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Floer Homology and Gromov-Witten Invariant 
over Integer of General Symplectic Manifolds 

-Summary-

Kenji Fukaya1 and Kaoru Ono2 

Abstract. 

In this article we give a summary of an improvement our earier 
result [F02] on Arnold's conjecture about the number of periodic 
orbits of periodic Hamiltonian system. In [F02], we gave an esti
mate in terms of Betti numbers. In this article, we include torsion 
coefficients. We also define an "integer part" of the Gromov-Witten 
invariant. 

§1. Introduction 

Let ( X 2n, w) be a compact symplectic manifold and h : X X 8 1 ----+ lR 
be a smooth function. We put ht(x) = h(x, t). Let Vh. be the Hamil
tonian vector field generated by ht. Let ~t : X ----+ X be the family of 
symplectic diffeomorphisms such that 

d~t 
dt = vh. o ~t, ~o = id. 

We assume that the graph Graph(~1 ) of ~1 C X x X is transversal to 
the diagonal ~X· The intersection ~X n Graph(~I) can be identified 
with the fixed point set Fix(~1 ) of ~1 . Our main result is an estimate 
of the order of Fix(~ 1 ) in terms of the Betti numbers and the torsion 
coefficients of X. 

We define the universal Novikov ring A by 
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Here T is a formal parameter. We remark that the modulo 2 Conley
Zehnder index f-L of elements of Fix( <I> 1 ) is well-defined (see [F]). We put 
(for i E Z2), 

A[p]. 

The main result explained in this article is the following theorem, which 
is a version of Arnold's conjecture [A1], [A2]. 

Theorem 1. There exist homomorphisms ai 
CFi_ 1 (X, h) such that aiai+l = 0 and 

(1) L Hk(M; Z) 18lz A. 
i=k mod 2 

Remark 1. If we replace Z by Q, Theorem 1 was proved by 
Fukaya-Ono [F01, 2], Liu-Tian [LT], Ruan [R]. In case when X is semi
positive, Theorem 1 was proved by Hofer-Salamon [HS] and Ono [0]. 
(They are generalizations of celebrated results by Conley-Zehnder [CZ] 
and Floer [F].) 

In this article, we show an outline of a proof of Theorem 1. The 
detail will appear elsewhere. 

§2. A brief review of Floer homology and negative multiple 
cover problem 

It is known to experts that, if one can define the fundamental chain 
over Z of the moduli space ofpseudoholomorphic curves with appropriate 
properties, then we can prove Theorem 1. We first explain it briefly. Let 
Jx be an almost complex structure on X compatible with w. We put 

Orb(h) = { £: S 1 ~xI ~! = vh,(£(t))} 

We can identify Orb(h) with Fix(<I>I). For £1 ,£2 E Orb(h), we put 
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IR acts on M(f\,.€2) by the translation along lR factor. Let M(.C1,.C2) be 

the quotient space. For tp E M(.Cb£2), we define its energy by 

We put 
M(.Cl,.€2; E)= {tp E M(.Cl,£2) I Eh('f!) = E}. 

Gromov's compactness theorem [G] implies that M(£1 , .€2 ; E) is non
empty only for E = E1, E2, ... such that 0 = E1 < E2 < E3 < · · ·, 
lim Ei ---+ oo. 

The virtual dimension of M(£1 , .€2 ; E) depends on the component. 
Let M(.€1, .€2; E; k) be the union of the components of virtual dimension 
k. 

Suppose we have a "perturbation" of M(.C1,.C2;E;k) fork= 0,1 
with the following properties. 

(2.1) M(£1 , .€2 ; E; 0) consists of finitely many points. Each point tp of 
M(.C1,.C2;E;O) is given an orientation E'P = ±1. 
(2.2) M(£1 , .€2 ; E; 1) can be compactified to an oriented one dimen
sional manifold whose boundary is 

u UM(.Cl,.e3;E';O) X M(.C3,.e2;E11 ;0). 
E'+E"=E £3 

We then put 

Rz [<p]EM(£,,£z;O;E,) 

(2.1) implies that the coefficient of the right hand side belongs to A. 
Then (2.2) implies 88 = 0. We need some more properties to show the 
isomorphism (1). We omit the discussion about it in this article. 

