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Representation Theory in Characteristic p 

George Lusztig 

Let k be an algebraically closed field of characteristic p. (Thus, p 
is either 0 or a prime number.) Let G be a group which is at the same 
time an affine algebraic variety over k (that is, an algebraic group over 
k). A representation of G is a homomorphism p : G ---t GL(V) of G 
into the group of automorphisms of a finite dimensional k-vector space 
V which is at the same time a morphism of algebraic varieties. We also 
say that V is a G-module. We say that V is irreducible if V -1- 0 and 
there is no subspace V' of V (other than 0 or V) such that p(g)V' C V' 
for all g E G. 

Let g be the Lie algebra of G. A representation of g is a k-linear 
map T : g ---t End(V) where V is a finite dimensional k-vector space 
such that 

r([~,e]) = r(~)r(~')- r(e)r(~) 

for all ~, e E g. We also say that V is a g-module. The notion of 
irreducibility of a g-module is defined in the same way as in the group 
case. 

We will assume that G is connected, almost simple (that is, G has 
finite centre and G modulo its centre is a simple group) and simply 
connected (in a suitable sense). Chevalley [C] proved the remarkable 
result that the classification of such G is the same as the classification of 
simple complex Lie algebras (achieved by E. Cartan and Killing). Thus, 
G must be a special linear group, a symplectic group, a spin group or 
one of five exceptional groups. 

The problem that we will discuss in this paper is that of classifying 
the irreducible G-modules and g-modules and that of understanding as 
much as possible the structure of those irreducible modules. Work on 
these problems have occupied mathematicians throughout much of this 
century. We will review some of this work. Towards the end of the paper 
we will engage in speculation about possible future directions. 

Received May 29, 1999. 
Supported by the Ambrose Monnel Foundation and the National Science 

Foundation 



168 G. Lusztig 

§1. Algebraic groups 

1.1. Characteristic 0 

In this subsection we assume that p = 0. In this case, taking the 
differential defines an equivalence between the category of G-modules 
and the category of g-modules. E. Cartan [Ca] showed that the isomor
phism classes of irreducible g-modules (hence also those of irreducible 
G-modules) are naturally indexed by a set X given by the intersection of 
an open cone E> in an euclidean vector space E with a lattice in E. Let 
Vx be the irreducible G-module corresponding to x E X. H. Weyl [W] 
gave an explicit character formula and a dimension formula for Vx. An 
algebraic geometric construction for Vx was given by Borel and Weil 
(see [S]). 

For example, for G = SLn(k), we can take 

E = Rn /R(1, ... , 1), 

X = {(al, 0 0 0 'an) E zn /Z(1, 0 0 0' 1) I al > a2 > 0 0 0 > an}· 

If G = SL2(k) and (a,O) E X, we can take Va,o to be the space of 
homogeneous polynomials in two variables t 1 , t 2 with coefficients in k of 
degree a- 1. (This is naturally a G-module.) 

1.2. Late 1950's to early 1970's 

In the rest of this paper we assume that p is > 0 and sufficiently 
large, unless we specify otherwise. 

Taking the differential defines a functor from the category of G
modules to the category of g~modules but this is by no means an equiv
alence. A very small part of the characteristic 0 theory survives: the 
definition of Vx (for each x E X) given by the Borel-Weil construction 
still makes sense. It provides a G-module which has the same struc
ture (in particular the same dimension) as in characteristic 0, although 
it is no longer irreducible in general. Chevalley [C] has shown that Vx 
contains a unique irreducible G-submodule, denoted by Lx and that 
{ Lx I x E X} is a set of representatives for the isomorphism classes of 
irreducible G-modules. 

For example, if G = SL2(k), thenVa,o is defined as in 1.1 in terms 
of our field k and La,o is the subspace of Va,o spanned by (a- 1)-th 
powers of linear polynomials. Note that La,o is not necessarily equal to 
Va,O· The following table gives (for p = 3) the value dim Va,o = a for 
a = 1, 2, ... , 20 (in the first row) and the corresponding value of dim La,o 
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(in the second row): 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 2 3 2 4 6 3 6 9 2 4 6 4 8 12 6 12 18 3 6 

Note that dimLa,o is linear in a, for a in a fixed interval (lp, (l + 1)p) 
(even in (lp, (l + 1)p]). The ends of these intervals (the points lp) make 
sense for S Ln ( k) as well; they form the family F of affine hyperplanes 
in E: 

Xi - Xj = lp for some i -1- j in [1, n] and some integer l. 

