(v,z)

yES(v)

as B(z,y) = v(p(x), p(y)) for all z,y € Q. Therefore v € R if and only
if B(v,z) = 0 for all z € Q if and only if y(p(v), p(z)) =0 for all z € Q
if and only if p(v) € UL = 0, since U = (p(2)). Therefore R = ker(p),
so p induces the isometry 5: (V, 3) — (U, 7). Q.ED.

(2.3) Assume (U,q) and (W, Q) are orthogonal spaces over Fg with
G irreducible on U, G < O(U,q), and G < O(W, Q). Let v and « be the
bilinear forms of q and Q, respectively, and assume p : (U,v) — (W, )
is an FoG-isometry. Then p: (U, q) — (W, Q) is also a FoG-isometry.

Proof. As G isirreducible on U, there is at most one quadratic form
on U preserved by G with bilinear form . (cf. 4.9 in [A]; the argument
is easy.) Therefore ¢ is that unique form. Similarly as p: U — W is an
equivalence of FoG-representations, G is irreducible on W, so @ is the
unique quadratic form on W preserved by G with bilinear form «, so
that p is also an isometry of the corresponding orthogonal spaces.

Q.E.D.
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(2.4) Assume (U, q) and (W, Q) are orthogonal spaces over Fy with
G irreducible on U, G < O(U, q), and G < O(W,Q). Assume further
that u € U, w € W, with G, = Gy, U = (uG), W = (wG), and
~v(u,ug) = a(w,wg) for all g € G, where v and « are the bilinear forms
of q and Q, respectively. Then there exists an FoG-isometry p : (U, q) —
(W, Q) with p(u) = w.

Proof. As G, = G,, the map p : uG — wG defined by p(ug) = wg
is a well defined equivalence of permutation representations. Now take
Qu to be the graph on uG with Qu(u) = Qu Nut. As y(u,ug) =
a(w,wg), p defines a G-equivariant isomorphism of Qy with the cor-
responding graph 2w on wG. Now apply 2.2 to get FoG-sometries
pu : (U,q) — (Wu,q) and pw = (W, Q) — (Vw,Q), where Vyy and Vi
are modules of the graphs Qy and Qyy, respectively, and § and ) are
the transfer of the forms ¢ and Q via py and pw. As p: Quy — Qw is
a G-isomorphism, p induces an F3G-isometry 5 : (Vir, Bv) — (Viv, Bw),
and hence also an FyG-isometry p : (Vir,q) — (Viz, Q) by 2.3. Then
the composition p‘},l o po py agrees with p on uG and is the required
extension. Q.E.D.

§3. Some central extensions

We adopt the notation of section 33 of [FGT] and section 23 of [3T]
in discussing central extensions. In particular if G is a perfect finite
group then Cov(G) is the universal covering group of G' and Schur(G)
is the Schur multiplier of G. In particular Schur(G) < Z(Cov(G)) with
Cov(G)/Schur(G) = G. In addition if p is a prime define

Covy(G) = Cov(G)/OP(Schur(G))®(0,(Schur(G)))

and

Schur,, (G) = Schur(G)/OP (Schur(G))®(O,(Schur(G)))

That is Cov,(G) is the largest perfect central extension of an elementary
abelian p-subgroup by G.

Let ‘H be the class of finite groups H such that F*(H) is an ex-
traspecial 2-group and H/O,(H)) is irreducible on F*(H)/Z(F*(H)).
Our notational convention will be to write Q = F*(H), H = H/Z(Q),
and H* = H/Q. We recall from section 8 of [SG| that the commutator
map and power map define a nondegenerate bilinear form and quadratic
form on Q preserved by H*. By Exercise 8.5 in [FGT], Out(Q) = O(Q)
is the isometry group of this quadratic form.
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(3.1) Let H; e H, i = 1,2, with Q1 = Qz and assume Q; is abso-
lutely irreducible as an FoH-module. Then H, = H, if and only if the
induced representations of HY on Q; are quasiequivalent fori=1,2.

Proof. Identifying (1 and Q2 via our isomorphism, we may take
Q1 = Q2 = Q. Then identifying H; with Autg,(Q), we have H; <
Aut(Q) = A and H} < A/Q Out(Q) = O(Q).

The representations of Hf and Hj on Q are quasiequivalent if and
only if H} and Hj are conjugate in GL(Q). Further as Q is an absolutely
irreducible Fo H;-module, the quadratic form on Q is the unique one
preserved by H;, (cf. 4.9 in [A]), so H} is conjugate to Hy in GL(Q) if
and only if the groups are conjugate in O(Q) Thus the representations

are quasiequivalent if and only if H; is conjugate to H, in A, establishing
the lemma. Q.E.D.

(3 2) Let H € H be perfect and let H = Covy(H), Q = O4(H), and

[Q, H]. Then

(1) H/P = Covy(H*) and Q/P = Schury(H*).

(2) P=Q x H'(H*,Q).

(3) If Hy is a perfect central extension of H then the representation
of Aut(H,) on Hy by conjugation factors through Aut(H).

(4) D = Cyyya)(P/Z(P)) is elementary abelian and centralizes
P/®(P), and D/Autp(H) acts faithfully as the full group of transvec-
tions on Z(P) with center ®(P).

(5) D/Autp(H) is regular on the complements to ®(P) in Z(P), so
if U is such a complement then Aut(H) = DNy (i) (U) with Autp (H)=
Np(U).

(6) If Hy € M with F*(Hy) = F*(H) then Ho/Z(Ho) = H/Z(H)
if and only if Hy = fI/V for some complement V' to ®(P) in Z(ﬁ)
containing U.

Proof. This is an extension of 8.17 in [SG|, where the result is
essentially proved under the extra hypotheses that H!(H*,Q) = 0 and
H* is absolutely irreducible on Q. Much of the same proof works. In
particular if p : H — H is the universal covering of H and Z = ker(p)
then Q = p~1(Q) is of class 2 with center Z = p~1(Z(Q)), Z = Z(H),
and |Z : Z| = 2. As Z = Shury(H), Z is elementary abelian. Arguing
as in the proof of 8.17 of [SG], ®(P) is elementary abelian, so as Z =
®(P)Z, Z is elementary abelian. Similarly the proof of 8.17 in [SG]
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shows that (1) holds. Part (3) follows from the universal property of p;
cf. 33.7 and 33.8 in [FGT].

Let z € Q with zp. of order 4 in Q. Then z?> € Z = Z(ﬁ), 50
(x9)? = ac2 for all g € H. But as H* is irreducible on Q, Q = (#1"),
so Q@ = (zf,Z) and then as ®(Q) = (x2p), ®(Q) = (x?) is of order 2.
Therefore Q >~ @ X Eom as Z is elementary abelian. Then as Q = PZ ,
®(Q) = ®(P) and P2 Q x Egn.

As H* < O(Q), Q is self dual as an H*-module. Therefore as
P = [P,H] and H* = H/Q = H/Cy(P/®(P)) with P/Z(P) = Q
self dual as an H*-module, n < dimp,(H'(H*,Q)) = k. (cf. 17.12 in
[FGT].) So (2) will be established once we show n > k.

Let A = Aut(H) and D = C(P/Z(P)). Then [H, D] < C4(P/Z(P
)) = Q, so as Q/Z is of exponent 2, so is D. Suppose d € D — Q/Z
and let P = P/®(P), and form the product E = P(d). As d centralizes
H/Q and H/P is perfect, d centralizes H/P, so H acts on E. Claim
E is abelian. If not, as P is abelian, C5(d) = Z(E) is H invariant, so
as H* is irreducible on @ = P/Z(P) and P = [P, H], either Z(E) <
Z(P) or P = Z(E), with the latter impossible as E is nonabelian. So
Cp(d) < Z(P). Let z € P — Z(P), U = (|z,d]), and E = E/U. Then
z € Cp(d) — Z(P), so the argument above shows FE is abelian, and hence
U = [P,d]. Therefore |P: C5(d)| = |U| = 2, so as Cp(d) < Z(P), Q is

of order 2, a contradiction.

We have shown that E is abelian and hence that D centralizes
P/®(P). On the other hand [C4(P),H] < Cyx(P) = Z, so as H is
perfect, C4(P) = 1. Thus D is faithful on P. But P = PyZ(P) with
Py, 2 @ and as D centralizes P/®(P), D centralizes Py/®(P,). Hence
as Inn(Fy) = Caue(py) (Po/®(Fo)), D/Inn(P) is faithful on Z(P). That
is D/Inn(P) acts faithfully as a group of transvections on Z(P) with
center ®(P). So to complete the proof of (2) and (4), it remains to show
m(D/Inn(P)) > k.

Let W be the largest Fo H*-module with Cyw (H*) = 0 and V =
[W, H*] = Q.(cf. section 17 in [FGT)].) Let & — & be an H*-isomorphism
of Q with V. The representation of H* on W induces a representation
7 : H — GL(W) of H on W. Form the semidirect product G = HW
of W by H with respect to the representation 7 and let Vg = {zz:z €
Q} < G. As Q centralizes W, Vj is a normal subgroup of G and in G/ VO,
z € Q is identified with &, so G/V, has normal subgroups HV, / Vo &
and WV,/Vp = W with (HV,/Vo) N (WV,/Vo) = QVy/Vo = Q. Hence
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W induces a faithful group of automorphism on H centralizing Q and
by part (3), W factors through D, so m(D/Inn(P)) > m(W/V) = k,
completing the proof of (2) and (4).
Notice that (4) implies (5). Finally (5) and the argument in the
penultimate paragraph of the proof of 8.17 in [SG] establishes (6).
QED.

(3.3) Let H € H be perfect with Schury(H*) = 1. Then each
Ho € M with F*(Ho) = F*(H) and Ho/Z(F*(Ho)) = H/Z(F*(H))
is isomorphic to H.

Proof. Adopt the notation of 3.2. As Schurs(H*) =1, P = Q by
3.2.1. Then by 3.2.6, H = I:I/U = Hy for some fixed complement U to
®(P) in Z(P). Q.E.D.

84. Large extraspecial 2-subgroups

In this section we assume the following hypotheses:

Hypothesis 4.1. G is a finite group, z is an involution in G, H = Cg(z),
and @ = F*(H) is an extraspecial 2-group.

In addition we adopt the following notational conventions: Let H =
H/(z) and H* = H/Q. From section 8 in [SG], Q has the structure of
an orthogonal space over Fo when we identify Fy with {1, 2} and take
q(@) = u? and (@,?) = [u,v] for u,v € Q. Of course H* is embedded
into O(Q) via its action by conjugation.

The width of an extraspecial 2-group @ is the integer w such that
Q| = 22w+1,

Example 4.2. Let w be a positive integer and L a finite group. A pair
(G, z) satisfies Hypothesis H(w, L) if (G, z) satisfies Hypothesis 4.1 with
Q of width w, H* 2 L, and z not weakly closed in () with respect to
G. In [SG] the Monster and Baby Monster are constructed as groups
satisfying Hypotheses H(12,Co;) and H(11, Coy), respectively.