There is a trouble to find a perturbed moduli space satisfying (2.1) 
and (2.2). The main problem is the equivariant transversality at infinity, 
which we recall very briefly here. (A bit more detailed summary is in 
the introduction of [F02].) 

Let us consider a divergent sequence 'Pi E M(.€1, .€2; E; 1). One pos
sibility of its "limit" is an element of M(£1, .€3; E'; 0) X M(.€3, .€2; E"; 0). 
This is the component of the boundary of a compactification of 
M(.€1, .€2; E; 1) described in (2.2). However there is another possibility. 
Namelytpimay "converege" toamaptp~('lj;o1r). Heretp E M(.C1,.C2;E';*), 
'lj; : S2 ---+ M is a pseudoholomorphic map, and 7r : S 2 ---+ S2 is a degree 
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k holomorphic map. (E = E' + k([S2] n cp*w).) We assume also that 
'1j;(S2 ) intersects with the image of cp. U denotes the connected sum. The 
trouble is especially serious in the case when cpU('I/J ow) has a nontrivial 
symmetry. If moreover c1 (M) n 'lj;(S2 ) is negative, we find that there 
is no perturbation, in the usual sense, to make cpU('I/J ow) transversal. 
This trouble is called the negative multiple cover problem. We stud
ied it in [F02], where we used a multi valued perturbation and hence 
we worked over rational coefficient. The purpose of this article is to ex
plain an outline of a way to overcome this trouble without using rational 
coefficient. 

§3. Period-doubling bifurcation and Stiefel-Whitney class 

Let us describe a toy model which shows how the rational coefficient 
occurs in a natural way. In this toy model, we consider a moduli space 
of maps 8 1 ----> Y in place of ~2 ----> X. Let Y be the Mobius band 
IR X [0, 1]/rv where (x, 1) = (fe(x), 0) and fe(x) is a diffeomorphism of IR 
such that fe(x) = -(1+t:)x+x3 in a neighborhood ofO. We consider the 
vector field V. = 8j8y. (Here y is the coordinate of the second factor.) 
Let Me(2) be the moduli space of the solutions of 

dR 
-=V. dt 

whose homology class is 2 times the generator of H1 (Y;Z) ~ Z. Me(2) 
can be identified with the fixed point set of !e 0 !e divided by the z2 

action induced by fe on it. Since 

in a neighborhood of 0, it follows that the fixed point set of fe o fe consists 
of one point forE< 0 and of 3 points forE> 0. Taking into acount Z2 
action, we find that Me(2) consists of one point with multiplicity -1/2 
forE < 0, and of two points with multiplicity -1, +1/2, respectively, 
for E > 0. Hence the total multiplicity is preserved. (Namely -1/2 = 
-1 + 1/2.) At first sight, it seems impossible to keep this independence 
of total multiplicity without introducing rational coefficient. 

This phenomenon is called the period-doubling bifurcation and is 
famous in the study of dynamical system. (Taubes [T] also discussed it 
in the context of pseudohomolomorhpic tori in 4 manifolds.) Moreover 
period-doubling bifurcation can occur repeatedly and multiplicity will 
become 2-m. 
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There is also a similar bifurcation related to cyclic groups of order 2 
3. We will discuss it later in §5. 

Let us now go back to our problem. First we compactify M(£1 ,£2; 
E; k) by adding isomorphism classes of maps from singular Rieman sur
faces. (See [F02, §19], where it is called stable connecting orbits.) We 
denote by CM(£1 , £2; E; k) the compactification. Now the main technical 
result established in [F02] is: 

Theorem 2 ([F02, Theorem 19.14]). CM(£1 , £2; E; k) has Kura
nishi structure with corners. 

The precise definition of Kuranishi structure is in [F02, §5]. We 
birefl.y recall it here for reader's convenience. CM(£1 , £2; E; k) is said to 
have a Kuranishi structure if, for each x E CM(£1 , £2; E; k), there exists 
an open subset Ux E JRffix) a finite group r X (the group of automorphisms 
of x) such that r x acts on U x and the action is linear. 