F is similarly defined for any G (in terms of roots). For each HE F let 
o-H : E ---+ E be the map which takes any point of E to its mirror image 
with respect to H. Let W be the group of affine transformations of E 
generated by the reflections a-H. We now remove from E the points that 
lie in at least one hyperplane of F. The resulting set is a disjoint union 
of open simplices called alcoves (the analogues of the open intervals 
(lp, (l + 1)p) for SL2(k)). Let A be the set of alcoves; let A> be the set 
of alcoves contained in E>. 

For any x E X which does not lie in any hyperplane of F and any 
A E A> we denote by x A the unique point of X n A which is in the 
W-orbit of x. 

Let Rc be the free abelian group with basis {Lx I x E X}. Any 
G-module M gives rise to an element 

X 

where (Lx : M) is the number of times that Lx appears in a composition 
series of M. We sometimes write M instead of Lx(Lx : M)Lx E Ra. 
Thus the elements Vx E Rc are well defined for x E X. They again form 
a basis of Rc. 

The following result has been conjectured by Verma [V] and proved 
by Jantzen [J1]. 

There exists a function A> x A> ---+ Z denoted by A, B f---+ (A, B) 
such that for any B E A> and any x E X n B we have 

Lx = L (A: B)VxA E Rc. 
AEA> 

(In particular, for fixed B we have (A, B)= 0 for all but finitely many A.) 
Since the Vx A can be considered as known, this shows that the dimension 
of Lx (and other information about Lx) will be known provided the 



170 G. Lusztig 

quantities (A, B) are known. Jantzen also showed that even the Lx with 
x EX on some hyperplane in :Fare explicitly determined by the (A, B). 

We define A+ E A> by the condition that 0 is in the closure of 
A+. Let h be the Coxeter number of G. (Thus, h = n for SLn(k)). If 
the (A, B) are known whenever A, B E A> are contained in (p- h)A+ 
then, by a tensor product theorem of Steinberg [St], the (A, B) will be 
determined for general A, B. 

Thus, the problem of understanding Lx is reduced to the determina
tion of the unknown quantities (A, B) with A, B contained in (p-h )A+. 

1.3. Late 1970's 

W together with the reflections CJH (where HE F contains a codi
mension 1 face of A- =-A+) is a Coxeter group of affine type. Hence 
by a general definition which applies to any Coxeter group, to any two 
elements y, w E W one can attach a polynomial Py,w E Z[v] ( v an inde
terminate) as in [KL1]. 

For each wE W we set Aw = w(A-). Then w f---+ Aw is a bijection 

W ~A. The following was conjectured in [L1]. 
(a) Assume that A, B E A are contained in (p - h)A+. Define 

y, wE W by A= Ay, B = Aw. Let mA,B be the number of hyperplanes 
in F that separate A from B. Then 

(A, B)= ( -1)mA,B Py,w(1). 

(See [KL1] for a precursor of this conjecture, which involves only the 
Py,w where y, w preserve 0.) 

1.4. Late 1980's 

Around 1985, quantum groups appeared on the scene, due to the 
work of Drinfeld and Jimbo. These were some strange deformations of 
complex algebraic groups depending on a parameter v E C*. In the 
original definition v had to be generic, but it turned out that a good 
definition can be given for arbitrary v E C*. The case where v is root 
of 1 was particularly interesting and in [L3] I found that in this case the 
representation theory of the quantum group is very similar to that of G 
in characteristic> 0. For example, in the case of SL2 , in the table in 1.2 
one can add a new row (in between the two rows of the original table) 
giving the value of the dimension of the quantum analogue of La,o in 
the case where v 3 = 1, v =/= 1. One obtains 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 2 3 2 4 6 3 6 9 4 8 12 5 10 15 6 12 18 7 14 
1 2 3 2 4 6 3 6 9 2 4 6 4 8 12 6 12 18 3 6 
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Note that the new row (quantum case) has values which are sandwiched 
between those in the first and third row. This suggests that the quantum 
group is some kind of stepping stone between the algebraic groups in 
characteristic 0 and p. This led me in 1988 to formulate four steps in a 
possible proof of Conjecture 1.3 (a) (at least in types A, D, E). 