(4.3) Assume no element of H induces a transvection on Q, and let
x be an involution in Q with x ¢ 2¢ and T € Syly(Cyx(z)). Then

(1) (z,2) = Z(T) = Ca(Cq(x)), z is weakly closed in Z(T) with
respect to G, and T € Syla(Ce(z)).
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(2) 2°NQ ==z

Proof. Let X = (z,z). Then Z(T)* < Cu(Cq(z))* =Y*, and Y*
centralizes the hyperplane C/Q\(w/)) of @, so as no element of H induces
a transvection on Q, Y < Q. Then as X = Z(Cq(z)), X =Y = Z(T).
As zz € 29, z is weakly closed in X with respect to G. Hence T €
Syla(Ce(x)), establishing (1).

Let 9 € Q and S € Syla(Cu(x9)). Then by (1), T, 597" are Sylow
in Cg(x), so there is ¢ € Cg(x) with T° = §9° . Then 29 = z as z is
weakly closed in Z(S), so h = cg € H with Z(T)" = Z(S), and hence
replacing h by kh with k € Q — Cg(z) if necessary, " = 29, establishing
(2). Q.ED.

In the remainder of this section we assume the following hypothesis:

Hypothesis 4.4. Hypothesis 4.1 holds with z not weakly closed in @
with respect to G. In addition T € Sylo(H) and J(T*) & Egw—1, where
w > 2 is the width of Q).

We adopt the following notational conventions: Let g € G — H with
s=29€Q, E=QnQ%and R=(QINH)(QNHY) <T.

Remark. Note that by Hypothesis 4.1, hypotheses (1.1)-(L3) of section 8
of [SG] are satisfied by Q. Further as w > 2 and z is not weakly closed in
@ with respect to G, the hypotheses of 8.7.3 in [SG] are satisfied, so by
that result, ) is a large extraspecial subgroup of G, as defined in section
8 of [SG]. In particular we can appeal to the lemmas in that section.

(4.5) (1) E = Eyut1.

(2) Cu~(8) = Ny~ (R*).

(3) R* = J(T*).

(4) Let Xo = (Q,Q9) and V = (z,8). Then Py = Ng(V) =
X2Cx(V) with R = Cx,(V), Py/R = X5/R x Ca(V)/R, X2/R & Ss,
and Cg(V)/R = Ng-(R*)/R*.

(56) E/V < Z3(R) is centralized by X, and is isomorphic to the dual
of R* as a module for Ca(V)/R.

(6) R/E = Ey2w-2 is the tensor product of the natural module for
X2/R and the module R* for Cq(V)/R. In particular Cg(s)/E is iso-
morphic to R* as a Cy(V)-module.

(7) R* induces the full group of transvections with center § on E
and the full group of transvections with axis Cg(s)/E on Q/E.
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(8) If Ny-(R*) is irreducible on R* then Ny« (E) = Cy~(8) and H*
is absolutely irreducible on Q.

Proof. By 8.15 in [SG], ma(F) = m + 1 with m < w and R* is
elementary abelian of rank 2w — m — 1. Let R < T € Sylp(H). By
Hypothesis 4.4, J(T*) = Egw-1, 50 2w —m — 1 = m(R*) < m(T™*) =
w — 1, and hence w < m. We conclude m = w and R* = J(T™*). In
particular (1) and (3) hold.

Next by (1) and 8.15 in [SG], (4) and (5) hold, and R/FE is the tensor
product of the natural module for Xo/R = Ly(2) with the Ce(V)/R-
module isomorphic to R*, E/V is dual to R* as a Cg(V)/R-module,
and R* induces the full group of transvections on E with center §. Then
as Q/E is dual to E as a Ny-(E)-module, R* induces the full group of
transvections with axis Cg(s)/E on Q/E, establishing (7).

For e € E, [RQ,é] < (8) and for ¢ € Cq(s) — E, [RQ,q] < E.
Finally for u € Q — Cg(s), Co(s) < [RQ,u]E, so ge € [RQ,u] for
some e € E. Then [RQ,qe] < [RQ,u] and as RQ centralizes E/V,

m([RQ,@]) > w -1+ m([RQ,q]) — 1 > m([RQ, g]).

Therefore m([RQ, @]) > m([RQ, §]) for ally € RNQ, so RNQ 4 Ny (RQ).
Hence V = Z(RNQ) <« Ng(RQ), so Ny(RQ) = QCr(s). This completes
the proof of (2).

Finally assume Npy«(R*) is irreducible on R*. Then by (4)-(7),
Cy(V)/R = Ng-«(R*)/R* has chief series

0<V<E<Cot)/{z) <Q

and the stabilizers in H* of each of the nontrivial members of this
series, other than E, also stabilizes V. Further as F*(H) = Q and

1 # R* a4 Ng-(R*) = Cy+(V), Cy-(V) is proper in H*, so either H*
is irreducible on Q or Cy~(5) < Ng«(E). Indeed in the former case
as V is of order 2 and C 1(6)(H")-invariant, the representation is even

absolutely irreducible.
So we may assume Cg+(§) < Ng-(E), and it remains to derive a

contradiction. Then Ny« (FE) is irreducible on E, so by 1.2, Ny~ (E)
induces GL(E) on E. Further as R* is faithful on E and normal in
Ng+(V) = Cy+(3) and R* = J(T*), Ny-(E) is faithful on E. Then as
Eouw—1 = R* = J(T*) while Ny« (E) = GL(E) = GL,(2), it follows that
w < 2, contrary to Hypothesis 4.4. Namely ma(GL,(2)) > w — 1 for
w > 3 and J(T*) = T* &£ Dg when Ng-(FE) & GL3(2). Q.E.D.
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(4.6) If Cr« (N« (R*) =1 then

(1) (8) = C5(Ng-(R")), and

(2) 26NQ = {z}ust.

Proof. By 4.5.2 and 4.5.6, Cg(s)/FE is isomorphic to R* as a Ny«
(R*)-module, while by hypothesis, Cr«(Ng+(R*)) = 1, so Ng-(R*) has
no fixed points on Cg(s)/E. Hence (1) follows from 4.5.2 and 4.5.7.

Lety € G—-Handt=2zY € Q. By (1), 4.5.3, and symmetry between
s and t, (f) = C(Ng+(J(S*))) for some S* € Syla(H*). Then by
Sylow’s Theorem, J(S*) is H*-conjugate to J(T™), so t is H-conjugate
to s. Q.E.D.

(4.7) Assume R* = Cy-(R*). Then

(1) No element of H* induces a transvection on Q.

(2) If in addition Cr-(Ng+(R*)) = 1, then 2% N Q = z* for each
involution x € Q with = ¢ {z} UsH.

Proof. Part (2) follows from (1), 4.3, and 4.6. If h* € H* induces

a transvection on @ then h* is an involution, to we may take h € T. By
4.5.5, EB/V is dual to R* = Cg(s)/E as a T*-module and Cq(s)/E
is isomorphic to R* by 4.5.6, so if [R* h*] # 1 then m([Q,h*]) >
2m([R*, h*]) > 1, a contradiction. Hence h* € Cy-(R*) = R*. Then by
4.5.7, m([Q, h*]) > 1. Q.E.D.

(4.8) Assume H* is irreducible on Q. Then

(1) The regular orbits of R* on Q/(3) are those in Q/(3)—Co(s)/(5).

(2) If (G1, z1) satisfies Hypothesis H(w, H*) and Cg+(Ng-(R*)) =1
then H, =~ H.

Proof. Let V = (s,z) and Q = Q/V. By 4.5.7, R* induces the
group of transvections with axis Cg(s)/E on Q/E, so all orbits of R* on

Q —Co(s) are regular. Hence to prove (1) it suffices to show Cg« (@) # 1
for each uv € Cg(s). If u € E this follows from 4.5.7, so assume u €
Cq(s)—E with Cgs (@) = 1. Then m([R*,4]) = m(R*) = w—1=m(E),
while by 4.5.7, [R,u] < E, so [R*, 4] = E. By symmetry between z and
s, we may assume there is v € Q9N H — E with [v,Q N HIV = E. But
as v* induces an involutory automorphism on Q, [Q,v*] < Cy (v*), so
v* centralizes E, contrary to 4.5.7. This completes the proof of (1).

Let K* = Ny-(R*) and 2 the graph on H*/K* with K* adjacent
to K*h* if K*h*R* is not a regular orbit for R*. Let 3 be the bilinear
form on Q. By (1), 8(3,5") = 0 if and only if K*h* € Q(K*).
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Assume the hypotheses of (2) and let v be the bilinear form on Q1.
Then there is an isomorphism H* = H{ which induces a representation
of H* on Q;. By 4.5.2, K* = Cy-(5,) for some s; = 27" € @1 and by
(1) applied to Gi, ¥(31,3%) = 0 if and only if K*h* € Q(K*). Therefore
by 2.4, the representations of H* on Q and Q, are equivalent and Q
is isometric to Q;. As Q and Ql are isometric, Q = (). As H* is
irreducible on @ and Cp(K*) = (8) is 1-dimensional by 46.1, Q is an
absolutely irreducible Fo H*-module. Hence by 3.1, H = H;. Q.E.D.

(4.9) Assume Npg»(R*) is irreducible on R* and (G, z1) satisfies
Hypothesis H(w, H*). Then H; = H.

Proof. As Ny«(R*) is irreducible on R*, H* is irreducible on Q by
4.5.8, and Cg+(Ngy~(R*)) = 1. Hence the lemma follows from 4.8.2.
QED.

§5. Sps(2) and Us(2)

(5.1) Let V be a 2m-dimensional symplectic space over a perfect
field F of characteristic 2 and G = Sp(V)). The the conjugacy classes
of inwolutions of G are ag, by, and cx, 1 < k < m, where ford = a,b,c
and t € dg, m([V,t]) =k, k is odd if and only if d = b, and V() = {v €
V:i(v,vt) =0} =V if d = a, while V(t) is a hyperplane of V ifd = b

or cC.

Proof. This is contained in section 7 of [ASe], but we repeat the
proof here for completeness. Let ¢ be an involution in G. For u,v € V,
(v,ut) = (u,v?), so the map v — (v,v?) is a linear map from V into F'
with kernel V(¢). In particular dim(V/V (¢)) < 1.

Suppose V = V(t). Pick y1 € V — Cy(t), z1 € (y{)* — yi, and
let Vi = (y1,9%,x1,2%). Multiplying z; by a suitable scalar, we may
take (yi,z1) = 1. Then {y1,z1,9%, 2%} is a hyperbolic basis for V;. (cf.
section 19 in [FGT]) In particular V; is nondegenerate so V = V; & Vi,
and proceeding by induction on m,

V=Vl --VilW

where W < Cy(t) and V; has a hyperbolic basis {y;, x;,yf, zt}. Notice
[V, 1] has basis {y; +yi,@; +z¢ : 1 < i <r}, so dim([V,#]) = 2r and G is
transitive on the set az, of involutions ¢ with V' = V(t) and dim([V,¢]) =
2r by Witt’s Lemma.

