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Very Singular Diffusion Equations 

Mi-Ho Giga, Yoshikazu Giga1 and Ryo Kobayashi2 

§1. Introduction 

In the modeling of nonequilibrium phase transition it is often inter­
esting to consider motion of phase-boundaries driven by singular surface 
energy. This topic was initiated by J. Taylor [T] and independently 
by S. Angenent and M. Gurtin [AG] who formulated motion of faceted 
curves moved by 'crystalline energy'. The governing equation is for­
mally written in a quasilinear diffusion equation. However, because of 
singularity of energy, the diffusion effect is so strong that it may not 
be local. Even the notion of solution is not clear in general. There are 
two ways to handle such very singular diffusion equations systematically 
as a limit of diffusion equation with smooth energy. The first one is 
variational approach or the theory of nonlinear semigroups initiated by 
Y. Komura [Ko] and developed by many mathematicians for many years. 
It provides mathematical formulation of various important problems in­
cluding the Stefan problem and the Hele-Shaw problem as explained in 
a book of A. Visintin [V]. The application of this theory to motion with 
facets is found in [FG] and is further developed by [EGS]; the theory 
developed in [HZ] is in the line of this approach. The second one is 
an approach by extending the theory of viscosity solutions initiated by 
M.-H. Giga andY. Giga [GGl], [GG3], [GG4]. The first method applies 
to problem for arbitrary dimensions but the method needs the divergence 
structure of equations. The second method is so far limited in one space 
dimension and spatially homogeneous problem. However, it does not 
require divergence structure of the equation so that it applies equations 
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describing the motion of curves moved by singular surface energy [GG4]. 
The bibliography of [GG1] and [GG3] includes many references to re­
cent work on the motion by crystalline energy and singular energy. The 
reader is referred to [GG1] and [GG3] for related references as well as 
the background of problems. 

In this paper, as an example of very singular diffusion equations, we 
consider a quasilinear equation 

(1.1) au 1 . ( V'u) at = t; div a IY'ul ' 

where a and b are a given positive function. This equation is interpreted 
as the gradient system by taking energy 

(1.2) E(u) = l a(x)IY'u(x)l dx 

with respect to the norm II/II = (J0 b(x)lf(x)l 2 dx) 112 , where n is a 
domain in Rn. In other words (1.1) is written as a gradient system 

au at = -(gradll·ll E)(u), 

where grad11 . 11 denotes the gradient with respect to 11·11· When a and bare 
identically equal to one, E(u) is called a coarea functional and (1.1) is 
called the coarea gradient flow equation. Its Dirichlet problem is studied 
in [HZ], where it is proved that the asymptotic limit of solution as time 
tends to infinity exists and enjoys the relvent minimizing properties for 
time-independent boundary data. As we observe from (1.2) the energy 
density a(x)IPI in (1.2) is not differentiable at p = 0 ERn so that the 
equation has singularity at IY'ul = 0 in {1.1). The equation (1.1) is also 
important to describe motion of multi-grain problem studied in [KWC], 
where b is proportional to a. 

The goal of this paper is to review the variational approach to (1.1) 
to define correct notion of a solution and to give several examples of 
solutions which develops "facet" or "plateau" (flat portion of the graph 
of solutions) as an effect of nonlocal diffusion. There is another review 
paper [KG] on this subject for physicists and material scientists .. The 
present paper describes underlying mathematical basis on this subject 
for mathematicians. 

For one dimensional version of (1.1) (with Dirichlet boundary con­
dition) we derive an interesting necessary and suffieicnt condition so 
that "plateau" of a solution is preserved when a and b are not neces­
sarily constant. For spatially homogeneous problem, i.e., for constant 
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a and b, plateau does not break. For piecewise constant initial data 
we give an explicit way to represent solution even after the time when 
some plateau merges. We also prove that the number of peaks does not 
increase during evolution; similar property is well-known for usual dif­
fusion equations ([A], [M], ... ). These results seem to be new. Roughly 
speaking, one of sufficient conditions for nonbreaking of plateau is the 
concavity of a with respect to 'metric' induced by b at each maximal 
interval where the solution is constant. This condition is fulfilled for the 
system proposed by [KWC] where the equation (1.1) is coupled except 
the fact that a and b now depend on time. We note that a different 
type of spatially inhomogeneous problem has been studied in [GG2]. At 
the end of this paper we also note that solution may become discontinu­
ous instanteneously if a is not spatially homogeneous because of strong 
diffusion (when b = 1). 

§2. Variational formulation 

We recall an abstract formulation for a gradient flow equation for a 
convex energy. Let H be a real Hilbert space equipped with an inner 
product ( ·, · ). Let c.p be a real-valued convex function defined on a 
convex subset D(c.p) of H. For technical convenience we extend c.p outside 
D(c.p) by setting its values as +oo (which is larger than any real number). 
The extended function is still denoted c.p and D ( c.p) is called the domain 
of c.p. 

For application H is taken a space of functions and c.p is its energy. 
It is important to analyse variation or gradient of c.p. However, unfortu­
nately c.p need not be differentiable in H. For a convex function c.p the 
notion of subdifferential substitutes the notion of gradient. A subdiffer­
ential of c.p at v E D( c.p) is the set of all f E H that satisfies 

(2.1) c.p(v +h)- c.p(v) ;:::: (!,h) 

for all h E H. The subdifferential of c.p at v is denoted 8c.p(v). For 
example, for c.p(v) = lvl for v E R we have 8c.p(v) = {1} for v > 0; 
8c.p(v) = [-1, 1] for v = 0; 8c.p(v) = { --'-1} for v < 0, if the set R of all 
real numbers is regarded as a Hilbert space equipped with the standard 
inner product. Of course if c.p is differentiable at v, 8c.p(v) is a singleton 
and consists of the gradient of c.p at v. 

We now recall a fundamental theorem for unique existence of solu­
tions for the gradient system 

(2.2) 
du 
dt E -8c.p(u), ult=O = uo. 
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Unique Existence Theorem. Assume that cp is convex with 
nonempty domain D( cp) in H and that cp is lower semicontinuous in 
H, i.e., 

cp(v) ::; liminf cp(w) for all v E H, 
W->V 

where w --+ v denotes the converyence in the norm in H. For each 
u0 E H there is a unique solution u of (2.2) in the sense that 

(i) u is continuous from the time interval [0, oo) to H and u is 
absolutely continuous with values in H on each compact set in (0, oo). 

(ii) 

(2.3) 

(2.4) 

du 
dt (t) E -8cp(u(t)) for almost all t ~ 0, 

u(O) = uo. 

Here, the time derivative f = ~~(t) is defined by the unique element of 
H that satisfies 

!~~~u(t+s~-u(t) -!II =0, 

where llvll = (v, v) 112 is the norm of v in H. 
For the proof the reader is referred to a book [Ba]. To apply this 

theorem to our problem we need to interpret our energy E in (1.2) as a 
lower semicontinuous convex function on a suitable Hilbert space. We 
consider the Dirichlet problem in this paper. 