We also assume that there exist a r x module Ex and a r x equivariant 
map Sx : Ux --->Ex, such that 

s;;;- 1 (0)/f x ~a neighborhood of x in CM(£1 , £2; E; k). 

We need to assume various compatibility conditions for these deta, which 
are omitted here. We call Ux the Kuranishi neighborhood, Ex the ob
struction bundle and Sx the Kuranishi map. 

The idea in [F02] to find a Q chain is to perturb sx by using mul
tivalued perturbation. This method does not work for the purpose of 
this article. So we first try to go as much as single valued perturbation 
goes. We then obtain the following Proposition 1. To state it we need 
some notations. Lets~ be a (single valued) perturbation of sx satisfying 
appropriate compatibility conditions. (See [FO, §6].) We put 



80 K. Fukaya and K. Ono 

We write it CM' in case no confusion can occur. Let G be a finite group. 
We put 

CM'(G) = {x E CM' I rx ~ G}, 

Q(G) = U rx. 
xECM'(a) 

Q(G) is a local system on CM'(G). 

Proposition 1. The following holds for generic s~. 

(3.1) CM'(G) is a smooth manifold with corners. 
(3.2) There exists two vector bundles £1 (G), £2 (G) on CM'(G). Q(G) 
acts on them. There exists also a Q(G) equivariant bundle map sa : 
£1 (G) ---+ £2 (G) between them. (sa may not be linear in general.) 
(3.3) Let x E CM'(G) and £1,x(G), £z,x(G) be fibers. We regard them 
as G vector spaces. Then they do not contain trivial component. (Note 
that this condition implies that sa sends zero section to zero section.) 
(3.4) The intersection of s(?(O)jQ(G) and a neighborhood of zero sec
tion in £1 (G) is identified to a neighborhood of CM' (G) in CM'. 
(3.5) Moreover, for each x E CM'(G), its Kuranishi neighborhood Ux 
is identified to a neighborhood of x in £1 (G). The obstruction bundle is 
isomorphic to £2 (G) and the K uranishi map is identified to the restric
tion of sa to Ux. 

The proof will be given in [F03]. Hereafter we write CM(G) etc. in 
place of CM' (G) etc. 

Remark 2. We remark that, to show Proposition 1, we need to 
use abstract perturbation. In fact, the conclusion of Proposition 1 is 
not satisfied by any perturbation of the almost complex structure of M. 
The reason is that, if we perturb only almost complex structure, then 
multiple covered spheres may not be made transversal even in the case 
when its automorphism group is trivial. 

Note the condition that the peudoholomorphic sphere is somewhere 
injective in the sense of McDuff [M] is related to but is different from 
the condition that pseudoholomorphic sphere does not have nontrivial 
symmetry. 

We are going to show how we use Proposition 1 to avoid period
doubling bifurcations. 

To clarify the idea, we first consider the simplest case. Namely we 
assume that CM(G) is nonempty only for G = 1 or G = 1::2 • We put 
CM(1) = N, CM(Zz) = M. 
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We first remark that (3.3) of Proposition 1 implies that £1(1), £2(1) 
are trivial. Namely N is transversal. In other words, the actual di
mension of N is equal to its virtual dimension. On the other hand, the 
dimension of M can be higher than that. 

We have z2 vector bundles E1(Z2), E2(Z2) over M and Sz2: E1(Z2) ----t 

E2(Z2). (The local system is trivial in this case.) We write £1, £2, s in 
place of E1(Z2), E2(Z2), Sz2 for simplicity. Note that the action of z2 on 
the fibers of £1, E2is x- 1. ((3.3) of Proposition 1.) Hence the leading 
term of Z2 equivariant map s : £1 ----t £2 is linear. So, by replaicing s, we 
may assume that s is linear in a neighborhood of 0 section. (This is not 
the case when the group G is more complicated.) We put 

(4) 3 = { x E M I Sx : E1x ----t E2x is not injective}. 