So assume V # V(t). Then V (t) is a hyperplane of V, so V(t) = V3
for the point Vp = V(¢)*. Pick u € V—V(t), a € F with a? = (u,u?)"1,



220 M. Aschbacher

and let z; = au. Then {z;,z%} is a hyperbolic basis for Vi = (z1,z})
and V = V; @ Vi*. Continuing in this fashion we write

V=WVl lV,1W

where V; has hyperbolic basis {z;, 2!} and W < V(¢). Then V5 = (v),
where vg = Y, z;+af. If sisoddlet z = ) ;_, z; and observe {z,z'}
is a hyperbolic basis for U = (z,zt) with U+ = V(t) Nzt < V(¢), so by
the as, case, the restriction of t to UL is of type aq, and G is transitive
on the set by.11 of involutions ¢ with m([V,#]) = 2r + 1.

Finally if s is even let z = z; and y = >, _, @;. Then {z,2*,y,y'} is
a hyperbolic basis for U = (z, 2t,y, y*) with Vo < U, so again U+ < V(¢t)
and by the as, case, G is transitive on the set ¢y, of involutions with
V # V(t) and m([V,t]) = 2r. Q.E.D.

As an immediate corollary to 5.1 we have:
(5.2) Spe(2) has four classes by, asz, ¢z, and bs of involutions.

(5.3) Let G = Spg(2). Then Schurs(G) = Zy and involutions of
type by and cz in G lift to elements of order 4 in Cova(G).

Proof. The centralizer of an involution in Cos is a covering of
Spe(2) over Zs, so it remains to show |Schury(G)| < 2 and to estab-
lish the statement about lifts of involutions. Let b be a transvection in
G, H = Cg(b), and A = Ox(H). Then b is of type b; and A is the core
of the permutation module for the Levi factor L = Sg for H, with each
coset of (b) in A containing one involution of type as and one of type cz.

Let G be a covering of G over a center Z = (z) of order 2 and for
B < G write B for the preimage of B in (. From the representation of
L on A, either <I>(f1) =1or A 7Z,%2"4 Assume the former. Then as
HY(L, A/(b)) = Zs, A splits over Z. Further all involutions in L are of
type by, ag, OF g, and hence lift to involutions as <I>(A) = 1. Therefore
L =27 x Ly and then H = LO[A LO] x Z splits over Z. But then as H
contains a Sylow 2-subgroup of G, G splits over Z, a contradiction.

So A = Z, x 21+ and in particular (l;) = () so that involutions
of type by lift to element of order 4. Next G has a parabolic P with
P/Oy(P) = L3(2) and possessing a P-submodule R of Oz(P) which
is the natural module for P/O,(P) with each involution in R of type
ay. As P is transitive on R#, @(E) =1, so elements of type as lift to
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involutions. Thus if & € A is the lift of an involution of type as then o
is an involution, so the lift zo of an involution of type ¢z is of order 4.
Now let G = Covy(G). Then G = G/U for some hyperplane U of
V = Z(G). Further if a € G with « of type by then a? € V — U. But
if U # 1 there is a hyperplane W of V with o? € W, so that G’/W
is a covering of GG over Zy in which transvections lift to involutions, a
contradiction. Q.E.D.

(5.4) Up to isomorphism the spin module for Spg(2) is the unique
8-dimensional irreducible F2Spg(2)-module.

Proof. Let G = Spe(2) and 0 # M an irreducible FoG-module. As
F, is a splitting field for G, M = M(A) for some restricted dominant
weight A # 0. Next the Weyl group W for G is of type Cj3, so the orbit
AW of A under W is of length |W : W,| where W, is the parabolic
stabilizing A, so either [AW| > 8 or A = A; or A3 and |[AW| = 6 or
8, respectively, where ); is the ith fundamental dominant weight. As
M (X;) is the natural module of dimension 6 and M ()3) the spin module
of dimension 8, the lemma follows. Q.E.D.

(5.5) Let G =2 Ug(2) and V' an absolutely irreducible 20-dimensional
F2G-module such that G, = L3(4)/Eq for some v € V. Let M =
V ®p, Fy regarded as a F,G-module. Then M = A\*(N), where N is
the natural module of dimension 6 for the covering G~S Us(2) of G.
In particular the FoG-module V is determined up to equivalence.

Proof. AsV is an absolutely irreducible F3G-module of dimension
20, M is an irreducible F4G-module of dimension 20. Next G<S<
GL(M) with S = SLg(4) and if o is the graph-field automorphism of S
with Cg(o) = G then o acts on M too. As v is fixed by the maximal
parabolic G, of G, v is a high weight vector for M as an F4S-module,
so F,v is stabilized by a parabolic P of S containing G, and invariant
under o. It follows that P is the parabolic of S corresponding to the
middle node of the Dynkin diagram of S. Thus if A is the high weight
vector of M and W is the Weyl group of S then W) is the parabolic
of W corresponding to the middle node, so W) = S5 x S3 and AW is
of length |W : Wy| = 20. Hence as 20 = dimpg, (M), A is the unique
dominant weight of M, so A = A3 is the third fundamental dominant
weight for S and M = M ()3) is the corresponding high weight module.

Hence M = \*(N). Q.E.D.

In the next three lemmas in this section let G = Ug(2), V, M, S, and
N be as in Lemma 5.5. We discover in section 7 that a module satisfying



222 M. Aschbacher

the hypothesis of V' admits the structure of an orthogonal space over F;
preserved by G, so as V is determined up to equivalence, V' has that
structure and G < O(V).

(5.6) Let Go = Gy x Go be the stabilizer in G of a nondegenerate
2-dimensional subspace of the natural module N for G, with G1 =2 Uz(2)
and Gy =2 Uy(2). Then as an orthogonal space over Fa, V = (V1 @
Vo)L Vs, where Vi and Vi are copies of the Og (2)-module for Gz, Vi =
[V, 3] for some involution j € Gy, and V3 is isomorphic to the Us(2)-
module for Gs.

Proof. Let Gy be the stabilizer of a nondegenerate 2-subspace Ny
of N. Pick an orthonormal basis {z1,...,zs} for N with 1,22 € No.
By 5.5 we may regard M as /\3(N). Let M5 be the subspace of M
spanned by m; = 21 Aza Az, 3 < ¢ < 6. Then G; centralizes M3
and the map m; > x; induces an isomorphism of M3 with Nd‘ as an
F,G5-module, so M3 is the natural module for Gy 2 Uy (2).

Next we can choose j to interchange z; and zq, so [M,j] = M is
spanned by m, s = (z1 + z2) Az, Axs, 3 < 7 < s <6, and the map
Mys > Tr A Ts is an isomorphism of M; with /\2(N0L) as an F G-
module. Therefore as A*(Ng-) is the Og (2)-module for G tensored
up to Fy, M; is that module. Similarly G; = (j,) for ¢ a conjugate
of j and M, = [M,1] is isomorphic to M; as an F4Gy-module and
M = My & My © Ms. Recall G = Cs(o) with ¢ acting on M;, so M; =
Vi ®r, F4 for some FyGy-submodule V; of V satisfying the conclusions
of this lemma. Q.E.D.

(5.7) Let z be a long root element of G, L =2 U,(2) a Levi factor of
Ca(z), and W a Fo G-module with Cw(G) = 0 and [W,G] =V. Then
W =W, & W,y ®W; as a FaL-module, with W; <V of dimension 6 for
1=1,2, V3 =V NW of dimenston 8, and Cyw (L) = 0.

Proof. First K = Cg(L) =& S3 with KL the stabilizer in G of
a nondegenerate 2-subspace Ny of N. Thus by the previous lemma,
V=VieV,dV;with Vi + Vo = [V,K], dim(V1) = dim(V3) = 6,
and V3 = Cy(K) of dimension 8. Let Y be of order 3 in K. Then
Vi+ Vo= [W,K]. Let W3 = Cy(Y). Then V3 = VN Wj and it remains -
to show Cw (L) = 0. Assume not and let U be a point in Cy (L).
Replacing W by V + U we may assume V is a hyperplane of W. Now
Cw(L) = Cw,(L) = Cw (LK) =U.

Let Eoy ® E < Land A= FEY. Then A = J(T) for T € Syls(G)
and Ng(A)/A = Ss. As V3 is the Uy(2)-module for L, V3 = [V3, E],
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soas Vi + Vo = [W)Y], V = [W,A] and U = Cy(A). Therefore X =
(Ng(A), LK) centralizes U, so to derive a contradiction, it remains to
prove X =G.

Now X is a group generated by the class D = 2% of 3-transpositions.
Further as Cg(z) is a maximal parabolic of G with L irreducible on
02(Cq(2))/{z), Cx(z) = (z) x L. By Exercise 3.3 in [3T], O3(X) <
Z(X) 2 O2(X). Let B = Ng(A); then B = (Cp(2),Cp(d)) for d €
2P — K, s0 X = (L,B) = (Cx(2),Cg(d)), and hence the commuting
graph on D is connected. Therefore by 9.4.4 in [3T], X is primitive
on D. Then by Theorem 9.5.4, X is rank 3 on D, and hence Cx(z) is
maximal in X, contradicting Cx (2) < K L. This completes the proof of
the lemma. Q.E.D.

(5.8) (1) dimp, H(G,V) = 2.

(2) Let L = Uy(2) and U the natural module for L regarded as an
8-dimensional Fo-module. Then dimp, HY(L,U) = 2.

(3) Let D be the largest FoG-module such that D = [D,G] and
D/Cp(G) =V, G, a Ls(4)/Ese parabolic of G, and E/Cp(G) the 10-
dimensional G,-submodule of V. Then Cp(G) < [E, G,].

Proof. By 5.7, dimg, HY(G,V) < dimg, H'(L,U). Further we
find in a later paper in this series that dimp, H(G,V) > 2 and that (3)
holds, so it remains to show dimg, H*(L,U) < 2. Let W be the largest
FyL-module with [W, L] = U and Cw(L) = 0. (cf. 17.11 of [FGT])
As U is a F4L-module, so is W by the universal property of W, and it
remains to show dimg, (W/U) < 1. Let S € Syl3(L). Then A = J(S) =
Fyy and Z = Z(S) is of order 3 with O3(Cr(2)) = P = 3'*2 and
Ca(Z)/P =2 SLy(3). Now U = [U, Al so W =U @ Cy(A) and Np(A)
centralizes Cy/(A). On the other hand Cy(Z) is a point centralized
by 03(CL(Z)), so the involution ¢ inverting P/Z acts on S and hence
centralizes Cy (A4) and then also Cw(Z) = Cy(Z) + Cw(A). Then if
z is of order 4 in C(Z) with z? = ¢, x induces a Fs-transvection on
Cw (Z) with center Cy(Z), so if dimp,(W/U) > 1, then the hyperplanes
Cw(Z(z)) and Cw(A) of Cw(Z) intersect nontrivial, so Cw (X) # 0,
where X = (Np(A),z). Finally as Ny(A) is a maximal parabolic of
L = PSpy(3) and z ¢ NL(A), X = L, contradicting Cw (L) = 0.