Lemma (Lower semicontinuous interpretation). Let a be a posi­
tive continuous function defined in a smoothly bounded domain 0 in R n. 
Assume that both a and 1/a are bounded in 0. For a given (Lipschitz) 
continuous boundary data g on 80 let g denote a Lipschitz extension of 
g to Rn. For v E H = L 2 (0) let v be its extension to Rn such that 
v(x) = g(x) for Rn\0. Then the functional 

(2.5) cp(v) =in a(x)l'\lv(x)l dx 

with D(cp) = BV(O) is convex and lower semicontinuous in the Hilbert 
space H = £ 2 (0), where BV(O) denotes the space of functions with 
bounded variation in 0. The functional cp( v) is independent of the way 
of extension g ofg; it depends on g. 

The convexity is easy to check. Note that if one assigns cp = oo 
outside the set { v E BV(O) ; vlan = g }, then cp is not lower semicontin­
uous in L2 (0). The proof of the lower semicontinuity is standard in the 
theory of BV [Giu] so we omit it. Note that we have to give a meaning 



Very Singular Diffusion Equations 97 

of (2.5) when 'Vv is merely a Radon measure before starting the proof. 
Note also that (2.5) also measures vlan - g on an. 

For the functional <p defined by (2.5) we derive an explicit form of the 
gradient form at least in the formal level. The subdifferential depends 
on the metric of Hand there are various inner products of £ 2 (0). For 
a given positive continuous function b in n we set an inner product. 

(v, w)b =In v(x)w(x)b(x) dx, v, wE £ 2 (0). 

If b identically equals one, this inner product is nothing but the standard 
inner product of £ 2(0). The norm induced by ( ·, · )b is equivalent to 
the standard one provided that both band 1/b are bounded on n. 

It is not easy to express the subdifferential when 'Vv is a measure as 
presented in [Te] for a different but related problem. We give a simpler 
version. 

Lemma (Subdifferentials). Assume the same hypotheses of the 
preceeding lemma concerning 0, a, g and 'P· Assume that v is Lipschitz 
continuous (so that 'Vv is bounded on 0) and that vlan =g. Let a<p(v) 
denote the subdifferential of <p at v with respect to the inner product 
( ·, · )b where both b > 0 and 1/b are assumed to be bounded continuous. 
Then f E a'P( v) if and only if there is a locally integrable function ~ on 
n that satisfies 

(2.6) f = -~ div(a~), ~(x) E aj('Vv(x)) 

for almost all x E 0, where j(p) = IPI for p E Rn and aj is the sub­
differential of j with respect to the standard inner product of Rn. 

This is an easy corollary of the result in [AD] by modifying j(p) 
for large p so that j(p)/IPI -+ oo as IPI -+ oo as in [FG]. The proof 
that (2.6) implies f E a<p(v) directly follows from the definition of sub­
differential while the converse is nontrivial. This lemma asserts that the 
equation (2.2) (with <p given by (2.5)) is formally written as 

(2.7) au 1 . ( 'Vu) 
at = z; dlv a I'Vul , 

with the Dirichlet boundary condition ulan= g, since 

(2.8) aj(p) = {{P/IPI}, for p =I= o, 
B1, for p = 0, 
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where B 1 is a closed unit ball centered at the origin in Rn. By a solution 
of (2.7) with ulan = g we mean that it is a solution of (2.2) with cp 
given by (2.5) defined in H = L 2 (f2) equipped with the inner product 
( ·, ·)b. Note that the boundary condition is hidden in cp. The unique 
existence theorem for (2.2) asserts that the equation (2.7) with ulan= g 
is uniquely solvable. If a= b = 1, (2.7) is called the coarea gradient flow 
equation in [HZ] which is qualitatively different from the level set mean 
curvature flow equation 

8u . ( V'u) 
8t = IV'ul d1v IV'ul 

analysed in [CGG], [ES] since (2. 7) turns to have a nonlocal effects while 
the last equation does not have such an effert; see [G] for review on the 
level set equations. If a and b depend on time, (2.7) is not written 
in the form of (2.2) unless we use time dependent inner product and 
energy. Fortunately, an abstract theory including such situation has 
been developed by A. Damlamian [D]. We thank Professor N. Kenmochi 
for pointing out this reference. 

We come back to the abstract setting in the unique existence theo­
rem. The condition (2.3) can be interpreted as a variational inequality. 
By definition (2.1) the condition (2.3) is equivalent to a variational in­
equality: 

(2.9) cp(v)-cp(u(t)) ~ (v-u(t),-~~(t)) 
for all v E Hand almost all t ~ 0. 

It is not difficult to see the uniqueness of solution of (2.2). Indeed, let 
w fulfill (2.9), i.e., 

(2.9)' cp(v)- cp(w(t)) ~ ( v- w(t),- ~~ (t)) 

for all v E H and almost all t ~ 0. 

Setting v = w(t) in (2.9) and v = u(t) in (2.9)' and adding (2.9) 
and (2.9)' yields 

0 ~ ( w(t) - u(t), ~~ (t) - ~~ (t)) 

1 d 
= - -d llw(t)- u(t)ll 2 for almost all t ~ 0. 

2 t 
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This implies the contmction property: 

llw(t)- u(t)ll ~ llwo- uoll for all t;?: 0, 

where w0 is the initial data w(O) of w. The contraction property imme­
diately implies the uniqueness of solution of (2.2). 

The evolution law (2.2) looks ambiguous since 8cp is multivalued. 
But by the uniqueness of solution the solution knows how to evolve. 
Does dujdt choose a special element of subdifferential 8cp(u(t))? The 
next theorem which is well-known gives an answer. For the proof see 
e.g. [Ba]. 

Theorem on characterization of the speed. Let u be the so­
lution of (2.2) with u0 E H. Then u is right differentiable for all t > 0. 

Let d+uj dt denote the right derivative. Then f = - d;t ( t) is the canon­
ical restriction (or minimal section) of 8cp(u(t)), i.e., f E 8cp(u(t)) and 

II/II = min{llqll ; q E 8cp(u(t))}. 

Conversely, if a continuous function u from [0, oo) to H is right differen­
tiable at all t > 0 and _d;t(t) is the canonical restriction of 8cp(u(t)), 
then u is the solution of (2.2) with initial data u0 = u(O). 

Since cp is convex and lower semicontinuous, the set 8cp( v) is always 
a closed convex set (which may be empty), so the canonical restriction 
is unique which is denoted 8cp0 ( v) ( E 8cp( v)). 

We only give a formal proof for the characterization of the speed at 
t0 > 0 by assuming that ~~ ( t 0 ) exists with the property that ~~ (to) E 

-8cp(u(t0 )) and dujdt is right continuous at t = t0 . For the detailed 
proof see e.g. [Ba]. We set t =to+ s, s > 0 in (2.9) and v = u(to) to get 

cp(u(to))- cp(u(to + s)) ;?: ( u(to)- u(to + s),- ~~(to+ s)) 

For any ( E 8cp(u(t0 )) by definition 

((, u(to)- u(to + s)) ;?: cp(u(to))- cp(u(to + s)). 

These two inequalities yield 

( ~~ (t0 + s), u(t0 + s)- u(to)) ~ (-(, u(to + s)- u(to)). 