(I) Show that the process of "reduction modulo p" from representa
tions of the quantum group at a p-th root of 1 to representations of G 
in characteristic p, takes irreducible modules to irreducible modules (in 
a suitable range). 

(II) Show that the representations of the quantum group at a p-th 
root of 1 are closely related to certain representations of the correspond
ing affine Lie algebra with central charge -p - h. 

(III) Show that the characters of the irreducible highest weight rep
resentations of the affine Lie algebra with central charge -p - h can be 
related to the intersection cohomology of Schubert varieties in an affine 
flag manifold. 

(IV) Show that the intersection cohomology in (III) is computed by 
the polynomials Py,w of [KLl]. 

1.5. Early 1990's 

Steps (I), (II), (III) were attacked by three teams on three conti
nents. (Step (IV) was already known from [KL2]. A simpler version of 
step (III) dealing with finite dimensional Lie algebras was also known 
since the early 1980's.) Thus, (I) was solved (for pin the complement 
of an unknown finite set) by Andersen, Jantzen and Soergel [AJS]; (II) 
was solved (for p in the complement of a known finite set) in [KL3]; (III) 
was solved by Kashiwara and Tanisaki [KTl]. 

For G of type B, C, F4 , G2 the four steps had to be modified 
(see [L4]). In the modified framework, steps (I) and (II) were covered by 
the existing works [AJS], [KL3]. But the solution of step (II) required a 
new work of Kashiwara and Tanisaki [KT2]; even step (IV) presented a 
new problem (solved in [L4]). 

The combination of these works provides a solution of the Con
jecture 1.3 (a) hence of the problem of describing the structure of the 
irreducible G-modules Lx (for pin the complement of an unknown finite 
set). 

The last restriction on p is very unsatisfactory. It would be very 
desirable if somebody will remove the restriction on p from [AJS] and 
also the (milder) restriction on p from [KL3, IV]. 
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§2. Lie algebras 

2.1. 

The representation theory of g is in a much poorer state than that of 
G. Here not even a classification of the irreducible modules is available. 
But a conjectural picture is beginning to emerge, promising a very rich 
theory. 

2.2. Early 1970's 

There is a canonical map ~ f--+ ~[P] of g into itself. For example, if 
G = SLn(k) then g = End(kn) and ~[P] is the p-th power of~ as an 
endomorphism of kn. 

Let E : g ----> k be a linear form. Following Weisfeiler and Kac [WK], 
we consider the quotient U€ of the enveloping algebra U of g by the two
sided ideal generated by the central elements e -~[p]_ E(~)Pl for VariOUS 
~ E g. Then U€ is a finite dimensional algebra and any simple g-module 
can be regarded as a module over U€ for a unique E as above [WK]. Hence 
the problem of understanding all g-modules is reduced to the problem 
of understanding all Ucmodules for any linear function E : g ---+ k. This 
last problem for general E can be reduced (see [WK]) to the special case 
where E is nilpotent. (We identify a linear form on g with an element of 
g by the Killing form.) 

2.3. Late 1970's to 1997 

From now on we assume that E E g is nilpotent. Let C' be a maximal 
torus of the centralizer of E in G and let C' be the image of C' in the 
adjoint group of G. Following an idea of Jantzen [J2] (see also [FP], 
[J4]) one can consider the category C€ of U€-modules which are also 
C'-modules, the two module structures being compatible in a natural 
way; then one studies the simple objects of C€ instead of the simple U€
modules. In the case where E is regular nilpotent inside a Levi subalgebra 
of some parabolic algebra, the classification of the simple objects of c€ 
has been obtained by Friedlander and Parshall [FP]. A conjecture which 
would describe much of the structure of these simple objects was given 
in [L5]. Some examples computed by Jantzen [J3] give support to the 
conjecture. 

2.4. Speculation 

Returning to a general nilpotent E E g, we note that c€ is a direct 
sum of indecomposable categories, or blocks. Let us fix a generic block 
of C€. Let I be an indexing set for the simple objects in this block. For 
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i E I, let L; be the corresponding simple object of C€ and let Q; be the 
corresponding indecomposable projective object. For i E I we have 

Qi = L.:: ni,i' Li' 
i'EI 

in the appropriate Grothendieck group, where ni,i' E N are zero for all 
but finitely many i'. 

For simplicity we assume that the centralizer of E in the adjoint 
group of G is connected. In [L6, 14.4, 14.5] I stated a conjecture which 
gives a parametrization of I and an interpretation of the matrix ( ni,i') 
in terms of some apparently totally unrelated K-theoretic objects. (I 
thank Jantzen for his criticism of that conjecture.) 