By definition, it is easy to see that M n N = 3. Namely 3 is the set of 
points where period-doubling bifurcation occurs. 

We can prove the following lemma by an easy dimension counting. 

Lemma 1. 

codim 3 = rank £2 - rank £1 + 1. 

Note the virtual dimension of our moduli space is dimM +rank£1 -
rank £2. Therefore 

dimN = dimM + rank£1- rank£2 =dimS+ 1. 

It follows that dim oN = dim 3. In other words, N contains other 
boundary components than those stated in (2.2). 

To clarify the topological backgroud, we prove the following: 

Proposition 2. Let M be an oriented closed manifold, £1, £2 
be oriented vector bundles on it, and s : £1 ----t £2 be a generic bundle 
homomorphism. ( s is linear.) We assume that rank £2 -rank £1 is even. 
Define 3 by (4). Then we have the following: 

(5.1) 3 has an orientation and determines a cycle over Z. 
(5.2) The Poincare dual to [3] is 8y. Here 

8: Hk(M; Z2) -----+ Hk+ 1 (M; Z) 

is the Bockstein operator associated to the exact sequence 0 ----t Z ~ Z ----t 

Z2 ----t 0, andy is a polynomial of the Stiefel- Whitney classes of E1, £2. 

Proof. First we define an orientation of 3. We put 

B2 = {x EM I dimKersx;:::: 2}. 
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It is easy to see that dim 3 - dim 3 2 ~ 2. So it suffices to define an 
orientation only on 3- 3 2. (It is also easy to see that 3-3 2 is a smooth 
manifold for generics.) Let x E 3-32. Choose an orientation of Im Sx C 
£2,x· Take Vx C £1,x such that Sx : Vx ---+ Imsx is an isomorphism. 
(rankVx = rank£1,x- 1.) The orientation of Imsx induces one on 
Vx. This orientation together with the orientation on £1,x determine 
an orientation of one dimensional vector space £1,x/Vx. Let ex be .the 
oriented basis of the complement of £1,x in Vx. We extend Vx and ex to 
a neighborhood of x and denote it by Vande. Then s(e) determines a 
section e of the bundle £2/ s(V). It is easy to see that the intersection of 
3 and a neighborhood of xis -e-1(0). Since the orientations of V and £2 
determine the orientation of £2 /s(V), we obtain an orientation ofe-1 (0) 
and of 3 in a neighborhood of x. 

We remark that this orientation of 3 is independent of the orien
tation of Im sx we have chosen. In fact, if we change the orientation 
of Im Sx, then the orientation of V will be reversed. Hence we need to 
replace e by -e. On the other hand, the orientation of £2/ s(V) also 
will be reversed. Therefore, the orientation on (-e)-1 (0) = 3 does not 
change. 

It follows that we obtain a global orientation of 3- 3 2. 
Next we show the property (5.2). We choose a generic section t of 

£2. It induces a section t of £2/s(£1 ). We remark that £2/s(£1 ) is a 
vector bundle on M - 3. We put 

Let Y be its closure in M. Since £2/ s(£1 ) is oriented, it follows that Y 
is oriented. 

Lemma 2. Y is a Z chain and satisfies 8Y = 23. 

Proof. Let x E 3- 3 2. Let U be an neighborhood of x. We 
choose Vx, V, ex and e as before. We then obtain an isomorphism 
£2/s(V)Isnu ~ N:;;:M. (Here N denotes the normal bundle.) Hence the 
restriction of £2/s(£1 ) ~ (£2/s(V))/e to 8N3 M is isomorphic to the 
fiberwise tangent bundle of 8NsM---+ 3. The fiber is sranke2-ranke1. 

Hence the Euler number of the fiber is 2. (Here we use the assumption 
that rank£2- rank£1 is even.) t induces a section of (£2 /s(V))fe. The 
induced section is close to constant on U. The lemma follows. 

Lemma 2 implies that [Y] is a Z2 cycle and that [3] is a Bockstein 
image of [Y]. The proof of Proposition 2 is complete. 
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The following figure illustrates the relation of Lemma 2 to the peri
od-doubling bifurcation. We remark that t is not Z2 equivariant. Hence 

it is a multisection in the sense of [F02]. Therefore r\o) has the 

multiplicity 1/2. r 1 (0)/2 + N is the Q cycle constructed in [F02]. 