Dividing both sides by s and sending s to zero yields 
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by the Schwarz inequality since du/ dt is assumed to be right continuous 
at t = t 0 • Thus for any ( E 8<p(u(t0 )) we have 

Since -~~(to) E 8<p(u(to)), this minimality implies that -~~(to) = 

8<p0 ( u(to)). 

The solution of (2.2) we obtain is a nice stability property for per­
turbation of energy <p. 

Stability Theorem. Assume that 'Pe converges to <p in the sense 
of Mosco as c: --+ 0, i.e., for any v E H, <p(v) ::::; liminfe---+0 'Pe(ve) for 
any ve with live- vii --+ 0 and there is a sequence ve converges weakly in 
H that <p(v) = lime---+O 'Pe(ve). Assume that llu0- uoll --+ 0. Let u0 be 
the solution of 

du 
dt E -8<pe(u), ult=O = u0, 

where 'Pe is a lower semicontinuous, convex function. Then for every 
T>O 

lim sup llue(t)- u(t)ll = 0. 
e---+0 o:::;t:::;T 

The result is due to J. Watanabe [W] based on a result of H. Brezis­
A. Pazy [BP]. It asserts that our solution (2.2) can be obtained as a limit 
of approximate problems if the energy is approximated in a proper way. 
In practice it gives a way to calculate numerically a solution approxi­
mately by approximating <p by a smoother energy. We approximate <p 
in (2.5) by a smoother energy so that the approximate equation enjoys a 
comparison principle. By the stability theorem the comparison principle 
is inherited to ( 2. 7). 

Comparison principle. Assume that <p is defined by (2.5) and 
H = L2(0) equipped with inner product ( , )b· For solutions u and v of 
dujdt E -8<p(u), u::::; v for all t 2:0 ifu::::; vat t = 0. 

We are curious whether ue convergerges to u locally uniformly in 
space-time domain. So far such a convergence results is proved only 
for problem for one space dimension based on the theory of viscosity 
solutions [GGl], [GG3], when the equation is spatially homogeneous. In 
our problem (2. 7) is spatially homogeneous if a and bare constants. We 
only give a simplest version of a general convergence result including 
nondivergence type equations proved in [GG3]. 
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Uniform convergence. Assume that Wc(P) converves to IPI as 
c ----> 0 locally uniformly and that the second derivative w:' > 0 and w€ 
is smooth. Assume that u~ and u0 is continuous in a closed bounded 
interval n in R with u~ = Uo = 0 on the boundary an of n. Assume 
that u~ converges to Uo uniformly in n. Let u" be the solution of 

~~ = (W:(ux))x, ult=O = u~, ulan = 0. 

Then u" converges to a unique solution u of 

ult=D = uo, ulan = 0 

as c ----> 0 and the convergence is locally uniform in 0 X [0, 00), where 
Ux = OxU = &uj&x. Both u" and u are at least continuous inn X [0, oo). 

§3. Examples of solutions 

We consider one-dimensional version of the equation (2.7). The 
equation is of form 

(3.1) &u 18( Ux) ----a--
&t - bOX lux I · 

3.1. Spatially homogeneous equation 

To see the nonlocal effect of strong diffusion we first consider the 
spatially homogeneous equation: 

(3.2) &u 8 ( ux ) 
&t =OX luxl ' 

which is of course an example of (3.1). We consider (3.2) for x E 0 
and t > 0 where 0 = (x0 , xi) is an bounded open interval. For bound­
ary condition we impose zero Dirichlet data but this is just to fix our 
problem. The problem (3.2) with zero Dirichlet data and initial data is 
formulated by (2.2) by taking 

(3.3) 
H = £ 2 (0), cp(v) = k lvxl dx + lv(xo)l + lv(xl)l, 

D(cp) = BV(O), 

where H is equipped with the inner product 

(f,g)l = k f(x)g(x) dx. 
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We shall calculate subdifferential of r.p at v when v E D( r.p) is a Lipschitz 
continuous function with v(x0) = v(xl) = 0 having the property 

{
monotone increasing on 

constant on 

monotone decreasing 

[xo, a], 
[a, ,6], 

[,6, X1], 

where n = (xo, xl) and Xo <a< ,6 < Xl. By Lemma on subdifferentials 
we see f E &r.p ( v) C H if and only if there exists ~ satisfying 

{
= 1, 

~(x) = -1, 

E [-1, 1], 

if v is increasing near x, 

if v is decreasing near x, 

otherwise. 

Since f is in L2 (0), ~must be continuous on 0. Thus the graph of~ is 
as in Figure 1 (a). If f = -~x is the canonical restriction of &r.p ( v), ~ 
must minimize 

under constraint 1~1 ::; 1 on (a, ,6) with ~(a) = 1, ~(,6) = -1. The 
minimizer is an affine function on (a, ,6) so that ~x = -2/(,6- a) as 
shown in Figure 1 (b). Thus 

x E (x0, a) or x E (,6, xi), 

xE(a,;J). 

Note that &r.p0(v)(x) is a nonlocal quantity determined by v for x E 

(a, ,6). 
Based on the calculation of &r.p0 (v) we seek the solution of (3.2) (i.e., 

the solution of (2.2) with (3.3)) for single peak initial data. Let u be a 
continuous function in 0 of form 

(3.4) {
A(x), 

ua(x) = ho, 
B(x), 

xo ::; x ::; ao, 

ao ::; x ::; ;Jo, 

;Jo ::; X ::; X1, 
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with a0 ::::; f3o, A' > 0, B' < 0, A(ao) = B(f3o) = ho and A(xo) 
B(xi) = 0. We expect the solution of (3.2) is of form 

(3.5) {
A(x), 

u(x,t) = h(t), 
B(x), 

xa::::; x::::; a(t), 
a(t)::::; x::::; (3(t), 

(3(t) :S: X :S: X1, 

with A(a(t)) = B(f3(t)) = h(t) until the timeT such that h(T) = 0. By 
the characterization of the speed if 

(3.6) 
0 2 

ht(t) = -8tp (u(-, t)) =- (3(t) _ a(t), 0 < t < T, 

then u(x, t) solves (3.2). Fortunately there is continuous a, (3 on [0, T] 
that satisfies (3.6). In fact 

a(t) = A-1 (h(t)), (3(t) = B-1 (h(t)), a(O) = ao, (3(0) = f3o, 

h(t) = s-1 (2t), 

where -1 represents the inverse of a function. By this choice of a, (3, 
h, (3.5) is now the unique solution of (3.2) with initial data u 0 given 
by (3.4); after the time T we set u(x, t) ::::: 0. It is not difficult to study 
evolution of multi peak function by (3.2). The important feature of the 
shape is local maximum and minimum is flattened by nonlocal diffusion 
effects and it may merge. See [KG, Section 3] for such examples as well 
as numerical simulations. 

Solution starting from u0 of (3.4) is given in [HZ]; a similar example 
with initial data -u0 is given in [GG1]. One way of proving (3.6) is based 
on observation given in [FG], where the speed -2/((3- a) of evolution 
equals the canonical restriction of tp; see also [EGS]. 

