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Riemann-Finsler surfaces 

Sorin V. Sabau and Hideo Shimada 

Dedicated to the memory of Professor Makoto Matsumoto 

Abstract. 

This paper study the Gauss-Bonnet theorem for Finsler surfaces 
with smooth boundary. This is a natural generalization of the Gauss
Bonnet theorem for Riemannian surfaces with smooth boundary as well 
as an extension of the Gauss-Bonnet theorem for boundaryless Finsler 
surfaces. The paper starts with an introduction in the Finsler geometry 
of surfaces with emphasis on the Berwald and Landsberg surfaces. 

§1. Introduction 

Riemann-Finsler geometry is a domain of modern differential geom
etry that cannot be ignored by anyone who wants to have a complete 
picture of the geometrical properties of a differentiable manifold. 

Regarding Riemannian geometry as a particular case of a more gen
eral geometry, namely Riemann-Finsler geometry, we might expect to 
generalize many results from Riemannian geometry to the more general 
case of a Finsler metric. 

One of the most important topics in Riemannian geometry is the 
study of the relation between the curvature of the Riemannian metric 
and the topology of the manifold. This is mainly achieved through the 
well-known Gauss-Bonnet-Chern theorem. The theorem and its conse
quences are especially interesting in the case of Riemannian surfaces (see 
[SST2003] for a comprehensive exposition). 

The Gauss-Bonnet theorem was extended by D. Bao and S. S. Chern 
to the case ofboundaryless Finslerian manifolds ({BC1996]). For the case 
of Landsberg surfaces the Gauss-Bonnet theorem is stated in a particular 
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form that can be regarded as a direct generalization to the Finslerian 
case of the Riemannian classical result. 

However, as far as we know, there are no attempts to prove the 
Gauss-Bonnet theorem for Finsler manifolds (in particular Finsler sur
faces) with boundary. 

The purpose of this paper is two-fold. First, we give a self-contained 
introduction of the geometry of Riemann-Finsler surfaces, and second, 
we prove the Gauss-Bonnet theorem for Landsberg surfaces with smooth 
boundary. Unfortunately we are not able yet to provide examples and 
applications of this theory because of the lack of examples of Landsberg 
surfaces that are not Berwald ones (see D. Bao's and Z. Shen's papers 
in this volume for a detailed discussion on this matter). 

The paper is organized as follows. We begin by recalling the basic 
properties of Minkowski planes in §2. We continue by discussing the 
Riemannian length of the indicatrix of a Minkowski norm in §3. Some 
essential differences between the Minkowskian and Euclidean cases are 
pointed out. The basics of Finsler surfaces are exposed in §4 and the 
Chern connection is described in §5. We present the special status of 
Landsberg and Berwald surfaces among other Finsler surfaces in §6. 

The following sections lead to the final aim of this paper: the Gauss
Bonnet theorem for Landsberg surfaces with smooth boundary. In §7 we 
study the geodesic curvature tensor and the signed curvature of a curve 
on a Finsler surface, and in §8 we prove the just announced theorem. 

§2. Minkowski planes 

Minkowski planes are one of the simplest Finslerian surfaces. They 
are at the same time generalizations of Riemannian planes. 

Definition 2.1. A Minkowski plane is the vector space R 2 en
dowed with a Minkowski norm. A Minkowski norm on R 2 is a non
negative real valued function 

F: R 2 ----> [0, oo) 

with the properties 

(1) F is coo on R2 = R 2 \ {0}, 
(2) 1-positive homogeneity: F(>..y) = >..F(y), '</)... > 0, y E R 2 , 

(3) strong convexity: the Hessian matrix 

(2.1) 

is positive definite on R 2 . 
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If F( -y) = F(y), or equivalently F(>.y) = 1>.1 · F(y), ).. E R, 
F is called reversible or absolute homogeneous. In this case the 
Minkowski norm is a norm in the sense of functional analysis. 

Remark 2.1. From the above definition it follows: 

(1) 
(2) 
(3) 

(4) 

F(y) > 0 for all y i= 0, 
F(y1 + Y2) ~ F(y1) + F(y2), for any Yb Y2 E R 2, 
the indicatrix S := {y E R 2 : F(y) = 1} is a closed, strictly 
convex, smooth curve around the origin y = 0, 

.aF 2 
wt ayi(y) ~ F(w), y ;j= 0, wE R , 

(see [BCS2000] for details.) 