The orientation of r 1 (0) changes at the point where N intersect with 

it. Hence r 1 (0)/2 + N becomes a Q cycle in a similar way as the toy 
model we discussed before. 

Figure 2. 

§4. Normally complex linear perturbation 

Proposition 2 suggests, to avoid period-doubling bifurcation, we 
need to lift Z2 characteristic classes to a class defined over Z. This 
is impossible for general oriented vector bundle. However, for complex 
vector bundle, any Z2 characteristic class can be lifted to a class defined 
over Z in a canonical way, since the cohomology group of complex Grass
mannian is torsion free. In fact, we need to perform the construction 
in the chain level in order to define Floer homology. (Compare [F02, 
§20].) For this purpose, we proceed as follows. 

Let £1 , £2 --+ M be complex vector bundles on an oriented manifold 
M. (We do not need to assume that M has a complex structure.) Let 
s : £1 --+ £2 be a generic complex linear bundle homomorphism. We put 

3 = { x E M I Bx : £1,x --+ £2,x is not injective}. 



84 K. Fukaya and K. Ono 

Lemma 3. 

The proof is a simple dimension counting. We remark that the right 
hand side of Lemma 3 is the right hand side of Lemma 1 plus 1. This is 
a good news. 

Now we go back to the Kuranishi structure of Theorerm 2. 

Proposition 3. [£1 (G)J- [£2 (G)] E KO(CM(G)) is in the image 
of K(CM(G)). 

We proved in [F02, §16] that Kuranishi structure on the mod
uli space of stable pseudoholomorphic maps is stably almost complex. 
(See [F02, §5] for the definition of stably almost complexity.) In case of 
the moduli space of stable connecting orbits, the same is true. (We can 
reduce its proof to the case of closed Rieman surface. We will discuss it 
in [F03].) Proposition 3 is a consequence of this fact. 

Proposition 3 implies that there exists a vector bundle :F over CM (G) 
such that £1 (G) EB :F and £2 (G) EB :F are complex vector bundles. In fact, 
we can choose :F so that if x = [~, <p] E CM(G), then the fiber Fx is 
a subspace of r(~, <p*TX Q9 A0 • 1 (~)). So the construction of Kuranishi 
structure in [F02] implies that we may change it such that £1 (G), £2 (G) 
will become complex vector bundles for the new Kuranishi structure. 

Now we modify sin a neighborhood of 0 section so that it is complex 
linear there. (We can not change s outside a neighborhood of 0 section, 
because we need to modify s so that its zero point sets can be patched 
with N.) 

We remark that the modified s is also Z2 equivariant. The following 
lemma then is an immediate consequence of Lemma 3. 

Lemma 4. We assume that the virtual dimension of CM is 0 
or 1. We modify s so that it is complex linear in a neighborhood of 0 
section. Then 3 is empty. 

It follows from Lemma 4 that 

NnM=0. 

We will write N(1!~,1!2;k;E), M(1!1,1!2;k;E) in place of N, M, in case 
they are components of CM(I!~, 1!2 ; k; E). We then have 
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Here the left hand side is the fundamental chain of CM(£1, £2; 0; E) 
(which is a rational number) in the sense of Kuranishi structure. H in 
the right hand side is the order counted with sign. e(£2(Z2)/s(£1(Z2)) 
is the Euler class of the bundle. In fact, it is not precise to use this 
notation, since M(£1, £2; 0; E) may have a boundary. So, to be precise, 
by using generic section t of £2(Z2)/s(£1(Z2)), we obtain 

We recall that the boundary operator we defined in [F02, §20] is 

aold[£1] = L HCM(.el, .e2; 0; E)TE[.e2]· 
£2,E 

The coefficient in the right hand side is in A ® Q. We define our new 
boundary operator by 

anew[.e1] = L !W(£1, .e2; 0; E)TE[.e2]· 
£2,E 

By applying Lemma 4 to N(£1, £2; 1; E), we can prove anew anew= 0. 
We thus explained the definition of the boundary operator in the 

case when CM(G) is nonempty only for G = 1, Z2. 
The following figure shows how the moduli space in Figure 1 will be 

modified. 
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§5. Another example of bifurcation in the case of cyclic group 