Here I will state a revised form of the original conjecture. To do this 
I will review some K -theoretic constructions from [L6]. 

Let G be an algebraic group of the same type as G, but over C 
instead of k. Let g be the Lie algebra of G. Let r be the rank of g. Let 
B be the variety of all Borel subalgebras of g. Let e E g be a nilpotent 
element of g of the same type as E E g. We can complete e to an s[2-triple 
(e,h,f) in g. Let Be= {bE B I e E b}. 

Following Slodowy, we define Ae to be the variety consisting of all 
pairs (y, b) where b E B and y is a nilpotent element of b such that 
[y - e, f] = 0. Then Be is naturally imbedded in Ae by j : b f---+ ( e, b). 
Moreover, Ae is a smooth irreducible variety. Let C be a maximal torus 
of the simultaneous centralizer of e, h, f in G. Let H = C x C*. We 
regard Has a subgroup of G x C* as in [L6, 11.1]. 

Now G x C* acts on B by (g, >.) : b f---+ Ad(g)b and on g by (g, >.) : 
y f---+ .x-2 Ad(g)y. 

This restricts to an H-action on Band one on g. The product H
action on g X B leaves the subvariety Ae stable and leaves the subvariety 
Be of Ae stable. Note also that the H-action on g restricts to an H-action 
on the centralizer 3 of f in g. 

Hence the equivariant K-groups KH(Be), KH(Ae) (based on H
equivariant coherent sheaves on Be, Ae) are well defined (these are natu
rally RH-modules where RH is the representation ring of H.) Moreover, 
we can form 

d = L.::( -1)t3(t) E RH 

t;:::o 

where 3(t) is the t-th exterior power of 3· One can show that 
(a) the Rwlinear map j* : KH(Be) ----+ KH(Ae) induced by the 

closed imbedding j : Be ----+ Ae induces an isomorphism after tensoring 
by RH[d-1]. 
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Let ( I )Ae be the pairing on KH(Ae) defined in [L6, 12.16]. By 
definition, this pairing takes values in the quotient field of 9-t; but, due 
to (a), its values are actually in RH[d-1]. Let 

-: KK(Ae) --+ KH(Ae) 

be as in [L6, 12.16]. (The definition involves Serre-Grothendieck duality 
on Ae.) 

(The definition of ( I ) Ae and that of - involve an integer d( e). 
In [L6, 12.9] one should replace d(e) = (1/2) dimAd(L)e by d(e) = 
(1/2) dim Ad( G) e.) 

Note that RH[d-1] is naturally imbedded in the ring llH of power 
series in an indeterminate v-1 with coefficients in the ring R0 . (Here 
v is identified with the standard generator of Rc·.) Indeed, RH = 
Rc[v,v- 1] C llH and dis a product of factors of form 1- vca with 
c < 0 and a a character of C; hence d-1 E Rc[[v-1]]. Let 

8: UH--+ Z((v-1 )) 

be the group homomorphism defined by LnEzPnVn ~---> LnEzPnVn 
where Pn E Rc and p ~---+ p is the group homomorphism which sends 
a non-trivial representation of C to 0 and sends the unit representation 
of C to 1. 

Let C be the image of C into the adjoint group of G and let H = 
CxC*. 

Following [L6, 12.18] we define Bt to be the set of all elements 
e E KH(Ae) such that 

~ = e and 8(e I e)Ae E 1 + v-1 Z[[v- 1]]. 

Following [L6, 12.22] we define Bt,ad as the intersection of Bt with 

Note that e I--> -e is an involution of Bt and of Bt,ad· Let BAe' 
BAe,ad be the corresponding sets of orbits of this involution. One can 
show that 

(b) /-tb,b' := (1-v2)-r8(dblb')Ae = (1-v2)-r8(bldb')Ae E Z[v,v-1] 

for all b, h' E Bt. We conjecture that 

(c) there exists a canonical map ( : Bt,ad --+ I which induces a 

bijection B Ae ,ad __::::::_. I such that 

±~-tb,b' (1) = n((b),((b') 
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for all b, b' E Bt,ad' 
The sign is taken so that ±J.Lb, b' ( 1) ~ 0. It is likely that in (b) we have 
either J.tb,b' E N[v-1] or -J.tb,b' E N[v-1]. 