Define now the Cartan tensor of a Minkowski norm by 

(2.2) 

It is obvious that F is Euclidean if and only if A = 0. 
The Minkowski norm F on R 2 induces a Riemannian metric g on 

the punctured plane R2 by 

(2.3) 

Remark that the Riemannian manifold (R2, g) is flat, i.e. the Gauss
ian curvature of g vanishes on R2. This is a peculiarity of the two di
mensional case (see [BCS2000]). 

The. outward pointing normal to the indicatrix is 

(2.4) 

Indeed, let us consider yi = yi(t) to be a unit speed parametrization 
of the indicatrix S. By derivation with respect to t of the formula 
9ij(y)yiyj = 1 one obtains 

where the dot notations means derivative with respect to t. 
In the following let us consider the indicatrix S as a Riemannian 

submanifold of the punctured Riemannian manifold ( R2, g), with the 
induced Riemannian metric h, and let y(t) = (y1(t), y2 (t)) be a unit 
speed (with respect to h) parametrization of S. 
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Suppose R2 is identified with (0, oo) x S by 

y 
y f-+ (F(y), F(y)). 

Then g admits the block decomposition 

g = dr 0 dr + r 2 h, 

where r = F(y) and his the induced Riemannian metric on S. 
The Cartan scalar I : R2 ---+ R is defined by 

(2.5) 
dyidyl dyk 

I(y) = Aijk(y)dtdtdt. 

The scalar I is also called the main scalar by some authors (see for 
example [M1986]). 

This definition extends to all R2 by requiring that I be constant 
along each ray that emanates from the origin of R 2 . 

Obviously, F is Euclidean if and only if I = 0. In other words, the 
Cartan scalar I "measures" the deviation of F from an Euclidean inner 
product. 

Indeed, every unit speed parametrization y(t) of the indicatrix (S, h) 
must satisfy the following ODE: 

(2.6) fj+IiJ+y=O, 

dy d2 y 
where y = dt' fj = dt2 ([R1959]). 

The volume form of the Riemannian metric g is 

(2.7) 

where ,j§ = J det(gij), and the induced Riemannian volume form on 
the submanifold S is 

(2.8) 

Along S the 1-form ds coincides with 

(2.9) 

The parameter e is called the Landsberg angle. 

Remark 2.2. (1) The formula ds = ,j§(y1y2 - y2 y1 )dt is 
valid as long as the underlying parametrization traces S out 
in a positive manner. 
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(2) The Riemannian length of the indicatrix is therefore defined 
by 

L :=is ds 

and it is typically NOT equal to 271" as in the case of Riemann
ian surfaces. This fact was remarked for the first time by M. 
Matsumoto [M1 986]. 

§3. The Riemannian Length of the lndicatrix 

Let us :.:?nsider again the Minkowski plane ( M, F) and the indicatrix 

S = {y E R 2 : F(y) = 1}, a closed convex curve in the plane. 
The Riemannian length of the indicatrix S is an integral where the 

integration domain also depends on F. One would like however to work 
with integrals over the standard unit circle 

(3.1) 

even with the price of a more complicated integrand. 
One has ([BCS2000]) 

Lemma 3.1. (Computational lemma) 
The indicatrix length in a Minkowski plane can be computed by 

(3.2) 

Indeed, the 1-form 

(3.3) 

is a closed 1-form on R 2 . By the use of Stokes' theorem one can easily 
see that integrating this overS and S 1 one obtains the same answer. 

Remark 3.1. A local straightforward computation shows that 

(3.4) 

in other words, the formula (3.2) means to meas~e the Riemannian arc 

length of the indicatrix, regarded as a curve in R 2 , by the Riemannian 
metric g (see [BCS2000] for details). 
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Example 1. ([BCS2000]) Consider a Randers- Minkowski norm 
of Numata's type 

on R 2 , where BE [0, 1) is a constant parameter. 
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Figure 1. The variation of Riemannian length of the indicatrix for 
the metric given in Example 1. 

Using polar coordinates 

y 1 = rcos<p, y2 = rsin<p, 

the polar equation of the indicatrix is 

1 
r - -:----::----, 

- 1 + Bcoscp' 

and the indicatrix length is given by the elliptic integral 

(3.5) 
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(2B 
where cp = 2J.L, and k := y I+B· 

We remark that for B = 0, i.e. an Euclidean norm, one obtains 
L = 27r, as expected. The result of numerical estimation of the integral 
in (3.5) gives the graph in Figure 1. 