QE.D.

(5.9) Let V be a 6-dimensional unitary space over Fy and A the
graph on the totally singular 3-subspaces of V with distinct ¢,y € A
adjacent if tNy # 0. Then Aut(A) = PT(V) = Aut(Us(2)) is the group
of projective semilinear unitary maps on V.



224 M. Aschbacher

Proof. Let G = PT(V) and A = Aut(A), so that G < A. For
z € A, Gy = LR, where R & Ey is the radical of G, and L is a
Levi factor isomorphic to PGL3(4) extended by a field automorphism.
Further A(z) = A1(z) U Az(x) where

Ai(z) ={y € A:dim(zNy) =1}

with |A;(x)| = 336 and |As(z)] = 42. Also A — z1 = T'(z) is of order
512 with R regular on I'(z) and L = G, for suitable z € I'(z).
For y € A(z), let

by)={uvecAlx):zNy=zNu}

and let § = {6(y) : vy € A(z)} and 6, = {68(y) : y € A;(z)}. Notice
u € Az, 2) if and only if u = (uNz)+ (uNz) withunz = (uNz)t Nz,
so |A(z,2) NT| = 1 for each T € 0. Thus if m; = |A(y) NT'(z)| for
y € A;(z), then

m; - |Ai(z)] =512 - 21

so m; = 2% and my = 28. Therefore A, acts on A;(x) for i = 1,2. Also
for y € As(z), 21 10(y)| = |A2(x)| = 42, so O(y) is of order 2.

As R is regular on I'(z), Ay = RA, .. Now for u € Ay(z,z) and
v € Ay(z,2), u € A(v) if and only if unNa < vNx, so Az, z) has the
structure of the projective plane 7 on z, and that structure is preserved
by A, .. Let B be the kernel of the action of A;, on A(z,z). As
Aut(m) = L and L is faithful on A(z, z), Ay, = LB. Further for T' € 05,
|[A(z,2) NT| =1 and |T| = 2, so B fixes both points of T. Therefore
B is trivial on Ay(z). However as L is irreducible on R, L is maximal
in G, = LR, so as R is regular on I'(z), G is primitive on I'(z), and
hence for z # w € ['(z), Ay(z,2) # Ag(x,w). Therefore as B is trivial
on Ay(z), B is also trivial on I'(z). Hence B fixes A(z,w) NT for each
T €6y, so B is trivial on A;(z), and therefore B = 1.

We have shown A, , =LB =1L,s0 A, = RA, . = RL = G,. Then
as G is transitive on A, A = GA, = G, completing the proof. Q.E.D.

§6. Groups of type 2Fg(2)

Define a group G to be of type 2Eg(2) if G possesses an involution
z such that (G, z) satisfies Hypothesis H(10,Us(2)), in the language
of Example 4.2. Throughout this short section, assume G is of type
2Fs(2) and let 2 be an involution in G such that H = Cg(z) and Q =
F*(H) satisfy our hypotheses. Therefore Hypothesis 4.1 is satisfied, and
indeed in a moment we see that Hypothesis 4.4 is also satisfied. Thus
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we adopt the notation of section 4, except that we write t = 29 for
our distinguished element of 24 N Q — {z}. In particular H = Cg(z)
satisfies Q = F*(H) = 21720, H* = H/Q = Us(2), and z is not weakly
closed in @ with respect to G. Recall also that E = QN Q9 and R =
(QINH)(QNH?).

(6.1) (1) E = FEou.

(2) Nyg«(E) = Cg«(t) = Ny« (R*) is the parabolic of H* which is
the split extension of R* = Fae by L3(4) with R* the Todd module for
L3(4).

(3) R* = J(T*) for T € Syl,(H).

(4) Let Xo = (Q,Q9) and V = (z,t). Then P, = Ng(V) =
X,Cy (V) with

R = 03(P,) = Cx,(V),

PZ/R = X2/R X Cg(V)/R, X2/R = Sg, and Cg(V)/R = L3(4)

(5) E/V = Z3(R) is centralized by X, and is the dual of the Todd
module for Cq(V)/R.

(6) R/E = Ejs is the tensor product of the natural module for
X3/R and the Todd module for Co(V)/R.

(7) H* is absolutely irreducible on Q.

Proof. Let R < T € Syly(H). By 234 in [3T], J(T™*) = Ey, so
Hypothesis 4.4 is satisfied. Indeed Np«(J*) is the parabolic of H* =
Ue(2) which is the split extension of J(T*) by L3(4) with J(T™*) the
Todd module. Therefore the lemma follows from 4.5. Q.E.D.

(6.2) Q ®r, Fy is isomorphic as a FyH*-module to \*(N), where
N is the natural module of dimension 6 for the covering H* = SUg(2)

of H*. In particular the representation of H* on Q is determined up to
equivalence.

Proof. By 6.1.7, @ is an absolutely irreducible FoH*-module of
dimension 20, while by 6.1.2, H} = L3(4)/Ez. So as H* =2 Us(2), the
lemma follows from 5.5. Q.E.D.
§7. *Es(2)

In this section G = 2E4(2) and z is a long root involution in G. It
is well known that:

(7.1) The group G is of type 2E¢(2) with z 2-central in G.
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Thus we adopt the notation of section 6. In particular H = Cg(z),
Q = Oy(H), and T € Syly(H) with R < T. Let A = 2%, and let
P, = H, P, P3, P, be the four maximal parabolics of G containing T
ordered so that we have the diagram

2 4

¢]

D W

1
o

For J C {1,2,3,4} let L; be the standard Levi factor in the parabolic
Py =0 ies b and Ry = O2(Py) the unipotent radical of P;. In partic-
ular R = Ry. Let W be the Weyl group of G.

(7.2) H has the following 5 orbits on A:
(1) A%z) = {z}.

(2) Al(z) =QNA —{z}.

(3) A2(2)=ANH-Q.

(4) A3(2) ={d e A :[z,d] € A}.

(5) A3(2) ={d € A : |zd| = 3}.

Proof. We sketch the proof in section 12 of [ASe] for completeness.
The subgroup W; = W N P; has 5 orbits on W/W; so H = P; has
5 orbits on G/H =2 A; cf. Exercise 14.6.1 in [FGT]. Now z = U,(1),
where « is the highest root in the root system ® determining 7. There
is a long root 8 # a with ¢ = Ug(l) € Q; then t € A'(z). Similarly
there is a long root « such that U,(1) € L, long roots ¢;, i = 1,2 with
U.,(1) € Ly, and h € H with t* € Cg(t), so that

[ta th] =z and |U€1(1)U€2(1)I =3
so U, (1) € A2(z) and A2(z) # @ # A3(z). v Q.E.D.

(7.3) (1) Ly 2 Us(2) is a complement to Q in H.

(2) L1 has 3 classes of involutions with representatives ji,j2, 73,
where j; is the product of i transvections in Ug(2). In particular j; is a
long root involution of Ly and ja is a short root involution.

(3) A= J(T' NLy) = Ey is the unipotent radical of the parabolic
P2 n Ll Of Ll, P2 n L1 = L172A with le = L3(4), and A is the 9-
dimensional Todd module for Ly .

(4) All involutions in Ly are fused into A and if a € AN j?f ! then
CL1,2 (a’) = U3(2)

Proof. As L, is the standard Levi factor for Py, L1 is a-complement
to Ry =Qin P, = H. By 7.1, L1 2 Us(2). Then 23.2 in [3T] implies
(2), 6.1 implies (3), and 23.3, and 22.2 in [3T] imply (4). Q.E.D.
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(7.4) (1) dim([Q, 55]) = 6,8,10 for i = 1,2,3, respectively.
(2) Q 1s transitive on the involutions in j3Q.

Proof. Let M = Np,(L1,4). Then M is the stabilizer in L; of a

~

nondegenerate 2-dimensional subspace of the natural module for L, =
U6(2), S0 by 5.6, M = M; x M2 with My = L1’4 = U4(2) and M, =
Cr, (M) 2 Ls(2) with j; € M;. Further (again by 5.6) as an orthogonal
space over Fo, Q= (Ql S, Qz)J_Qg,, where Ql and Q, are copies of the
Og (2)-module for My, Q; = [Q, j1], and Qs is isomorphic to the Uy (2)-
module for M,. Thus 6 = dim(Q;) = dim([Q, 1]). Next we can take
j2 = ab, where a,b are L; conjugates of j; in Ma, so dim([Qs, j2]) = 4
and dim([Q;, j2]) = 2 for i = 1,2, and hence dim([Q, jo]) = 8. Finally
we can take j3 = jijo. Then j3 interchanges two of the three Ms-
irreducibles on Q1 ® Q,, so dim([Q1 ® Q2, js]) = 6 and dim([Qs, js]) =
dim([Qs, j2]) = 4. That is (1) holds.

As dim([Qs, j3]) = 10 = dim(Q)/2, Cp(js) = [Q, 3], so Q is tran-
sitive on the involutions in j3Q; cf. Exercise 2.8.1 in [SG]. Hence all
involutions in j3@) are conjugate to js or jzz. Next we have a symplectic
form o on Qg defined by a4, ?) = (&, 0j1) and there exists 4 € Qs with
af@, @ijs) # 0 as ja is of type ¢ in My and Qy is the O (2)-module
for My. Therefore (4,aj3) = (4, Gj2j1) = a(@,@jz) # 0, and hence
@+ Ujs € Cy(J3) is nonsingular, so j3 = jaz, establishing (2). Q.E.D.

(7.5) (1) j1 € A is a long root involution so j, € 2¢ and H =
Ca(z) = Calh)-

(2) j2 is a short root involution, there is x € j§ N Q N Z(Ry),
and Cg(z) < Py, Cg(z) = R4Cpr,(x), where Cp,(x) = Spg(2) is the
stabilizer in Ly = Qg (2) of = regarded as a nonsingular point of the 8-
dimensional orthogonal space Z(Ry4) for Ly, with QNZ(Ry) the subspace
orthogonal to z.

(3) There isy € j$NQNQI for g € Py — H, Ca(y) < Py with
|R2 : CRz(y)l =4 and CLg(y) = L2(2) X U3(2)

(4) z,t = 29,2,y are representatives for the orbits of H on in-
volutions of Q, with Cr,(f) = L3(4)/Ez, Cr, (%) = Sps(2)/2°, and
Cr,(9) = Us(2)/2°.

Proof. First j; is a long root involution of Ly by 7.3.2, so j; € A
and (1) holds.

Similarly by 7.3.2, js is a short root involution of L; and hence of G.
Let Zy = Z(R4); it is well known (cf. [CKS]) that Z4 is the natural mod-
ule for Ly = Qg (2) with long root involutions in Z, the singular points
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and short root involutions in Z, the nonsingular points. Further Q N Z,4
is the subspace of Z4 orthogonal to z. So if £ € Q N Z4 is a short root
involution then Cr,(z) = Spg(2). Now Cg(z) < P for some parabolic
P by Borel-Tits; cf. 47.8.2 in [FGT]. But the only parabolics of G con-
taining subgroups of the form Cr,(z) Ry = Spe(2)/2?* are conjugates of
P;, so P = P} for some h € G. Then O2(P) = O2(Cp,(x)) = R4, so
P = P, and (2) is established.