Before discussing the case when the group G is general, we mention 
another example of bifurcation. We consider the case when CM(G) 
is empty unless G = 1, Z3. We put N = CM(1), M = CM(Z3). 
Let dimN = virdimCM = 1, and M = [0, 1]. Let us assume that 
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th(Z3) = £2(1.:3) = M X c. We suppose also that the generator of z3 
acts by x exp(47rH/3) on £1(Z3), and by x exp(27rH/3) on £2(Z3). 
LetT be the coordinate of M. We consider s7 : C-+ C such that 

{ z, 
S7 (z) = 2 

z ' 

T=O, 

T = 1. 

if z is in a neighborhood of 0 and s7 (z) = z 2 if lzl > 1. S 7 determines a 
Z3-equivariant maps: £1(Z3)-+ £2(Z3). A neighborhood of Min CM 
is identified with 

{(z, T) I sr(z) = O}/Z3. 

It is easyto see that this moduli space is described as in Figure 4 below. 

+1 

1 
3 

Figure 4. 
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From this example, it is easy to see that, in the case when the group 
G is not Z2 , we may not be able to take s so that it is complex linear in 
a neighborhood of zero section. 

We also remark that, if we take s to be generic, then z 1--t cZ is 
the leading term. However we insist s to be holomorphic (or complex 
polynomial) at each fiber. For example, in this particular case, we take 
z 1--t cz2 • 

§6. The general case 

We now go back to the study of CM. The proof of the general case 
is based on the following Proposition 4. We need some notations. Let 
M be a manifold and g be a local system of finite group. Let £1, £2 be 
complex vector bundles on which g acts. We assume (3.3). We assume 
moreover that the action of g on £1 is effective. Let D be a sufficiently 
large integer. 

Proposition 4. Let s : £1 -+ £2 be a smooth bundle map such 
that Sx : £1x -+ t'2x is a (complex) polynomial map of degree ::; D for 
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each x E M at a neighborhood is 0 section. We assume that s is generic 
among such maps. We put 

N={vE£1Is(v)=O,Iv={l}}. 

(Here Iv = {g E 9x I gv = v}, v E 9x.) Then we have 

dim(N- N) s dimM + rank£1 - rank£2 - 2. 

Sketch of the proof. Let V1 = E1x, 1:2 = E2 x be fibers. Let 
Polyg(V1, V2) be the set of all G-equivariant polynomial maps P: V1 --+ 

V2 of degrees D. There is an evaluation map ev: Polyg(V1, V2) x V1 --+ 

1:2. We put 

v1free = {v E v1 I Iv = {1}}, 

y = ev-1(0) n (Polyg("Vj_, V2) X V1jree)· 

Lemma 5. If the action of G on V1 is effective, then, for suffi
ciently large D, the space Y is a smooth manifold of dimension 

In other words, ev is a submersion on Polyg(v1, V2) X v1free· 

Lemma 5 follows easily from the following sublemma: 

Sublemma. Let p E V1 and wE V2 . We assume Ip = {1}. Then 
there exists a G equivariant polynomial map P : V1 --+ V2 such that 
P(p) = w. 

Proof. We may assume that V2 is an irreducible G module. We 
put 

W= ffiC[I']· 
-yEG 

and define a G action on it by 

Since W is a regular representation of G, there exists a surjective G 
linear map \ll: w--+ v2. We choose W-y E c such that: 
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Since Ip = {1}, there exists a (CC valued) polynomial f on V1 such 

f('yp) = W-y 

for each '"'( E G. We put 

It is straightforward to see that P has the required property1. 

We put X= Y- Y. The space X is an algebraic variety. We have: 

dime X ::; dime V1 + dime Poly2_? (V1, V2) - dime V2 - .1. 