One can see that unlike the Euclidean case, L increases to infinity 
when B approaches 1. 

Example 2: ([BS1994]). 
Consider the Minkowski norm 
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Figure 2. The variation of Riemannian length of the indicatrix for 
the metric given in Example 2. 
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2 

With the substitution u := y 1 one obtains the indicatrix length 
y 

(1 + u2) 3 3u2 
1 +.A + _A2 __ 11 (1 + u4)3/2 1 + u4 

L = 8 
0 

--'---------v'-:::==---du. 
1 + u 2 +.A 

The numerical integration results are presented in Figure 2. 
In this case L decreases from 2rr to v'3rr as .A increases from 0 to oo. 

Indeed, one can see that 

lim L = v'3rr. 
>.->oo 

§4. Finsler surfaces 

This section follows the exposition in [BCS2000]. 
Let us consider, in the following, Finsler metrics defined on an ori

entable surface M. Recall that a Finsler surface is the pair ( M, F) 
where F: TM-+ [O,oo) is coo on TM := TM\{0} and whose restric
tion to each tangent plane TxM is a Minkowski norm. 

For each x E M the quadratic form ds 2 := 9ij(x, y'J:!t_ Q9 dyi gives 

a Riemannian metric on the punctured tangent space TxM. Using the 
Finslerian fundamental function F we define the indicatrix bundle (or 
unit sphere bundle) IM := UxEMlxM, where lxM := {y E TxM : 
F(x,y) = 1}. Topologically, lxM is diffeomorphic with the Euclidean 
unit sphere 8 2 in R 3. Moreover, the above ds2 induces a Riemannian 
metric hx on each I;M. 

On the other hand, let SM := TM/ ,...., be the projective sphere 
bundle, where the equivalence relation ",....," is given by y ""' y' if and 
only if there exists .A> 0 such that y = .Ay'. The natural projection rr: 
S M -+ M pulls back the tangent bundle T M to a 2-dimensional vector 
bundle rr*TM over the 3-dimensional manifold SM. Local coordinates 
x 1 , x 2 on M induce global coordinates y 1 , y 2 on each fiber TxM by 

. a . . . 
y = y•-8 .. Therefore (x', y') is a coordinate system on SM (y' regarded 

x• 
as homogeneous coordinates). 

It is known ([BS1994]) that for each x E M, the canonical map 
i : lxM -+ BxM, y ~ [y] is a diffeomorphism, and i : (IxM, hx) -+ 

(BxM, ilx) is a Riemannian isometry, where ilx is the induced Riemannian 
metric on each projective sphere BxM. 

Let us also remark that since the Finslerian fundamental tensor 
9ij(x, y) is invariant under the rescaling y ~ .Ay, .A > 0, the inner 
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products in the fibers TxM are actually identical. This redundancy 
is removed by working with the pull-back bundle rr*TM over SM. 

yi 0 
Using the global section l := F(y) oxi of rr*T M, one can construct 

a positively oriented g-orthonormal frame { e1, e2 } for rr*T M, where g = 
9ij(x, y)dxi Q9 dxJ is the induced Riemannian metric on the fibers of 
rr*TM. 

Namely, 

1 (oF o oF o ) 1 o 2 o 
e1 := v'9 oy2 ox1 - oy1 ox2 = m ox1 + m ox2 ' 

y1 0 y2 0 0 0 
e2 := F ox1 + F ox2 = z1 ox1 + z2 ox2· 

(4.1) 

The frame { e1 , e2 } is a globally defined g-orthonormal frame field 
for rr*T M called the Berwald frame. There are authors who consider 
the frame (l, -m) as the Berwald frame [Ml986]. 

The corresponding dual coframe is 

(4.2) 
w1 = v'9(y2dx1 - y1dx2) = m 1dx1 + m2dx2 

F 
2 oF 1 oF 2 1 2 

w = oy1dx + oy2dx = hdx + l2dx . 

The sphere bundle S M is a 3-dimensional Riemannian manifold with 
the Sasaki (type) metric 

(4.3) 

where 

(4.4) 

{ 8 0} -Here, §xi'F oyi is a local adapted basis for T(TM), where 

(4.5) 
8 a . a 

·- NJ 
§xi .- axi- i oyJ' 

. §yi 
with the dual coframe {dx', y}, where 

(4.6) 
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The NJ are the local coefficients of the Finslerian nonlinear connection 
(for details see [BCS2000], [M1986]). 

a 
Remark 4.1. Remark that the above basis components F-a ., or 

y• 
oyi 
F are "adjusted" such that they become an 0-homogeneous vector 

field, and an 0-homogeneous 1-form, respectively. In other words, the 
adapted basis components are invariant under the action of y t-+ A.y, for 
any A.> 0. 