3.2. Equations with inhomogeneous diffusion 

We now consider (3.1) for X E n = (zo, zi) and t > 0 with inhomo­
geneous Dirichlet boundary condition. We consider a piecewise constant 
initial data 

(3.7) ua(x)=h? on(xi,xi+I), i=O, ... ,m-l,m2:2 

where z0 = x 0 < x 1 < x2 < · · · < Xm = z1 . The values h? may be 
the same as h?+l' The boundary condition we impose is u = hg at z0 , 

u = h?n_ 1 at z1. We interpret (3.1) as (2.2) with (2.5) where g = h8 
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at zo and g = h~_1 at z1 in the definition of cp(v); the inner product 
of H = L2(0) is chosen by ( , )b as in §2. In general the solution 
u with initial data (3.7) may not be locally constant in x because of 
inhomogeneity of a and b. We shall seek conditions on a and b so that 
u( ·, t) is piecewise constant and its jump discontinuities are included in 

{xi}:J:1. If h? = h?+l = .. · = h?+k-ll h?_1 =/= h?, h?+k-1 =/= h?+k we 
say the segment 

(xi,Xi+k) X {h?}, k 2: 1 

is a plateau (of height h?) for a piecewise constant function u0 • We first 
consider the case that h?_1 =/= h? fori= 1, ... , m- 1. 

3.2.1. Evolution before merging of plateaus 

Theorem on persistency. Assume that a and b are positive and 
continuous on n = [zo, Z1]· Assume that a(x1) ::; a(x) for all X E [xo, X1] 
and a(Xm-1) ::; a(x) for all x E [xm-1, Xm] and that 

(Ci) 

{a(xi+1)- a(xi)} I 1:H1 
b(T) dT::; {a(x)- a(xi)} I 1: b(T) dT 

for all x E (xi, Xi+1] 

holds for all i = 1, ... , m- 2. Let u be the solution of (3.1) with ini­
tial data uo given by (3. 7) with Dirichlet boundary condition ulan = 
u0 lan. Assume that h? =/= h?_1 fori = 1, ... , m- 1. Then for each 
i = 0, 1, ... , m -1 the speed Ut(x, t) is independent of x E (xi, xi+1) and 
t E (0, t0 ), where t0 is the. first time that some plateau of u( ·, t) merges 
to another one. Moreover Ut(x, t) = 0 in (xo, x1) and (xm-1> Xm) for 
0 < t < t 0 • (Thus the function u( ·, t) is piecewise constant and it jumps 
at XI, ... , Xm-1 fortE (0, to).) 

Remark 1. If we use the length with respect to the metric bdx, 
the condition (Ci) is rewritten as 

{ab(Yi+I)- ab(Yi)}/(Yi+1- Yi)::; {ab(Y)- ab(Yi)}/(y- Yi) 

for ally E (yi, Yi+1], 

where ab(Y) = a(x(y)), Yi = J:1' b(T) dT and x(y) is the inverse function 

of y(x) = J:1 b(T) dT. In other words the convex hull of ab on [yi, Yi+1] 
is affine. 

Remark 2. It turns out that the condition ( Ci) is necessary so 
that Ut is constant on (Xi, Xi+ 1) for any initial data uo given by ( 3. 7) 
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with hJ i- hJ_ 1 (j = 1, ... , m- 1). Also a(x) 2: a(x!) on [xo, x1] and 
a(x) 2: a(Xrn-d on [xrn-1, Xrn] are necessary so that Ut is zero on (xo, x!) 
and (xrn_ 1 , xrn), respectively. We shall explain the reasons in the proof 
of Lemma 2. 

Remark 3. It is clear that ( Ci) is fulfilled if a is concave when b 
is constant on [xi, Xi+ll· It is more difficult to see that ( Ci) is fulfilled 
if a is concave on [xi, Xi+1 ] when b is proportional to a. We shall prove 
this statement at the end of this subsection §3.2.1. 

Since u0 is discontinuous, our Lemma on subdifferentials does not 
apply. We seek a nice element of subdifferential at a piecewise constant 
function. 

Lemma 1. Assume that a and b are positive and continuous on 
[z0 , z1 ]. Assume that u 0 is given by (3.7). Let f E L2 (0) be of form 

(3.8) 
1 

f(x) =- b(x) {a(x)~(x)}x l~(x)l S: 1, x E 0 = (z0 , z!) 

for some continuous ~ in 0 that satisfies 

(3.9) 
if h?-1 < h~, 
if h?-1 > h~, 

fori= 1,2, ... ,m-l. (Ifh?- 1 = h~, no condition on~(xi) is imposed.) 
Then f E 8c.p(u0 ), where the boundary data g is taken as the boundary 
value ofuo and t.p is given in (2.5). Conversely, iff E 8c.p(u0 ) then f is 
of form (3.8) satisfying (3.9). 

Proof of Lemma 1. We shall check (2.1) or 

(v- uo,J)b S: c.p(v)- c.p(uo) 

for all v E D( c.p). By definition 

(3.10) (v- uo, f)b = -l (v- uo)(a~)x dx. 

Since 1~1 S: 1, integrating by parts we see 

(3.11) 
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here Vx is regarded as a measure and cp(v) = J lvxla(x) dx is defined for 
a Radon measure Vx, for example 

m-1 

cp(uo) = L a(xi)lhi- hi-ll· 
i=l 

Since ~(xi)= ±1 depending on the sign of hi- hi_1, we see 

m-1 

(3.12) in uo(a~)x dx = uoa~~~~- ~ a(xi)lhi- hi-1l 

= uoa~~~~ - cp( uo). 

The formula (3.10)-(3.12) now yields 

(v- uo, f)b :S cp(v)- uoa~~~~ + uoa~~~~- cp(uo) 

= cp(v)- cp(uo), 

which implies f E &cp(uo). 
Conversely, assume that f E &cp(u0 ). Let ( by a primitive of -bf. 

Since f E L 2 (rl), ( must be absolutely continuous in fl. The condition 
f E &cp( uo) is equivalent to 

-in (v- uo)(x dx :S cp(v)- cp(u0 ). 

We take various v in this inequality to derive properties of(. If Uox -=;E. 0, 
there is an index i E {1, ... , m - 1} such that h? -1- h?-1. We may 

assume that h?-1 < h?. For x E (zo, z1) \ { x j} J=-~/ we take 

v(x) = Uo(x) +A Jx (D(T- x)- D(T- Xi)), A< h?- h?_l 
zo 

in(*) and integrate by parts to get >.(((x)- ((xi)):::; 1>-la(x)- >.a(xi)· 
If we set ((xi) = a(xi), then this inequality yields l((x)l :::; a(x) for all 
x E (z0 , zl)\ { Xj }j:J:1 by taking>. positive or negative. By continuity this 

implies l((x)l :::; a(x) for all x E (zo, zl). If h?+l > h? we take x = Xi+l 
and plug above v in(*) to get >.(((xi+l)- ((xi)):::; >.(a(xi+l)- a(xi)) 
for >. E R with small 1>-1. This yields ((xi+!) = a(xi+I)· Similarly, we 
have -((xi+l) = a(xi+d if h?+l < h?. Repeating this argument for 
both sides of Xi we conclude that f is of form (3.8) satisfying (3.9) when 
uox -=;E. 0. (If u0 is a constant, we normalize ( so that max((- a) = 0 
to get ((x*) = a(x*) for some x* E [zo, z1]. We set v as above in ( *) 
with x = x*, x1 = x and >. = 1 to get -((x) :::; a(x) which yields 
l((x)l :S a(x).) Q.E.D. 
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Lemma 2. Assume that uo is given by (3. 7) with h? =f. h?- 1 for 
i = 1, ... , m -1. Assume the same hypothesis of theorem on persistency 
concerning a and b. Then there is continuous ~ on 0 satisfying (3.8) 
and (3.9) such that f given by (3.8) is constant -vi on each interval 
(xi, xi+!) (i = 0, 1, ... , m- 1) and that v0 = vm- 1 = 0. The constant 
vi is of form 