Two bundles £1,£2 ----+ M induce a bundle Poly2_?(£1,£2) ----+ M whose 

fiber is Poly2_?(V1, V2 ). We also have a bundle X----+ M whose fiber is X. 
The projection X c Poly2_?(v1, V2) X v1free----+ Poly2_?(v1, V2) induces a 
bundle map 

n: X-----+ Poly2_?(£1,£2). 

Since X is an algebraic variety, it has simplicial decomposition. Using it 
we can find a section s : M ----+ Poly2_? ( £1, £2) which is of general position 
to n(X). It follows that 

dimiR { x E M I s( x) E n( X)} ::; rank!R £1 + dimiR M - rankiR £2 - 2. 

(Note that dimension and rank here are real dimension and real rank.) 
s induces a bundle map s : £1 ----+ £2 which is a polynomial map on each 
fibers. It is easy to see that 

{x EM I s(x) E n(X)} c::: N- N. 

Proposition 4 follows. 

We apply Proposition 4 to £1(G), £2(G), CM(G). We remark that 
rank£1 + dimM- rank£2 is the virtual dimension of CM. We modify 

10ur first idea of the proof of Theorem 1 was to show Lemma 5 under ad
ditional assumption that G is abelian, and then use resolution of singularity 
to reduce the general case to this case. After Theorem 1 had been anounced 
by the first named author in several conferences, we realized that there is a 
simpler argument (which we gave above) without using resolution of singular
ity. We thank Prof. Hambleton who suggested that Proposition 4 may hold 
without assuming G to be abelian. 
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sa : £1 (G) -+ £2 (G), so that it will be the bundle map constructed by 
Proposition 4 in a neighborhood of 0 section. Then it is easy to see that 
N /9( G) is identified with the intersection of CM(1) and a neighborhood 
of CM(G). Therefore, Proposition 4 implies 

(6) 

for G =f. 1. (Note dim!R CM(1) is equal to the virtual dimension of CM.) 
We modify sa by an induction of the stratum so that (6) is satisfied. 
Now let us consider the case when the virtual dimension of CM is 0 

or 1. Then (6) means that CM(1) is compact. Hence using it in place 
of CM, we obtain a such that 8 2 = 0. This is an outline of the proof of 
Theorem 1. 

§7. Gromov-Witten invariant 

Our construction in this article can be applied to the moduli space of 
marked stable maps also. Then we obtain a homology class defined over 
integer. The result can be summarized as in Theorem 3 below. Let X 
be an 2n-dimensional compact symplectic manifold and f3 E H 2(X; Z). 
Let 

GWg,m(X;/3) E H2m+2,Bc1+2(3-n)(g-l)(CMg,m X xm;Q) 

be the Gromov-Witten invariant. (Here g is the genus m is the number 
of marked point. CM9 ,m is the Deligne-Mumford compactification of 
the moduli space of stable curves.) (See [F02, §17] for a definition of 
Gromov-Witten invariant.) 

Theorem 3. There exists a decomposition 

GWg,m(X; (3) = GWg,m(X; f3)simple + GWg,m(X; f3)multiple 

with the following properties. 

(1) GW9 ,m(X;f3)simple is a homology class defined over integer. 
(2) GW9 ,m(X; f3)simple is invariant of the deformation of X (as far as 
it is smooth). 
(3) GWo,3(X; f3)simple defines an associative product on H*(X; A). 

Some of the other axioms by Kontsevich-Manin [KM] (see also [F02, 
§23]) may hold for GW9 ,m(X; f3)simple· The authors did not check yet 
which holds and which does not hold. 
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Problem. Are there any universal formula to calculate 
GW9 ,m(X; .B) multiple in terms of GWg',m'(X; ,B')simple with g'::; g, m'::; 
m? 

We remark that such a formula is known in the case when X is a 
Calabi-Yau 3 fold and g = 0. (See (MaJ.) 

Our method of this article can be used also in the case of moduli 
space of pseudoholomorphic disks. Combined with (FK03], it gives ap
plications to the problem of Lagrangian intersection. We will discuss it 
later in (F03]. 
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