The globally defined orthonormal coframe {w1,w2 ,w3 } on SM has 
the dual 

A 1 ( aF 0 aF 0 ) 1 0 2 0 
e1 = ..;g ay2 ox1 - ay1 ox2 = m ox1 + m ox2 

(4.7) Y1 0 y2 0 0 0 
A z1 z2 
e2 = F ox1 + F ox2 = ox1 + ox2 

A F ( aF a aF a ) ( 1 a 2 a ) 
e3 = J9 ay2 ay1 - ay1 ay2 = F m ay1 + m ay2 . 

Remark 4.2. (1) (dF)(el) = (dF)(e2) = (dF)(e3 ) = o 
oF 

Indeed, from ~ = 0 (for a proof of this relation see for 
ux' 

example D. Bao's paper in the present volume) it follows dF = 

oF . aF . aF . 
~x' + ~a . y' = -a .oy'. Applying now this to e1 , e2, e3 the 
ux• y' y• 
result follows immediately. 

(2) The vector e3 is tangent to each indicatrix. 

(3) Using the indicatr.ix arc length form ds = :. (y 1dy2 - y2dy1) 

one sees that ds(e3) = -1, i.e. e3 points opposite to the direc
tion indicated as positive by ds. 

Remark 4.3. Remark that the orthonormal coframe {w1,w2,w3 } 

on SM can be completed to a g- orthonormal coframe {wl,w2 ,w3 ,w4 } 

on the 4-dimensional manifold TM, where 

oyi 
w4 = d(logF) =lip 

(see [M1986] or [BCS2000] for details.) 

Remark 4.4. Recall that on a Riemann-Finsler manifold, one have 
to deal with two kinds of metrics. This is easy to understand through a 
comparison with the Riemannian case. 
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(1) The Riemannian case. On a Riemannian manifold (M,g) 
the metric 

( 4.8) 

(4.9) 

is a specific inner product in each tangent space TxM viewed 
as a vector space. Moreover, 

is an isotropic and constant Riemannian metric on TxM viewed 
as a differentiable manifold. 

(2) The Riemann-Finslerian case. On a Riemann-Finsler man
ifold ( M, F) the metric 

(4.10) g = 9iJ(x, y)dxi 181 dxj 

( 4.11) 

is a family of inner products in each tangent space TxM viewed 
as a vector space, parametrized by rays ty, (t > 0) which em
anate from origin. This is actually a Riemannian metric on 
7r* T M. Moreover, 

is a non-isotropic Riemannian metric on TxM viewed as a dif
ferentiable manifold, and which is invariant along each ray and 
possibly singular at the origin. 

§5. The Chern connection on Finslerian surfaces 

This section summarizes some exposition in [BCS2000]. 
The vector bundle 1r*T M has a torsion-free and almost g-compatible 

connection D: c=(TSM) 181 c=(1r*TM)---> c=(1r*TM), where 

(5.1) 

where X is a vector field on SA1, Z := ziei is a section of 1r*T M, and 
{ ei} is the g-orthonormal frame field on 7r* T M. 

Indeed, there is a unique set of connection 1-forms {w/} on SM 
such that 

(5.2) 

(5.3) 

dxj 1\wi = 0 
J 
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where 8yk is given in (4.6), and Aijk is the Cartan tensor of a Finsler 
metric given by 

(5.4) 
F(x, y) fP F 2 (x, y) 

Aijk(x,y) = 4 f)yif)yJf)yk' 

The connection forms {w/} define the well-known Chern connec
tion of the Finsler manifold (M, F). 

Remark 5.1. The torsion freeness condition (5.2) is equivalent to 

(5.5) 

together with 

(5.6) 

where 

(5.7) 

are the local coefficients of the Chern connection, and ;&. is given in 
(4.5). 

Remark 5.2. A straightforward computation shows that the struc
ture equations (5.2), (5.3) of the Chern connection can be written also 
as 

(5.8) 

(5.9) 

dw1 = wk 1\w/ 

Wij +wji = -2AijkW2+k, i,j,k E {1,2}, 

where {w1,w2 ,w3 } is the g-orthonormal coframe on SM. 