(a~)(xi+I)- (a~)(xi) 

I~'+1 bdx 
i = 0, 1, ... , m- 1, 

which depends on uo only through the order of hi, hi-l, hi+1· 

Proof of Theorem on persistency. Since h? =f. h?- 1 (i = 1, ... , m-

1), by Lemmas 1 and 2 (and the unique existence theorem) we see 

( ) ( ) ( ) 
0 h dhi ( ) i u x,t =hit on Xi,Xi+l w1t dt t = v 

for i = 0, 1, ... , m- 1 is the unique solution of (3.1) with initial data 
uo given in (3.7), until the first time to when hi(to) = hi+1(to) for some 
i = 0, 1, ... , m- 1. Actually we have used a version of uniqueness of a 
local solution for (2.2) on [0, T) which is proved in the same way as the 
unique existence theorem in §2. (The time to may be infinite. Indeed, if 
a= b = 1, and h? < h?+l for i = 0, 1, ... , m- 2, then u0 (x) itself is the 
solution of (3.1) with (3.7) and no plateau merges for all t > 0.) Q.E.D. 

Remark 4. We did not use the fact that f in Lemma 2 is the 
canonical restriction of 8cp ( u0 ). By the Theorem on characterization of 
the speed we see that f E 8cp( u0 ) in Lemma 2 is actually equals 8cp0 ( u0 ) 

a posteriori. 

In the rest of this subsection we shall prove Lemma 2. 

Lemma 3 (Constant velocity profile). Assume that a and b are 
positive and continuous on a nontrivial interval [a, tJ]. The following 
two conditions are equivalent. 

(A) {a(t)) -a( a)}/ I: b(T) dT :::; {a(x) -a( a)}/ I: b(T) dT for all 
X E (a, tJ]. 
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(B) For any 81, 82 E { -1, 1} there is a unique function ~ on [a, ;3] 
fulfilling the properties: 

(3.13) 

(3.14) 

(3.15) 

a~ is C 1 on [a, ;3]; 

l~(x)l:::; 1 for all x E [a,;J]; 

~(a)= 81, ~(;3) = 8z; 

(3.16) ~~(a~)(x) = (a~)(;J)- (a~)(a) for all x E [a,;J]. 
bdx J:b(T)dT 

Proof. We first prove that (A) implies (B). We may assume that 
~(;3) = 1 since the argument for ~(;3) = -1 is symmetric. We denote 

the constant { (a~) (;3) - (a~)( a)} I J: b by V. Integrating the equation 
Bx(a~) = bV, we have a representation formula for~ 

(a~)(x)- (a~)( a)= V ix b(T) dT. 

The regularity of a~ is clear. It remains to check the constraint l~(x)l :::; 
1, which is equivalent to 

(3.17) -a(x):::; (a~)(a) + V ix b(T)dT:::; a(x) for all x E [a,;J]. 

If ~(a)= 1, the condition (A) is equivalent to the rightest inequality 

of (3.17). Since J: b:::; J: b so that { -a(x)-a(a)}l J: b:::; -a(a)l J: b:::; 
{ a(;J) - a( a)} I J: b, the leftest inequality of (3.17) has been proved. If 
~(a)= -1, the inequalities (3.17) read 

(3.18) 
-a(x) +a( a) a(;J) +a( a) a(x) +a( a) 

x < (3 < J:x · fa b(T) dT - fa b(T) dT - a b(T) dT 

Since J: b:::; J: b, the condition (A) implies 

a(;J) +a( a) a(;J)- a( a) 2a(a) a(x)- a( a) 2a(a) 
(3 < (3 + (3 < J:x · + J:x · fa b(T) dT - fa b(T) dT fa b(T) dT - a b(T) dT a b(T) dT 

Thus we get the rightest inequality of (3.18). By the condition (A) we 
have 

-a(x) +a( a) a( a)- a(;J) a(;J) +a( a) 
X < (3 < (3 

fa b(T) dT - fa b(T) dT - fa b(T) dT 

which implies the leftest hand of (3.18). We thus obtained (3.17). 
The converse follows from ( 3.17) by taking ~ (a) = ~ (;3) = 1. 

Q.E.D. 
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Lemma 4 (Constant velocity profile-boundary version). Assume 
that a and b are positive and continuous on a nontrivial interval [a, ;3]. 
Let p be a boundary point of [a, ;3], i.e., p =a or p = ;3. The following 
two conditions are equivalent. 

(i) a(p)::; a(x) for all x E [a,;3]. 
(ii) For any 8 E {-1,1}, there is a unique function~ on [a,;3] 

fulfilling (3.13), (3.14) and ~(p) = 8, lx (a~)= 0 on [a, ;3]. 

Proof. There is a unique solution ~(x) = a(p)8/a(x) of ~(p) = 8, 
d(a~)/dx = 0 on [a,;3] (satisfying (3.13)). The condition (i) is equivalent 
to (3.14) so (i) and (ii) are equivalent. Q.E.D. 

Proof of Lemma 2. We apply Lemma 1 and Lemma 3 on each in­
terval [xi, xi+1] (i = 1, 2, ... , m - 2) (and Lemma 4 on [xo, x1] and 
[xm-1, Xm]) to get Lemma 2. 

The necessity of (Ci) in Remark 2 follows from Lemma 3 and 
Lemma 1. Similarly the necessity of a(x) ~ a(xi) on [x0 ,x1], a(x) ~ 
a(xm-d on [xm_1, xm] in Remark 2 follows from Lemma 4. Q.E.D. 

We conclude this subsection by proving that the concavity of a on 
[xi, X xi+ I] implies ( Ci) when a is propotional to bas stated in Remark 3. 
It follows from the next lemma. 

Lemma 5. Assume that a is concave and positive on a nontrivial 
interval [a, ;3]. Assume that a is proportional to b. Then 

(3.19) {a(;3)- a( a)} I 1(3 b(T) dT::; {a(x)- a( a)} I 1x b(T) dT 

for all x E (a, ;3]. 

Proof. We may assume that a = b on [a, ;3]. We first discuss the 
case a( a) ::; a(;3). Let I be the interval of form 

I= {x E [a,;3]; a(x) ~ a(;3)} 

which may be a singleton ( cf. Figure 2). Since a( x) - a( a) ~ 0 and 

I: a :S It a for x E I, (3.19) holds for all x E I. 
By concavity of a we have 

(3.20) {a(;3)- a(a)}/(;3- a)::; {a(x)- a(a)}j(x- a) 

for all x E (a, ;3]. Moreover, if x tj:_ I, then 

(3.21) 1 1x 1 1(3 -- a(T) dT::::: -- a(T) dT. 
x-a <> ;3-a <> 
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a({3) 

a(a) 

I 

---+-----+--------------~--~X 

Fig. 2. Interval I defined in the proof of Lemma 5. 