Letge Po—H,t=2% and E=QNQY. By 7.3, A= J(T'NL;) =
R1 2N L 2 Ea contains a conjugate of j3. Further from 6.1.6, L1 o has
three irreducibles on Ry /E, all fused under P, so AE/E is one of those
irreducibles and (Q N Ry)/E is another, and A is fused to A¥ < QN Ry
under P». Next A” and [FE, L 2] are dual irreducibles for L 5 and there
is | € Np,(L12) inducing a graph automorphism on L2, so A¥! =
[E, L1 2], and hence there is y € j§ N E. Next Cp,(y) = Cr,(y)Cr,(y)
with Cr,(y) = L2,3,4 xCL, ,(y) and by 7.3.4 and 6.1.5, C,, ,(y) = Us(2)
with C4(y) a hyperplane of A and |Rs : Cg,(y)| = 4. Thus to complete
the proof of (3) it remains to show Cg(y) < P». Again by Borel-Tits,
Cg(y) £ P for some parabolic P of G and by 4.3, z is weakly closed in
the center of a Sylow 2-subgroup of C¢(y), so PN H is a parabolic of
G. Then Cy(y) < PN H.

Let B = Ca(y). Observe first that Cy5(B) = (t,§). For Cp, ,(y) is
irreducible on the hyperplane [Q/FE, B] of Q/E and as L 5 is irreducible
on A, B contains a conjugate b of j3. By 7.4.1, C5(b)E/E = [Q,bE/E <
[Q/E, B], so as Cf, ,(y) is irreducible on [Q/E, B], so C5(B) < E, and
then by 4.5.7 completes the proof of the observation.

Next as |Ry : Cr,(y)| = 4, Ry is transitive on (z,t,y) — (z,t), so t
is weakly closed in C5(B) = (t,7), and therefore Nz, (S) < Ly NP, =
N, (A), for each 2-subgroup S of L, containing B. Hence P, N PN L,
contains a Sylow 2-subgroup of PNLq,s0as A= J(T'NL,), A< PNH.
Then as A = O3(A(Cy, (y) N N, (A))) and Cr, (y) is irreducible on B,
B <O02(PNLy)< A, sothat PNL; = P,NL; and then PNH = P, 5.
Therefore Py = (Py 2, P2 3.4) < P, so P = P, and (3) holds.

Now |L;| = 2% -35.5.7-11 and |Cg-(§)| = 2'* - 32, so 7| =
2%.3%.5.7-11. Similarly |Cg ()| = 2'5-32-5-7, so |t¥| = 3*-11. Finally

Cu(z) = Cp,(2) N Cp,(x) = RyCL, ({2, 7))

with Cr, ({2, z)) = Sp4(2)/2°, so |Cu(z)| = 23%-32-5. Then as |Cq(x)| =
220 |Cr, (%)) = 2" -32 .5, 50 || = 22-3*.7.11. Now the sum of the
lengths of these three orbits is

3%.11-(1422.7+2%.5.7) = 3%.11.588 = 3%.11-19-31 = (2°+1)(2°—1).
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But (2°+1)(2'9—1) is the number of singular points in a 20-dimensional
orthogonal space of maximal Witt index over Fg, so (4) is established.

Q.E.D.

(7.6) Q is regular on A*(z) and for d € A3(z), Ca((z,d)) is conju-
gate under Q@ to Ly.

Proof. By 7.2, we may take z = U,(1) and d = U_,(1). Then
Ce({z,d)) = HNHY = P, N P} = Ly, where wyp is the long word in
W, as aWp = —a, so 2% = d. Thus as L, is a complement to Q, Q is
regular on A3(z2). Q.E.D.

(7.7) j1,J2, and j3 are representatives for the three conjugacy classes
of involutions in G.

Proof. We first observe that if j is an involution in G then z* €
A3(z) for some i € j¢. This is Lemma 12.2 in [ASe], but we sketch a
proof for completeness. Without loss, j € H. By 7.5, each involution
in @ is fused into Lg, so we may assume j € Q. Let H* = H/Q. It is
easy to check that |k*k*J| = 3 for some root involution k& € L, so by
7.2, k3 € A3(k), completing the proof of the observation.

So each involution in G is fused to s € L; U Ly 2, so s is fused to j;
or j;z. Finally zj; centralizes a conjugate of (z,d) in L; unless i = 3, so
it remains to observe that zj3 is conjugate to j3 by 7.4.2.

We have shown each involution in G is conjugate to j; fori = 1, 2, or
3. But by 7.5.4 and 4.7.2, these involutions are not fused in G. Q.E.D.

(7.8) Letge P, — H,t=29, and E= QN QY. Then

(1) For h € P1’374 — Py, th e E.

(2)Us=QNQRINQ" = Eyr.

(3) Let V3 = (z,t,t"). Then Cy(V3)/O2(Cu(V3)) = Lo(4) has chief
series

0<V<Va<Us<E

on E with E /Uy the Q (2)-module and Us/ V3 the Ly(4)-module. Further
Cu(V3) has four Lo(4)-sections and three Q (2)-sections on Rs.

Proof. First by 7.5.2, Zy = Z(R4) is the orthogonal space for
Ly = Qg (2) with Q N Z4 the hyperplane orthogonal to z. Further the
parabolic P34 is the stabilizer in P, of the totally singular 3-subspace
Vs = (z,t,t"). Thus t" € E and indeed V3 = Z(Ps) with Cy(V3) =
L1 23Rs and L1 23 = Lo(4) has chief series on E has described in (3),
except we have not shown that Uz = E3, where Ej is the penultimate
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term in the series. But as U; is Cy(V3)-invariant, Us = E3 or V3, and
the latter is impossible as Us N Z4 is of dimension 5.

Finally the chief sections can be retrieved as follows. Let A = RoNl4
be as in 7.3. The nontrivial chief sections of L; 23 on R4 are those in
(Ri23NL1)/A, A, E/V, and Cq(t)/E, and by 6.1, A is isomorphic to
Cg(t)/E and to the dual of E/V as an Lj 3 3-module. Finally (Ry 23N
L;)/A is the Lo(4)-module, while A has one Ly(4) chief section and one
Q; (2)-chief section. Q.E.D.

(7.9) Let A be the graph with vertex 2% and z adjacent to t if z #
te Q. Then A is simply connected.

Proof. This follows from 1.1, since the building for G is of type Fy
and A is the collinearity graph of the building. Q.E.D.

(a1

(7.10) (1) G has an involutory outer automorphism o with Cg(o)
Fy(2), and we may choose o so that:

(2) CLl(U) = Sp6(2) and CQ(O') = D1D2 where D1 N D2 == <Z>,
[D1,D2) =1, Dy = [Q,0], Dy is isomorphic to the stabilizer of a non-
singular point in an 8-dimensional orthogonal space over Fy as a Cr, (0)-
module, with singular points in j§, and Dy = 218 with Cg(c)/D; the
spin module for Cr, (o).

(3) Cr,(0) = S3 x L3(2) and o centralizes Z(R3).

(4) For S € Syla(Ca(0)), Z(S)=Z(S)NQ = E,.

(5) o and oz are representatives for the orbits of G on tnvolutions
in 6G and Cg(oz) = Cy (o).

(6) Let Y be a diagonal group of outer automorphisms of G of order
3. Then Cg(Y) is of even order and if all involutions in Cg(Y) are in
3§ then Nawyc) (Y)Y = Aut(Us(8)).

Proof. This is well known; indeed o is a graph-field automorphism
of G. See for example section 4 of {CKS] for parts (1)-(5). Part (6) can
be retrieved from the Springer-Steinberg theory of semisimple elements
of finite groups of Lie type. Q.E.D.

(7.11) (1) |Schury(G)| = 4.
(2) The outer automorphism group of G is faithful on Schurs(G).

Proof. Let G = Covs(G) and Z = Z(@G). For Y < G, write ¥ for
the preimage of Y in G.
As T < H, H is a covering of H, and hence an image of Covy(H),

described in 3.2. In particular Q = Qx Z by 3.2, so [Q, E] = ®(Q) = Z,.
Then as X, = (9, 09), [Xa, £] = (Q)2(0) = E,.
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Next Ly = Lozg X L1g with Lozqs = XNLy = S3 and Lig = L3(4). Let
Y be of order 3 in Lyss. Then Vi = [V3,Y] = [X2, E] is a complement
to Z in V, and []%2, E’] =Vy as Ry = O (X3). Therefore R, centralizes
E/ffy, so setting Ey = [E, I:’z], it follows that Ey = [E, IAjlyz]‘A/y.

Next E / Vo 2 E /V is quasiequivalent to the Todd module for L;,
by 6.1.5. Therefore

|(Van By)/Vy| < |H'(L12, E/V)| = 4

with the last equality following from 23.6 in [3T]. Hence U = Z NEy is of
order at most 4 and as Out(G) induces a group of outer automorphisms
on Lis, Out(G) is faithful on U if U # 1 by 23.6 in [3T]. So it remains
to show U = Z, since we will find in a later paper in this series that
Schur,(G) # 1. .

Let G* = G/U; it remains to show Z* = 1. Now Ry = [Ry,Y] so
Ry /B = [Ry/E},Y*] x Z*. Therefore Py /[Rs,Y*| = Lis, x L3, with
134‘2 quasisimple with center Z*. Next @@ < La34R by 6.1, so Q = C}*
and H* / Q* is quasi simple with center Z*. Indeed

}’%;Q”*/QA* — [R;,Y*]Q*/Q* < Z*
so by 23.5.5 in [3T], Z* = 1, completing the proof. Q.E.D.

(7.12) Assume M(22) 2 M < G such that the set D of 3-
transpositions of M is contained in A. Then Cp(a) # @ for eacha € A,
and indeed M has the following four orbits, A;, 1 <i <4, on A:

(1) Ay = D of order 3,510.

(2) Ay = {a € A : Cp(a) C 02(Cg(a))} of order 142,155, with
Cum(a) = Moz /Eg0 and Cp(a) of order 22 generating O2(Chr(a)).

(B) Az={a € A—D:|DnN0Oy(Cgs(a))| =1} of order 3,127,410,
with Cpr(a) = L3(4)/Eq0 and Cp(a) of order 22 generating O2(Car(a)).

(4) Ay = {a € A : DN O5(Cg(a)) = @} of order 694,980, with
Cm(a) = (Cp(a)) = Sps(2)/Ees-

Proof. First Ay = D is an orbit of M on A of length 3, 510 by 16.7
in [3T].