Note that both I and BA.,ad have natural actions of a free abelian 
group of rank dim C and the bijection in (c) should be compatible with 
these actions. 

This conjecture is actually true if e = 0 (for those p for which 1.3 (a) 
holds); this follows from results in [L6]. 

2.5. 

Assume that e is regular (nilpotent). In this case H = C* and 

d = II (1 - v-2e;-2), 

iE[1,r] 

where e1, ... , er are the exponents of G. Also, Bt = Bt,ad consists of 
± b where b = 0 A. is the structure sheaf of the point Ae. Hence B A. ,ad 
consists of a single element. We have /Lb,b = P where 

(a) 
1 -2e·-2 

p = II ~: v-~ E N[v-1]. 
iE[1,r] 

Hence 
J.Lb,b(1) = IWI 

where W is the Weyl group of G. Thus 2.4 (c) holds in this case. 
(Compare [J4, 10.10].) 

2.6. 
Assume that e is subregular and G is of typeD or E. In this case 

H = C*. One can check that 

d = II (1- v-2s;) 

iE[1,r+2] 

where s1, sz, ... , Sr+2 is: 
2, 3, 4, 5, 6, 6, 8, 9 (type E6), 
2, 4, 6, 6, 8, 9, 10, 12, 14 (type E7 ), 
2, 6, 8, 10, 12, 14, 15, 18, 20,24 (type E 8 ), 

2,2,4,6, ... , 2n- 4,n- 2,n -1,n (type Dn)· 
One can also give a closed formula for d: 

(a) 
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where Pis as in 2.5 (a), A is the square matrix indexed by the vertices 
of the affine Coxeter diagram J with j, j' entry equal to 1 + v-2 if 
j = j', equal to -v- 1 if j, j' are joined in that diagram and equal to 0 
in the remaining cases; A is the analogous matrix defined in terms of 
the ordinary Coxeter diagram. 

According to [L 7], in this case B~ = B~ ad consists of elements 
e _, 

±bj (j E J) where bj are certain vector bundles on Ae and the matrix 

((bj I bj' )AJ is just the inverse of A above. Now A - 1 can be computed 
by the method of [LT]. For j,j' E J, we denote by [j,j'] be the subset 
of J consisting of all vertices that lie on the geodesic joining j, j' in 
the affine Coxeter graph. Let Aj,j' be the submatrix of A obtained by 
removing all rows and columns indexed by some element of [j,j']. Let 

Then we have 

Using this and (a), we see that 

Hence in this case, 2.4 (c) predicts that I may be identified with J in 
such a way that the multiplicities nj,j' are given by 

- -1 n1· 1·, = 1Wiz1· 1·,z . . 
' ' Jo,Jo 

where Zj,j' is the order of the centre of the simply connected group with 
Coxeter graph J- [j, j'] (full subgraph of J) and j 0 is the unique element 
of J that is not a vertex of the ordinary Coxeter graph. 

2.7. 

Since Bt,ad is expected to be a signed basis of the Rc·-module 

KR(Ae) [L6, 12.23(a)], we see that, in the case where C = {1}, the 
Conjecture 2.4 (c) predicts that the number of elements in the block I 
is the sum of the Betti numbers of Be. 

2.8. 

We expect that the set BAe and the quantities ftb,b' are intimately 
related with the combinatorics of the two-sided cell c in the extended 
affine Weyl group attached in [L2, 4.8] to the G-orbit of e. 
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2.9. 

The most urgent task would be to test the Conjecture 2.4 (c) in the 
example in 2.6. Assuming that the conjecture passes this test, one can 
try to imagine whether a successsion of steps analogous to (I)-(IV) in 1.4 
can be used to prove it. At least step (I) makes sense; one should use 
the version of quantum group at a root of 1 studied by De Concini and 
Kac in [DK]. One can also expect that there is a corresponding class 
of representations of the appropriate affine Lie algebra with negative 
central charge which are connected with the two-sided cell c in 2.9. 

Remark added 5.22.1999. After this paper was written, Jantzen 
( Subregular nilpotent representations of Lie algebras in prime character
istic, preprint April 1999) has shown that Conjecture 2.4 (c) holds m 

the example in 2.6. 

[AJS] 

[Ca] 
[C] 

[DK] 

[FP] 

[J1] 

[J2] 

[J3] 

[J4] 

[KT1] 

[KT2] 
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