From (3.20) and (3.21) it follows that 

a({3)- a( a) 

I: a(r)dr 

a(f3)- a( a) 
{3-a 

for x ~I. Thus (3.19) holds for all x E (a, {3]. 
If a( a) 2: a({3) a symmetric argument yields 

or 
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{ ab(,B) - ab(O)} / ,B 2: { ab(,B) - ab(y)} j(,B- y), 0 ~ y < ,B 

where ab(Y) = a(x(y)), ,B =I: b(r) dr and x(y) is the inverse function 
of y(x) =I: b(r) dr; see Remark 1. This evidently implies 

which is the same as (3.19). Q.E.D. 

3.2.2. Evolution at the time of plateau merging 

We consider the solution u of (3.1) with initial data uo of form (3. 7) 
when h? =I h?_ 1 (i = 1, 2, ... , m-1). Under the assumptions of Theorem 
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on persistency concerning a and b it follows from Lemma 1 and Lemma 2 
that 

i 0 ( u( t, x) = v t + hi ( = hi t)) on (xi, xi+!) (i = 0, 1, ... ,m -1) 

until the first time t 0 at which some plateau merges, i.e., t 0 is the first 
timet that hi(t) = hi+1 (t) for some i, 0::; i::; m -1. 

At time t 0 some consecutive plateau merges. We shall discuss 
whether or not these merged plateaus are forced to split for t > t 0 

close to t 0 . The answer depends on a and b. For this purpose we shall 
extend Lemma 3 to calculate velocity profile on merged plateaus. 

Lemma 6. Assume that a and b are positive and continuous on 
[a, ,B] with a = ro < r1 < r2 < · · · < rk = ,8, where k ~ 1. Assume 
that {Ci} in Theorem on persistency with Xi replaced by ri for all i = 

0, 1, ... 'k -1. 

(i) (Monotone velocity profile) There is a unique function~ on [a, ,B] 
fulfilling (3.14), (3.15) with 81 = 82 E { -1, 1} such that the following 
properties (a)-( c) hold. 

(a) a~ is continuous on [a, ,B] and C1 as a function on each (ri, ri+1) 
(i=0,1, ... ,k-1). 

(b) v(x) = b(~) d~(a~)(x) is constant on each interval h,ri+1) 
( i = 0, 1, ... , k - 1) and v ( x) is nondecreasing for 81 = 1 ( nonincreas­
ing for 81 = -1) as a function of x in (a, ,B) outside the set of jump 
discontinuities~ C {r~, ... , rk-d of v. 

(c) ~(ri) = 81 for ri E ~ and i = 1, ... , k- 1. 

(ii) (One peak velocity profile) There is a unique function~ on [a, ,B] 
fulfilling (3.14), (3.15) with 81 = -82 E { -1, 1} and (a) such that the 
following properties (d), (e) hold. 

(d) v(x) = b(~) d~ (a~)(x) is constant on each interval (ri, ri+1) (i = 
0, 1, ... , m- 1) and v(x) is nondecreasing for 81 = 1 (nonincreasing 
for 81 = -1) on (a, (rj + rj+l)/2)\~' and nonincreasing for 81 = 1 
(nondecreasing for 81 = -1) on ((rj + rj+l)/2,,8)\~' for some j E 
{0, 1, ... , k- 1 }, where ~' is the set of jump discontinuities of v. 

(e) ~(ri) = 81 for i = 0, 1, ... , j and ~(ri) = 82 fori = j + 1, ... , k 
provided that ri E ~'. 

Remark 5. If~ is constructed for 81 = 82 = 1 (resp. 81 = -82 = 
1) then-~ is the desired~ for 81 = 82 = .,-1 (resp. 81 = -82 = -1). 
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Remark 6. To prove Lemma 6 (as well as Lemmas 3 and 4) we 
may assume that b = 1 by changing coordinate and replacing a by ab as 
defined in Remark 1. 

Remark 7. To prove Lemma 6 it is helpful to give an elementary 
interpretation of the condition 1~1 :::::; 1. Assume that (a~)x =: p is a 
constant on (a1,,6!) C [a,,B]. Then 1~1 :::::; 1 on [a1,,61] if and only if 
1171 :::::; a on [a1,,61], where 17 is affine with slope p and 17(a1) = (a~)(a), 
17(,61) = (a0(,6!), i.e., 17(x) = p(x- a1) + (a~)(a1). 

Proof. (i) By Remark 5 we may assume <51 = <52 = 1. By Remark 6 
we may assume that b = 1. Let ( be the convex hull of a in [a, ,6]. 
By (Ci) (i = 0,1, ... ,k -1), (is a piecewise linear convex function 
whose jumps of derivatives are contained in {ri}7=-:}. If we take~= (/a, 
then ~ satisfies all desired properties. Indeed, v = d( / dx is piecewise 
constant and nondecreasing since ( is convex. Also 1~1 :::::; 1 is fulfilled 
(by Remark 7), since 0 :::::; ( :::::; a. The set ~ should be the set of jump 
discontinuities of d(/dx. For x E ~and x =a, x = ,6 we see ((x) = a(x) 
so that ~(x) = 1. 

To see uniqueness for given~ satisfying (3.14), (3.15) and (a)-( c) we 
set (=a~. By (b), (must be convex and piecewise linear. For x E ~ 
and x = a,,B we see ((x) = a(x), by (c) and (3.15). By (3.14) (:::::;a on 
[a, ,6]. Thus (must be the convex hull of a so the uniqueness of~ has 
been proved. 

(ii) We may assume that <51 = -<52 = 1 and b = 1. Let (+ be the 
convex hull of a in [a,,B] and set(-=-(+. We would like to construct 
a new piecewise linear function ( such that 

1° (- :::::; ( :::::; (+ on [a, ,6], 
2° ( = (+ on [a, re] and ( = (- on [r,-, ,6] for some £, o- satisfying 

0:::::; £ < (5:::::; k, 
3° ( is linear (affine) in [re, ra] and its slope V = d(/dx fulfills 

V 2': v+(x) on [a,re] and V 2': v_(x) on [ra,,B] where V± = d(±jdx. 
Such a function ( is easy to construct. Indeed, we set 

v*(x) = min(v+(x),v-(x)) and ), =min(+(> 0) 
[a,j3J 

and find that there is a unique negative number V fulfilling 

1: max{v*(x)- V,O}dx = 2>.. 
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If we set 

then ( satisfies 1 o, 2°, 3° by setting 

r£ = max{ri ; v+(ri- 0) ::; V}, ru = min{ri ; v_ (ri + 0) ::; V}. 