As D C A, we may take z € D. Then K = Cj(d) is quasisimple
with K/{d) = Ugs(2), so H = KQ with K N Q = (z). Claim

(5) K has the following six orbits on AN H:

(i) {z}-
(i) D, = HN D — {z}.
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(iii) As(2), 1=1,2 with A1 (2) UA2(2) = A(z) = ANQ —{z},
Ay(2) ={za:a € Ay(2)},

and Ck(a) & L3(4)/Eqi0 for a € A(z).
(iv) Asz(z) with Ck(a) = As/Ei6/Eqw for a € Ag(z).
(v) Ay(z) with Ci(a) & Sps(2)/2'18/Zy for a € Ay(z).

Namely by 7.2, H has three orbits on ANH: {z}, A(z) = HN@—-{z},
and A%2(z) = HNA - Q. As H = KQ with KN Q = (z), K has two
orbits A;(2), 4 = 1,2 on A(z), with Az(z) = {za : a € A1(z)}, and by
6.1.2 and 23.5 in [3T], Ck(a) = L3(4)/Eq0 for a € A(z).

Next let b € D,. Then b € A%(z) and each member of A2(z) is
K-conjugate to bu for some u € [@Q,b]. Now [Q,b] is the natural module
for Ck (b)/O02(Cr (b)) = Qg (2) with O2(Ck (b)) = 2118 /Zy, (cf. 7.3 and
the proof of 7.4) so K has two orbits Az(z) and A4(z) on A2(z) — D,,
with representatives bu and bv, where u,v € [Q,b] with 4 a singular
point of the orthogonal space [Q,b] and ¥ a nonsingular point. Then
CK(bU) = CK(b) N CK(U) = A5/E16/21+8/Z2 and CK(b’U) = CK(b) n
Cx(v) = Sps(2)/2118/Z,. Indeed Ck (u) is the parabolic Nx(T'N D) &
L3(4)/E210 with OQ(CK('U/)) = (T N D), so CK(bu) = A5/E16/E210,
completing the proof of the claim.

Let 2t = {2} UD,. If a € A(2) or A3(z) then z1 NCg(a) =T ND
is of order 22 and hence is of the form S N D for some S € Syla(M),
with A = (SN D) = Ewo. Further if a € A(z) then by 6.1, Ck{a)
has 3 irreducibles on (Q N H,)(Q. N H)/(Q N Q,), and one of them is
A(QNQL)/(QNQ,), 50 A(QNQ,) = QuNH or Q,.NH. In the first case,
A < Qq. Therefore for each b€ AND, a € A(b), so AND = bt NCq(a)
and Cp{{a,b)) acts 2-transitively as L3(4) on AN D — {b}. Therefore
Ny(A) < Cpr(a) with Nps(A)/A = Mag by 25.7 in [3T]). As ANDisa
connected component of Cp(a), it follows (cf. 24.3 in [3T] and its proof)
that AN D = Cp(a), so that Nps(a) = Cpr(a). That is a € As.

In the second case, za € Ay and ANQ, = (z), sofor b € AND—{z},
b ¢ Qq, and hence a ¢ Qs, 50 a € A;(b) for 2 = 3 or 4. As Ck({a,b)) =
As/FEy6/Eo0, and Cys({a,b)) contains no such subgroup if a € A4(b),
we conclude a € Az(b). Therefore SND = b*NCg(a) for each b € SND,
so as above, SN D = Cp(a) and {z} = DN Q,. Hence Cys(a) = Ck(a)
and a € Az in this case.

So As and Aj are the orbits of M on A — D consisting of elements
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a with DN Q, # @. This leaves

Ay={a€A:Cpla) #2=DNQ.} = | Au(d)
deD

as an orbit under M.

Pick a € A4(z) and let D(a) = Cp(a). Then D(a) is a set of
3-transpositions of M, = (D(a)). Now Ck(a) = Sps(2)/22T® and
Ck(a) = (2t N D(a)). Indeed for each b € D(a), a € Ayb) as a ¢
A3UAy, so by 8.2.2in [3T], M, is transitive on D(a). Then by a Frattini
argument, Cpr(a) = MaCk(a) = M,. Also in the language of [3T], V,
{z,d}, where d is the unique member of DNa@, so by 9.2 in [3T], {z, d} =
202(Ma) 50 [2,04(M,)] = (2d) < Z(02(M,)). Therefore U = ((zd)M-)
is elementary abelian and z induces a transvection on U. Let M, =
M,/U. As O3(Ck(a))/{zd) = 21*® and O2(Ck(a))/(z,d) is the sum of
two 4-dimensional irreducibles for Ck (a), m(Cy(z)) = 5, m(U) = 6, and
Cir. (2) = Cic(a)/Cu(z) = Spa(2)/Eaa. As 0z(Ci, (2)) £ Z(Cr, (),
O3(M,) < Z(M,) by Exercise 3.2 in [3T], while as [z 02(M,)] < U,
O2(M,) < Z(M,). Then by Theorem Q in section 14 of [3T], M, =
Spe(2).

To complete the proof we calculate the order of O = Ay, Az and A
via |O| = |M : Cp(a)], for a € O, and determine they are as indicated
in the statement of the lemma. Then we calculate that

|A1] + |Az] + | As| + |A}| = 3,968,055 = |A
s0 A} = Ay and the proof of the lemma is complete. Q.E.D.

(7. 13) Let H = Covy(H), p: H — H the universal covering, V =
ker(p), Q = Oy(H) and P = [Q,H] Let Hy be a group with Q4 =
F*(H)>Q and H_ /Z(H,) = H. The

(1) H=LP with PO L =1, L= Covy(L1) and p(L) = L.

(2) P2 EyxQ, Z(L) = E,, Q = Z(L) x P and Z(H) = Z(L) x
Z(P).

(3) Z(L) <V and V = [, Z(H)] is a complement to ®(P) for some
automorphism 7 of order 3 inducing an outer automorphism on L.

(4) Hy = H if and only if H, possesses a complement L, to Q.
such that E; /{t;) splits over (z4,t4)/{t+) as a Jy-module, where T,
is the image of x = z,t, E under the isomorphism Q = Q4, and J, =
Cr (ty).

(5) If H. = Cg_(24) for some group G4 of type 2Eg(2) and H,
splits over Q4 then Hy = H.

3
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Proof. By 6.2, Q ®p, F4 = /\3(N) as a F4L;-module. Then by
5.8, Hl(Ll,Q) =~ Fy. By 23.7 in [3T], Schury(L1) =2 E4. Therefore (1)
and (2) follow from 3.2.

Let D = C,,p)(P/®(P)) and HD the semidirect product of H
by D. By 3.2, V is a complement to ®(P) in Z(H) and D/Inn(P) =
HY(Ly,Q) = E, is regular on complements to ®(P) in Z(P). Indeed by
3.2.6, Hy = H/V, for some complement V, to ®(P) in Z(H).

As Q ®r, F4 = A*(N) and the representation of L; on A*(N)
extends to PGUg(2) = Ly(7) for some 7 of order 3, the representation
of L; on Q extends to L, (r). Thus 7 is an automorphism of H by
3.2.3, so as 7 is faithful on Schury(L;) and H'(L1,Q), 7 is faithful on
Z(H)/Z(P) and Z(P)/®(P). As some outer automorphism of G of
order 3 acts on @) and Ly and induces an outer automorphism of L;, we
may take 7 to act on I:, T induces an outer automorphism on ﬁ, and
V = [Z(H),7] is the unique 7-invariant complement to ®(P), so that
(3) holds.

Notice that D is transitive on the complements to Q/Z(H) in
H/Z(H).

Let L, = LV, /V, be the image of L in H,. We next prove

(6) Under the hypothesis of (5), we can pick L, with O3(J;) < Q¢, =
02(Ce, (t).

To simplify notation we argue in G. Now J has three 9-dimensional
irreducibles on O2(J)Q/E: Cq(t)/E, (Q:NH)/E, and (Q:. NH)/E, so
as O2(J)E/E is one of these irreducibles, conjugating L, by an element
of Q@ — Cp(t) if necessary, we may take O2(J)E = Q; N H, establishing
(6). We also prove

(7) Under the hypothesis of (5), there is a complement I to O2(J;) in
J4+ such that E, splits over (z4,t1) as an I;-module.

First if G; = G then I = Ly works as L1 acts on the complement
Cg(La23s) to {(z,t) in E. Moreover Q is a semisimple Lis-module and
Liz = N, ([E, L)) )

In the general case H; = H (cf. 8.1) so the preimage I, in L
of the image of Ly, in ﬁ+ under this isomorphism acts semisimply on
Q.,_ as Ly is semisimple on Q. In particular Co. (I}+) = Dg. Similarly
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as the image F of [Ey,I,] in Q, . is a simple I,-module, and as H, +
is isomorphic to Hy, I, Q; + =N He, (F) and then Q, , is a semisimple
I -module and Cq,, (I+) = Ds. Therefore (Co, (I+), Cq., (I4+)) con-
tains an element X of order 3 such that Cg, (X, ) is an I -invariant
complement to (z;,t;) in F,, completing the proof of (7).

Observe next that

(8) L+ is a complement to Q4 in Hy if and only if Z(L) < V.
We also claim

(9) If Ly is a complement to Q4 then V, = V if and only if the fol-
lowing splitting property holds: E. /(t.) splits over E/{z,,t,) as a
Jy-module.

If V, = V this follows from (6) and (7). Namely by (6), we may
choose Ly so that Oz(J) < Qy, where J = Cp,(t). Therefore Oy(J)
centralizes E/(t) as E < Q. Further by (7), E splits over (z,t) as an
I-module, so as J = O5(J)I, we have the splitting property.

Notice this argument only depended upon the hypothesis of (5).
Thus (9) will imply (5), since under the hypothesis of (5), as D is transi-
tive on complements to Q /Z (Q), we may assume the complement to Q4

_is the image of L. Thus, as we just observed, H; has the splitting prop-
erty, so H = H, by (9). Similarly (8) and (9) imply (4), so it remains to
assume the splitting property and show V; = V. Let E= o YEYNP
and J = p~(CL, (t)). We show Z(P) < [E, J]®(P), so that as H, has
the splitting property,

VinZ(P)=IE,J]=VnZ(P)
and then
Vo=Z(L)+(V, nZ(P)=Z(L)+(VNnZP)=V

as desired.
Now P/®(P) is the largest module M = [M, L] for L, such that

M/Cyp(Ly) = Q. Further J = Cpr,(f) and E is the unique 10-
dimensional Li-submodule of P/Z(P), so Z(P) < [E/®(P), J] by 5.8.3,
completing the proof of the lemma. Q.E.D.
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(7.14) Let G be the extension of G by the graph-field automorphism
o of 7.10 and H = C(z). Assume H; is a group with F*(H;) = Q1 = Q
and with a subgroup Hy of index 2 containing Q1 such that Hy/Z(H1) &
H. Then H/{(z) = H,/Z(H;).

Proof. As F*(I;ﬁ) = @, and Hy is of index 2 in H; with H,/Z(H,)
~ H, F*(H,/Q:) = H1/Q1 = H* = Ug(2). Therefore as Out(Us(2)) =
Ss, H1/Q: = H/Q. As H,/Z(H,) = H, the representation of H;/Q,
on Q, = Q1/Z(Q1) is quasiequivalent to that of H* on Q by 3.1. By
6.1.7, H* is absolutely irreducible on @, so Nepo(H*) = Aut(Us(2)),

and hence as H,/Q; = H/Q, the representation of H;/Q; on Q; is

quasiequivalent to that of H /Q on Q, so 3.1 completes the proof of the
lemma. Q.E.D.

(7.15) (1) Forp # 2 or 11, p prime, and P € Syl,(G), Cqa(P) < P
and if p = 3 then Ng(P) is a {2,3}-group.
(2) If Y < G is of order 11 then Cg(Y) = Z;1 X Ss.
3) If Y < G is of order 7 then Cg(Y) = Y x E(Cg(Y)) with
E(Cq(Y)) = Ls(2) or L3(4).
(4) If Y < G is of order 5 then Cg(Y) =2 Zs x As.
(5) If Y s a 3-central subgroup of G of order 3 then Cg(Y) is a
{2,3}-group.
(6) If S € Syl3(G) then J(S) = Ess and Ng(J(S))/J(S) = 05 (2).

Proof. This is well known and follows from the Springer-Steinberg
theory of semisimple elements of finite groups of Lie type. Q.E.D.

(7.168) If M < G is of odd order then |[M| < 10°.

Proof. Let F = F(M). As M is of odd order, M is solvable,
so Cy(F) < F. (cf 31.10 in [FGT]) Let p be a prime divisor of |F|
and P = O,(M). If p # 3 or 11 and P € Syl,(G), then by 7.15.1,
OP(F) < Cg(P) < P, so P = F. Thus |[M| < ny|P|, where n, is
the maximal order of a subgroup X of GL(P/®(P)) of odd order with
Op(X) = 1. In each case n,|P| < 10°.

Further if p = 11 then F < O%?(Cg(P)) = Z33 by 7.15.2, so

M| < |F|-|O(Aut(Z11))] < 33-5 < 10°

Similar arguments work if P is of order 5 or 7, using 7.15.3 and 7.15.4.

Therefore we may assume F' = O3(M). Now if P € Syl3(FCg(F))
then by a Frattini argument, M < Ng(F) = Cq(F)(Na(P) N Ng(F),
so as Cy(F) < F, Ng(P) N Ng(F) contains a subgroup My of odd
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order with M| > |M|. Hence replacing M by My if necessary, we may
assume P = F. In particular taking F < S € Syl3(G), Z = Z(S) < F.
Let U = (ZM), so that Z = FE3» for some n. Then Cp(U) < Cp(2),
and Cp(Z) is a 3-group by 7.15.5. Therefore Cp(U) < O3(M) = F.
Hence |M| < |F|N,,, where N, is the maximal order of a subgroup X of
odd order in GL,(3) with O3(X) = 1.

By 7.15.6, n < 5, so |M|3/ divides 5- 11 - 13. Indeed if 11 divides
|M| then n =5, so U = J(S) for S € Syl3(G) by 7.15.6, whereas by the
last remark in 7.15.6, 11 does not divide the order of Ng(J(S)). So 11
does not divide the order of M. Further by 7.15.4, G has no subgroup
of order 13- 5, so by Hall’s Theorem, (cf. 18.5 in [FGT]) |[M|s =1, 5,
or 13. But |G|3 = 3% and 3% -5 < 10° > 3% - 13, so we are left with the
case |[M| = 3% - 13.

By 7.15.1,if Yis of order 13 in M then Cp(Y) =1l and [Ny (V)| =1
or 3. Therefore |F| = 3% for some k and hence F' € Syl3(G), contra-
dicting 7.15.1. Q.E.D.

§8. Groups of type ?Fg(2) are isomorphic to ?Eg(2)

In this section we assume the hypotheses and notation of section 6.
In particular G is of type 2Eg(2), z is a 2-central involution in G, H =
Cc(z), etc. Further let Go = 2Es(2) and 2o a long root involution of Go.
By 7.1, Gy is of type 2Es(2) with zp 2-central in Gy. Let Hy = Cg,(20),
Qo == OQ(H()), etc.

(8.1) H = Ho/(z).

Proof. First Q¢ = Q, so we may identify the two groups. Further
by 6.2, the representation of Hj on @ is quasiequivalent to that of H*
on Q, so H = Hy by 3.1. Q.E.D.

By 8.1, Hy = H, so by 7.8 there is h € H — Cy() with t* € E.
Let k = gh, Vs = (,t,2%), Us = QN QN Q" X3 = (Q,Q%Q"),
Rs = CXS(‘/Z”)7

S3=(@NQNQNQ*)QINQY),
and P3 = Ng(V3). By 8.16 in [SG],
Ry = Cq(V3)Cqs (V3)Cqr(V3) = O2(X3),

X3/Rs = GL(V3) = L3(2), [X3,Us] < Vs, ®(Us) =1, P3 = X3Cu(Va),
and P3/R3 = X3/R3 X CH(‘/Q.)/Rg
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By 78, CH(Vg)/R3 = A5, SO P3/R3 = L3(2) X A5. Again by 78,
m(Us) = 6, so by 8.16 in [SG], S3/Us is the sum of 4 copies of the dual V*
of V3 as an X3/R3-module, and R3/S3 is the sum of 4 copies of V3 as an
X3/Rs-module. By 7.8, Cgx(V3) has chief series 0 < V<Va<Us<E
on E with E/Us the Q7 (2)-module and Us/V3 the Ly(4)-module for
Cr (V3). Finally by 7.8, Cpr(V3) has four La(4)-sections and three Q0 (2)-
sections on R3. We summarize all this as:

(8.2) (1) P3/R3 = XS/R?, X CH(Vg)/Rg with X3/R3 = L3(2) and
Cu(V3)/Rs = As.
(2) Rs has chief series

0<‘/3<U3<53<R3

with V3 the natural module for X3/Rs, [X3,Us] < Vi and Us/V3 is the
Lo(4)-module for Cy(V3)/R3, S3/Us is the tensor product of the dual
of V3 as an X3/Rs-module with the Qj (2)-module for Cy(Vs)/Rs, and
R3/Ss is the tensor product of Vi as an X3/Rs-module with the Lo(4)-
module for Cy{V3)/R3.

(8.3) There exists s € 2% with sz of order 3, Ca((s,2)) = Us(2),
and Ng({sz)) = (s,2) x Ca((s, 2)).

Proof. Let Xy = (Q,Q%). Then X5 < X3 so there is z of order
3 in X, fused to y € X3 N H. Notice y* is inverted by a transvection
in H* as Hy & H and the remark holds in H{ since y is inverted by
some conjugate ¢ € QY of z in Hp and ¢* is a transvection in HJ by
7.2 and 7.3.2. Therefore Cg(y) = Dg and Cr(y)/Coly){y) = U(2).
Let T, € Syla(Cu(y)); then {z) = Z(T,) and T, is of order 2'°. As
(2) = Z(T,), T, € Syls(Ca(y)).

Next let T, € Syla(Cp,{(x)). From the structure of P described in
6.1,

Cp,(x)/(z) = L3(4)/Exp

with O3 (Cp,(z)}) quasiequivalent to the Todd module for Cp, (z)/02(Cp,
(z))(z). In particular T}, is of order 2!° and hence as z and y are conju-
gate, the previous paragraph says that T, € Sylo(Ce(z)) and Z(Ty) is
generated by a conjugate of z. Now the hypotheses of Theorem 30.1 in
[3T] are satisfied, so by that Theorem, Ce(z)/(z) = Ca(y)/(y) =2 Us(2).

Next z is inverted by an involution u € @ with [Cp,(z),u] =
(x), so u induces an automorphism of Cg(x)/(z) = Us(2) centralizing
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the parabolic Cp,(z)}/(x), and hence centralizing Cg(z)/(z). Therefore
Ng((z)) = (z,u) x E(Cg(x)) with E(Cg(z)) = Us(2).

Finally u € Q centralizes a L3(4)-section of H, so as H=~Hy, 75
says that u € t# C 2%. Hence there exists s € 2 with (s, z) conjugate
to (u,z), completing the proof. Q.E.D.

(8.4) H = Hy.

Proof. By 8.3 there is s € 2z with Cg((s,2)) a complement to Q
in H. Hence 7.13.5 completes the proof. Q.E.D.

By 8.4 there is an isomorphism « : H — Hy. Let tg = ta, to = t9°,
ho = ha where k = gh, V) = Vaa, and P) = Ng,(V2).

(8.5) There exist an isomorphism ( : Ps — P such that o = ¢ on
HNPs.

Proof. We appeal to 21.12 in [3T]. The Ps-chief series required in
that lemma is:
1<VE?,<U3<S3<R3

and by 8.2, the image of this series under « is the corresponding series
in RY. Namely by definition, Vi = Vza. Also as ty = ta, Vo = Va and

then as E/V = Cq,v(02(Cu(V))),
(@NQ%)a= Ea=Ey=QoNQY.

Therefore Usa = (E N EMa = Eyn Ef = UJ.

Next (QNHY)/E, (Q*"H)/E, and (Q9“NH)/E, ue Q- Cq(t),
are the three Cy(f)-invariant subspaces of Oy (Cy(f))/E, with Q9 N H
distinguished by ®(Q9 N H) = (t), so (QY N H)a = Q%° N Hy. Then

h h, h
(@7 N Q™)a = Q8 N Ho N QE™ N Ho = Q& N Qg™

SO
Sza = (QNQY)((QNQR™(QNQMa = 53.

Finally R3 = O2(Cr(V3)), so Rsa = RY.

Next 8.2 says that hypotheses (2), (3), (5) and (6) of 21.12 in [3T]
are satisfied. To check hypothesis (4) of that lemma, use Remark 21.9
and Lemma 21.13 of [3T]. Now 21.12 in [3T] supplies the extension
¢:Py— P)ofa: P3N H— PYN Hy. Q.E.D.
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(8.6) G = (H, P;).

Proof. Let K = (H,Ps) and assume that K # G. Then by in-
duction on the order of G, K = 2Eg(2). By 7.7, K has 3 classes of
involutions with representatives 7;, 1 <4 < 3, while by 7.5, each class is
fused into @ under K. By 4.7.2,

22nQ={z}ut! =2XnqQ,

so z¢ N K = 2%. Hence as also Cg(z) = H < K, 7.3 in [SG] says K is
the unique point of G/K fixed by z. We show K is strongly embedded
in Gj; then 7.6 in [SG] contradicts the fact that K has more than one
class of involutions.

To show K is strongly embedded in G it remains to show Cg(j) <
K for each involution j € K. So assume Y = Cg(j) £ K for some
involution 7 € K and let Y* = Y/(j). Wehaveseenj # j1 = z. If j = ja,
then from 7.5, we may take j € Z, = Z(P,) with Ry < Ck(j) < Py and
Ck(j)/Ra = Sps(2). By 7.4 in [SG], Ck(j) controls 2-fusion in Ck(j),
so Z} is a strongly closed abelian subgroup of Ck (j)* in Y*. From 7.5,
Z4 has the structure of an 8-dimensional orthogonal space over Fy with
29 N Z, the singular points and j¢ N Z, the nonsingular points. The
subspace U, of this orthogonal space orthogonal to j is Ck () invariant.