For notational convenience we set v+(ro- 0) = -oo and v_(rk + 0) = 

-oo. (The choice of V is important so that ((ru) = (-(ru).) We 
do not present the proof of 1°, 2°, 3° since it is elementary. Instead, 
we present an example of the graph of v* and the value V in Fig­
ure 3 (a) and the graph of(± and (when maxx(min(v+(x), 0)) > 0 > 
maxx(min(v_(x),O)) in Figure 3 (b). 

We set ~ = (/a and observe that ~ satisfies all desired properties. 
For example, by Remark 7 1~1 ::; 1 is fulfilled since (- ::; ( ::; (+ implies 
1(1 ::; a. 

For given~ satisfying (3.14), (3.15) and (d), (e) it is easy to see that 
a~ = ( fulfills 1°, 2°, 3°. Since ( satisfying 1°, 2°, 3° is unique, so is 
~- Q.E.D. 

There is a boundary version corresponding to Lemma 6 (i) but we do 
not state it explicitly. By Lemma 1 and Lemma 6 together its boundary 
version one is able to find an element f E 8c.p(u0 ), (which is piecewise 
constant) such that u(x, t) =- f(x)t + u0 (x) is a solution of (3.7) with 
ulan = u 0 lan for small t > 0. By the uniqueness of a solution Theorem 
on persistency is generalized as follows. 

General theorem on persistency. Assume the same hypothe­
ses of Theorem on persistency concerning a and b. Let u be the so­
lution of (3.1) with initial data u0 given by (3.7) with ulan = u0 lan­
Then for each i = 0, 1, ... , m- 1 the speed ut(x, t) is independent of 
x E (xi, Xi+l) and t E (0, to), where to is the first time that some plateau 
of u( ·, t) merges to another one. Moreover, Ut(x, t) = 0 in (x0 , x 1 ) and 
(xm-l,Xm) forO< t <to. 

Note that some plateau (Xi, xi+k) x { h?}, k :2': 2 at t = 0 may break 
instantaneously or stay as a plateau. By the above theorem we are 
able to calculate solution u explicitly by calculating the speed based on 
Lemma 6 until the time to when some plateau merges. We calculate new 
speed for u(x, t 0 ) and use above theorem to find explicit value u until 
the time t 1 when another plateau merges. We repeat this procedure to 
calculate u globally in time. Because of monotone nature of velocity 
profile in Lemma 6 we see that the number of peaks of u does not 



Very Singular Diffusion Equations 

r,. 
--+-1-~--+---~+-~~--x 

v----

(a) (b) 

Fig. 3. (a) The graph of v* and the value V. (b) The 
graph of (±. The dotted line indicates a part of 
the graph of (. 
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increase. For a piecewise constant function u0 given by (3. 7) with h? -:J 
h?_1 (i = 1, ... ,m -1) let M(uo) (resp. JL(uo)) denote number of local 
maximum (resp. minimum) of function i f---7 h? defined in {0, ... , m -1 }. 
(For such a function io E {1, ... , m- 2} is called a local maximum 
(resp. minimum) if h?o±l < h?0 (resp. hio±l > hi0 ).) If m = 2, we set 
M(u0 ) = JL(u0 ) = 0. If h? = h?_1 for some i we renumber xi's to identify 
u0 of form (3.7) with h? "I h?_1 (i = 1, ... ,m' -1) for some m' < m. 
For such identification we define M(uo) and JL(uo). 

Theorem on nonincrease of peaks. Under the same hypothe­
ses and notations of General Theorem on persistency we have 

M(u( ·, t)) and JL(u( ·, t)) are constant on (0, to). 
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Moreover, for all t ~ 0 we have 

M( u( ·, t)) :::; M( u0 ), JL( u(- , t)) :::; JL( uo). 

Remark 8. If b = 1, it is enough to consider convexification of a 
on [xi, Xi+k] (instead of original a) to see whether a plateau (xi, Xi+k) x 
{h?} (k ~ 2) is forced to break instanteneously when h?_1 < h? < 
h?+k+l or h?_ 1 > h? > h?+k+l" However, if b ¢. 1 a simple convexifica­
tion does not give a right answer. We have to convexify ab instead of a 

(cf. Remark 1). 

In the following, several numerical simulations will be demonstrated 
which support our theoretical results. For these calculations, we approx­
imate (3.1) by Ut = b-1 (ax7 (ux)ux)x, x,(p) = (tanh7p)jp for large 1' 
and adopt the numerical scheme introduced in [KG]. This approxima­
tion is justified by the stability theorem. Note that our numerical scheme 
does not assume any persistency properties of plateaus. Let us give the 
graph of a(x) by connecting (0, 1), (1/6, at), (2/6, 1), (3/6, a2 ), (4/6, 1), 
(5/6, a3 ) and (1, 1) in this order as shown in Figure 4 (a). Here a 1 , a 2 

and a 3 are assumed to satisfy the relation 0 < a 1 < a2 < a3 < 1. Re­
lated to the profile of a( x), the sequence {xi} is given as follows; x0 = 0, 
x 1 = 1/6, x2 = 3/6, x3 = 5/6 and x4 = 1. We take the initial data with 
h1 ( 0) = h2 ( 0) as shown in Figure 4 (b), and the global minimizer of cp 
defined by (2.5) is indicated in Figure 4 (c). The problem is whether the 
plateau (x1 ,x3 ) x {h1 (0)} is broken or not during the transition from 
the initial state to the final. 

We present two simulations in Figure 5 by taking b(x) = 1. If ai's 
are selected so that the point (x2 , a 2 ) locates above the line segment 
connecting ( x1 , a 1 ) and ( x 3 , a3 ), the plateau is kept unbroken as indi­
cated in Figure 5 (c). If it locates below, the plateau splits into the two 
plateaus as shown in Figure 5 (d). These results assures the validity of 
the convexity check stated in Remark 8. 

However, the convexity check does not always give the right an­
swer if b(x) is not constant. For example, define a(x) by connecting 
(0, 1), (1/6, 0.2), (2/6, 1), (3/6, 0.401), (4/6, 0.6), (5/6, 0.6) and (1, 1) 
(Figure 6 (a) and (b)) and take the same initial data as the one in 
the previous simulation. According to the convexity check, the plateau 
should not split as long as b( x) = 1 is adopted as is shown in Figure 6 (c). 
On the other hand, the condition ( ci) is violated on the interval ( Xl' X3) 
for x = x2 if b(x) = a(x) is assumed. Therefore the plateau must be 
broken, which is also confirmed in Figure 6 (d). 

We present one more example with b(x) = 1 and a(x) given in 
Figure 7 (a), and see what will happen to the big plateau (consists of 
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a(x) 

uo(x) 

1 2 

0 
xo X1 x2 xs 

(a) (b) 

1 2 3 

0 
X2 

(c) 

Fig. 4. (a) Piecewise linear profile of a(x) with the three 
local minima. (b) Initial data u0 ( x) given 
by ho(O) = 0.0, h1 (0) = h2(0) = 0.2 and 
h3 (0) = 1.0. (c) The final state (global mini­
mizer). Small numbers on each segment indicate 
the index i of hi(t). 
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3 

X4 

seven segments) of the initial data (Figure 7 (b)). Graphical checking 
tells us that the plateau will be broken into four pieces, and it is actually 
observed in the simulation as shown in Figure 7 (c) and (d). 

§4. Formation of jumps 

We consider (3.1) with b = 1, i.e., 

(4.1) 
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a(x) a(x) 
1 1 

0 
(a) 

1 0 
(b) 

1 

0 0 
0 1---------- t 0 1---------- t 

(c) (d) 

Fig. 5. (a) The function a(x) is given by a1 = 0.2, a2 = 
0.42 and a3 = 0.6, and b(x) = 1. (b) The 
function a(x) is given by a1 = 0.2, a2 = 0.38 and 
a3 = 0.6, and b(x) = 1. (c) Time evolution of 
all the segments for a(x) given in (a) and b(x) = 
1. (d) Time evolution of all the segments for 
a(x) given in (b) and b(x) = 1. 

with initial data uo and the boundary condition ulan= uolan, where n 
is ·a bounded open interval. The regularity property of solutions of ( 4.1) 
is different from that for Ut = 8.,(a(x)u.,). For example, for the latter 
equation if a(x) is Holder continuous on 0 (and a> 0 on 0) then solution 
u is 0 2 in x and 0 1 in time. For the problem ( 4.1) a jump discontinuity 
of solutions may be formed instanteneously. We give such an example 
and discuss other properties of solutions. 
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a(x) 
1 

0 
(a) 

1 

3 1+2+3 
1~----------~-----

a(x) 
1 

0 
(b) 

0 

1 

0 
0 1----------- t 0 ~-------- t 

(c) (d) 

Fig. 6. (a) The point (x2, a2) is slightly above the 
line segment connecting (x1, a1) and (x3, a3) al­
though it is hard to judge by the figure. (b) 
Exactly the same graph with (a). (c) Time 
evolution of all the segments for a(x) given in 
(a) and b(x) = 1. (d) Time evolution of all the 
segments for a(x) given in (b) and b(x) = a(x). 
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Example 4.1. Assume that a(x) = ao + lxl, X En= (-1,1), 
a0 > 0. If u0 (x) = x, then the solution u of the initial-boundary value 
problem for (4.1) is ofform 

( ) {
min{1, x + t}, x > 0, 

u x,t = 
max{ -1, x- t}, x < 0. 

Evidently, u(x, t) has a jump at x = 0 for t > 0. Moreover, u(x, t) 
becomes the global minimizer sgn x of energy cp at t = 1 and u(x, t) = 
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0 1 

hi 
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a(x) 

Uo(x) 

" 
1 2 3 4 5 6 

,'' 
: ' ' ' '' ' 

... ~ ... ' ' ,' ' ' 
' : ' ',' ' ,, -- ' 0 ' ', ; ; ' ' 

2 3 4 5 6 7 8 
(a) (b) 

5+6+7+8 

u(x, t) 

3+4 

(c) (d) 

Fig. 7. (a) The sequence {xi} is given by xo = 0, Xi = 
(i- 1/2)/8 (i = 1, ... , 8), x9 = 1 and ai's are 
appropriately chosen. (b) Initial data given by 
ho(O) = 0, h1(0) = · · · = h7(0) = 1/2, h8 (0) = 
1. (c) Time evolution of all the segments for 
a(x) given in (a) and b(x) = 1. (d) Snapshot 
of u(x, t) for t = 0.21. 

8 -

7 

X 

8 

X 

sgn x for t :;:::: 1. For general initial data u0 the convergence property to 
the global minimizer for given initial data holds if uo( -1) =/= u0 ( +1) as 
stated below. 

Theorem. Assume that a(x) = ao + lxl, X En= (-1, 1), ao > 0. 
Assume that uo E BV(O) with uo(-1) =/= uo(+1). Then the solution 
u of the initial-boundary value problem for (4.1) with ult=O = uo and 
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ulan = uolan converges to 

in a finite time. 

U(x) = {uo( +1), x > 0, 
uo(-1), x < 0 
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Proof. By symmetry we may assume that u0 ( -1) < u0 ( + 1). We 
may assume that u0 (-1) = -1, u0 (+1) = 1 so that U(x) = sgnx by 
adding and multiplying a constant to u. By assumption u0 is bounded, 
i.e., there is a positive constant M > 1 such that lu0 (x)l :::; M for all 
X E n. We note that 

( ) {
max{M- (1 + ao)t, 1}, 

v x,t = M 1 
max{M- (1 + ao)t + ao(t- 1+-;;:o)+, -1 }, 

0 <X< 1, 

-1 <X< 0 

is the solution of the initial-boundary value problem for (3.1) with the 
boundary condition u(±1, t) = ±1 and initial condition ult=O = M. 
This can be proved as in §3.2 if we pay attention that v has a jump at 
x = ±1. (The solution v is a typical example that the initial data is 
incompatible with the boundary condition.) Thus we see u(x, t):::; U(x) 
in a finite time by the comparison principle. Here P+ = max(p, 0). A 
symmetric argument implies u(x, t) ;::: U(x) in a finite time. Q.E.D. 

Example 4.2. Assume that a(x) = a(-x) > 0, x E (-1, 1) and 
that a is Lipschitz continuous. Assume that a is C1 and nondecreasing 
in x for x > 0. If u0 (x) = x, then the solution u of the initial-boundary 
value problem for (4.1) is of the form 

u(x t) _ {min{1,x+ (~~(x))t}, 
' - max{ -1,x + (:(x))t}, 

X> 0, 

x<O 

which generalizes Example 4.1. If a is C 1 at the origin, u(x, t) stays 
continuous fort;::: 0 since dajdx---+ 0 as x---+ 0. It tends to U(x) in the 
preceeding theorem as t---+ oo, but u(x, t) ;f:. U(x) for any finite t. It is 
possible to prove a convergence result to U(x) as t ---+ oo for a general 
initial data with u0 ( -1) i= uo ( + 1) under suitable assumptions on a, 
however, we do not state it here. Instead, we present several numerical 
calculations. 

The simulation of Example 4.1 is indicated in Figure 8, and Figure 9 
corresponds to Example 4.2 with a(x) = ao + x 2 • In both cases, the 
numerical solutions approximate the exact solutions given above quite 
well. 
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Note added in the proof. In a recent preprint "The Dirichlet 
problem for the total variation flow" by F. Andreu, C. Ballester, 
V. Caselles and J. M. Mazon £ 1 framework for (2.7) with a = b = 1 
is established instead of £ 2 framework given in this paper. 

The authors are grateful to Professor Naoyuki Ishimura for valuable 
comments. 

u u 

a(x) 

~---------+~--------~X 
0 

t = 0.0 

u u 

~---------+----------~X 

t= 0.5 t = 1.0 

Fig. 8. Simulation of Example 4.1 with a(x) = 0.2+lxl, 
b(x) = 1 and uo(x) = x. Discontinuity appears 
instantaneously and the solution reaches to the 
final state in a finite time. 



Very Singular Diffusion Equations 

u u 

~--------~0--------~x 

t = 0.0 

u 

t = 0.5 t = 1.0 

Fig. 9. Simulation of Example 4.2 with a(x) = 0.2 + x2 , 

b( x) = 1 and u0 ( x) = x. Discontinuity never 
appears and the solution converges to the final 
state while it doesn't reach the final state in a 
finite time. 
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