Pick u € Y — K to be fused to an element of z¢ N Z, — U, under
Y. As Ck(j) controls 2-fusion in Ck(j), z* and u* are not conjugate
in Y*, so z*u* has even order. Let ¢* be the involution in (z*u*). Then
i* € Cy«(2*) < Cg(y)* and z*i* is fused to z* or u*, and hence is in Z},
so1* € Z;. Then as Cy~(i*) £ Ck(4)*, it follows that (¢, j) = J contains
no conjugate of z, so J is a definite line in Z;. Then Ry < Cg(J) < Py
with Cx(J)/Rs = QF(2) and X = Cg(J) £ K.

Let X' = X/J. Again Ck(J)' controls 2-fusion in Ck(J)’, so Z}
is a strongly closed abelian subgroup of Ck(J)’ in X’. This time there
are two X’-classes of involutions 2z’ and v’ in Zj corresponding to the
singular and nonsingular points of the orthogonal space Zj. As both zJ
and vJ contain a member of 2%, both 2’ and v’ fix a unique point of
X'/Ck(J). But now the argument of the previous paragraph applied
to u € X — K fused under Y to v supplies a contradiction.

So Cg(j2) < K and j = j3. By 7.5 we may take j € E and
Ck(j) < Py. Then V* and E* are strongly closed abelian subgroups
of Ck(§)* and we argue as above on v € Y — K fused under Y to a
conjugate of z in E — V to obtain a contradiction and complete the

proof. Q.E.D.

Theorem 8.7. Each group of type 2E¢(2) is isomorphic to 2 Eg(2).
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Proof. We must show G is isomorphic to Gg. We use the machinery
of Section 37 of [SG] to do so. In particular we construct uniqueness
systems U and Uy for G and Gy.

Let A be the graph with vertex set 2 and A(z) = t¥. Then G is
an edge and vertex transitive group of automorphisms. Define Ay for
Gy similarly. By 7.9, Aq is simply connected.

Let 6 be the complete graph with vertex set 2. Then 8 is a sub-
graph of A and P; is vertex and edge transitive on 8. Define 6, for Gq
similarly. As Cg(t) is transitive on t¥ N E — V, G has two orbits on
triangles of A, so each triangle in A is fused under Gy into 6.

Let U = (G, A, P5,0) and Uy = (Go, PY, Ag,0p). As Gy is simple,
Ap is simply connected, and each triangle in A, is fused into 6y, so to
show G = Gy it suffices by Exercise 13.1 in [SG] to show that U and Uy
are equivalent uniqueness systems.

It is trivial that &/ and Uy are uniqueness systems, given 8.6. The
maps «,( define a similarity of ¢ and Uy in the sense of section 37 of
[SG]. To complete the proof we appeal to Exercise 13.3.3 in [SG]. For
this we need geometries I' and I'y for G and Gq respectively. Define
I' = T(G,F) to be the coset geometry of F = (H, P,, P;3) and define
T’y similarly. Hypothesis (I'0) of section 38 of [SG] can be seen to be
satisfied by I" and I'g by checking the conditions at the top of page 205
of [SG]. Observe T' is isomorphic to the geometry with point set 2, line
set V&, and plane set V¢, with incidence defined by inclusion. A similar
remark holds for I'y. Thus A and A are isomorphic to the collinearity
graphs of " and Ty, respectively, via the map z* — Hz. Using these
isomorphisms, Hypotheses (I'7), 1 < 7 < 5, of section 38 of [SG]| are easy
to check as are the remaining conditions of Exercise 13.3.3 of [SG].

Q.E.D.

§9. Groups of type Zy/?FE¢(2)

Define a group G to be of type Z /?E¢(2) if G possesses an involution
z such that H = Cx(z) satisfies Q = F*(H) = 21%20 and H has a
subgroup H of index 2 with H/Q = Us(2), and z is not weakly closed
in Q with respect to G.

Throughout this section assume G is of type Zs/?>FEg(2) and let z
be an involution in G such that H = C4(2) and Q = F* (H) satisfy our
hypotheses. We will show that G hasa subgroup G of index 2 such that
H = Cg(z). Hence G is of type 2Es(2) and hence by Theorem 8.7:

Theorem 9.1. Ifé is of type Zy/?>E¢(2) then F*(é) is of index
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2 in G and isomorphic to 2Eg(2).

Much of the initial analysis is the same as that for groups of type
2F6(2), so rather than repeat all details we only indicate where more
needs to be said. Adopt the notation of section 6. In particular let
t=29€@Q—{z} and E=QnNQI. We observe first that

(9.2) (1) H/Q is the extension of H* = Ug(2) by an involutory
outer automorphism T.
(2) Lemma 6.1 holds in G with Ng(R*) the split extension of R* =
Eso by Ls(4) extended by a field automorphism. This time Py = Na(V)
= XCp(V) with
R = 0,(Ng(V)) = Cx(V),

P2/R = X/R x C4(V)/R, X/R = S3, and Cx(V)/R the extension of
L3(4) by a field automorphism.

Proof. As F*(H) = Qand H is of index 2 in H, F*(H/Q) = H* =
Ug(2) and hence (1) holds. The proof of Lemma 6.1 then goes through
virtually unchanged once we observe that if R < T € Syly(H) and
T = TNH, then J(T'/Q) = J(T*) = Eys. This follows from the fact that
Ny~ (J(T™)) is the parabolic described in 6.1.2 and Ng o (J(1™)) is the
split extension of J(T™*) by L3(4) extended by a field automorphism 7.
Then as m(J(T*)/Cyr=y(7)) = 3 while Cj(r+)(7) is not centralized by a
complement L3(2) in Ng-(J(T*)) N Cpg« (1), we conclude J(T*) = J(T))
as claimed. Q.E.D.

Now with the analogue of 6.1 established, Lemma 6.2 also holds
in G since its proof goes through verbatim. Similarly the analogue of
Lemma 8.1 holds. Indeed if we let Gy be the extension of Go = 2Fs(2)
by the graph-field automorphism ¢ of Lemma 7.10, then Gy is of type
Z2/?Ee(2) with Hy = Ho(c). By 8.1, Hy = H, and hence by 7.14, we
have an isomorphism ¢ : Ho/(20) — H/(z). Let Lo be then image in
Hy of a o-invariant Levi factor of Hy and L = ¢(Lo). Finally let u € H
with & = (o). Then by 7.10:

(?3) (1) Ca(u)/Cq(u) = Sps(2), Cqo(u) = D1Dy where D;1NDy =
(2), D1 is the natural module for Cy(u)/Cq(u), and Cg(u)/Dy is the
spin module.
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(9.4) u is an involution.

Proof. As @ is an involution, u? = 1 or z, so it remains to show
u? # z. To see this we consider the local subgroup P, of 9.2. Let P, =
b, /V. The isomorphism ¢ induces an isomorphism ¢ : Ny (Vo)/Vo —
Ng(V)/V which extends to an isomorphism 1 : Poo=Poo/Vo — P>
by 21.12 in [3T] and 9.2. Hence by 7.10, @ centralizes a subgroup I = S;
faithful on V. Then I = S, and {(u)V < I{u), so it follows that u? # z,
and hence indeed w is an involution. Q.E.D.

(9.5) (1) All involutions in H are fused under G into Q.

Proof. Let j € H be an involution. We wish to show jé nQ # a,
so we may assume j* # 1. Then by 7.7 and as ¢ : Hy — H is an
isomorphism, we may take j* € R* and j* of type j1, j2 or j3. Then by
7.4, m([j,Q]) = 6,8,10 in the respective case. Further by 7.4.2, if j* is
of type js then @ is transitive on the involutions in j@, so as Q9 N H
contains an involution in j@Q, each involution j with j* of type 73 is fused
into @ under G.

In the remaining cases if ¢ € j@Q is an involution then ¢ = jx for
some I € C~( ) and if Z € [j, Q] then 7 is fused to j or jz under Q.
From the proof of 7.4 and recalhng that H = H 0, L contains a subgroup
M = M, x M, with My = S5, M, = Uy(2), and Q = (Ql ® QZ)J_Q;),
corresponding to the decomposition described in the proof of 7.4.

Suppose j* is of type j;. Then as we saw during the proof of 7.4, we
may choose j € My, so that My < C;(j), Q1 = @, 4], Cp(d) = Q:190Q;,
and CQ(]) = [C (4), Ma]. Then as C;(5) = O*(C;(4)), also Cx(j) =

0*(Cg (7)), and hence Cg(j) = Cu(j)/(z). Thus if jz is an involution
then z is an involution, so as M, is transitive on singular vectors of Qs,
each involution in j@ is conjugate under Cg(j) to j, jz, jz, or jzz,
for some fixed # € Qs singular. Then as we may choose z € E and
j € Q9 N H, each involution 5 € H with j* of type j; is fused into @
under G.

Finally the case j* of type js is quite similar. Namely from the proof
of 7.4, we may take j € M, and Cs 5(0) = [Q,7]1®Q4 with Q4 < Q19Q a
nondegenerate 4-dimensional space of sign +1 and a Sylow 3-subgroup of
C,(j) is transitive on the singular vectors of Q4 and one such is contained
in E. So we can repeat the argument of the previous paragraph.

Q.E.D.

(9.6) uWCNH=0.
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Proof. Assume otherwise. Then by 9.5, uén Q@ # 2. Suppose first
that w = 2¥ for some y € G. Then as H* has no Spg(2)-sections in
parabolics, z € Cg(u) = [Cq(u), Cu(u)] < QY, so u € Q, a contradic-
tion. :

Therefore u ¢ 2C. Let S € Syla(Cy(u)) and S < Ty € Syla(Ci(uw)).
By 4.3, Z(T1) = (2¥,u) with u € @Y. Then Z(T}) < Cp,(z) < S, so
Z(T1) < Z(S) = (z,a,u) & Es with (z,a) < @ by 7.10.4. In particular
1# Z(Th) N {z,a).

Suppose z¥ € Q. Then v € QY N H < H, a contradiction. Therefore
uz? € Q. Next uz¥ € u®” and e #* zé, so uz¥ # z. Now a € [Q,u], S0
ua or uaz € u?, and without loss ua € u®. Thus ua # 2¥, so uz¥ # a.
This leaves uz¥ = az, so 2¥ = uaz € (uz)?. Thus uz € zé, so we have
a contradiction by symmetry between u and uz. Q.E.D.

We are now in a position to complete the proof of Theorem 9.1. By
9.6 and a standard transfer argument such as 37.4 in [FGT], G has a
subgroup G of index 2 with u ¢ G. Then as H is the unique subgroup

of H of index 2, H = GN H. Therefore G is of type 2FEq (2), so Theorem
8.7 completes the proof of Theorem 9.1.
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