The following lemma provides a very useful formula for computa
tions. 

Lemma 5.1. With the above notations one has 

(5 10) &gij rs rs A Nfc 
· &xk = gsj ik + gsi jk + 2 tjsy· 

Indeed, by plugging (5.5) and ( 4.6) into the structure equation (5.3) 
one obtains (5.10). 

The connection matrix (w/) of the Chern connection for Finsler 
surfaces with respect to the g-orthonormal frame { e1 , e2 } of n*T M is 
given by 

(5.11) 
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where I:= A111 = A(e1 , e1 , e1 ) is the Cartan scalar for Finsler surfaces 
(for details see [BCS2000]). Remark that I = 0 is equivalent to the 
Finsler structure to be Riemannian. 

We remark that if the Chern connection were g-compatible, then 
the connection matrix (5.11) would have been skew-symmetric. It is 
known ( [M1 986]) that on a Finsler manifold there is no connection 
which possesses both torsion-freeness and g-compatibility, except the 
case when the Finsler structure is actually Riemannian. One has to 
drop the torsion-freeness or theg-compatibility in order to work with 
Finsler metrics that are not Riemannian. 

Cartan connection (see [M1986] for definition and details), for ex
ample, it is g-compatible, but has some surviving torsion. On the other 
hand, the Chern connection used in the present paper claims for torsion
freeness but it can afford only almost g-compatibility (see (5.2) and 
(5.3)). In the case of the Chern connection, the connection matrix (5.11) 
is only "almost"' skew-symmetric. 

A regular piecewise c= curve u: [0, r] ----> M with velocity vector T 
is called a Finslerian geodesic if it satisfies the geodesic equation 

(5.12) 
T 

Dr [ F(T)J = 0. 

Remark 5.3. Observe that in natural coordinates one has 

(5.13) 

By taking the exterior derivatives and using torsion-free condition 
(5.2) one obtains the structure equations of a Finsler surface 

(5.14) 

dw 1 = -Iw1 1\ w3 + w2 1\ w3 

dw2 = -wl 1\ w3 

dw3 = Kw 1 1\ w2 - Jw1 1\ w3 . 

Remark 5.4. (1) For comparison, recall the structure equa-
tions of a Riemannian surface. They are obtained from (5.14) 
by setting I = J = 0. 

(2) The scalar K is called the Gauss curvature of a Finsler sur
face. In the case when F is Riemannian, K coincides with the 
usual Gauss curvature of a Riemannian surface. 
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Differentiating again (5.14) one obtains the Bianchi identities 

(5.15) 
1(18!. 28!) 

J = 12 = F y 8x1 + Y 8x2 

K3+Kl+h=O. 

Here indices indicate directional derivatives along e11 e2, e3, respec
tively. For example dK = K 1w1 + K 2w2 + K3w3. The scalars K1, K2, 
K3 are the directional derivatives of K. 

Nevertheless, observe that the scalars I = I(x, y), J = J(x, y), 
K = K(x, y) and their derivatives lives on SM, not on M as in the 
Riemannian case! 

More generally, given any function f : S M ---+ R, . one can write its 
differential in the form 

Taking one more exterior differentiation of this formula, one obtains 
the following Ricci identities: 

(5.16) 

(5.17) 

(5.18) 

hl-!12 
h2-h3 
hl-!13 

-Kh 

-11 
lh+h+Jfa. 

The curvature 2-form of the Chern connection 

(5.19) 

can be written by means of the g-orthogonal coframe as 

(5.20) i,j,k,l E {1,2}. 

Indeed, let us remark first that (5.19) expands as follows 

(5.21) 

where the coefficients R, P, Q are written in the co basis wi, and n = 2. 
The ! coefficient appears because of the skew-symmetry of R and Q, in 
other words, we have 

(5.22) 
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Next, taking the exterior derivative of the torsion freeness condition 
(5.8) it follows 

nkj 1\ wk = 0, 

and using this, (5.21) implies 
(5.23) 

0 = ~R .i wk 1\ wl 1\ wj + P. i wk 1\ wl+n 1\ wj + ~Q i wk+n 1\ wl+n 1\ wj 2 J kl J kl 2 J kl . 

It follows that all three coefficients in the right member of this equal
ity have to vanish identically. Therefore, the symmetric part of R and 
the skew-symmetric parts of P and Q has to vanish, respectively, i.e. 

R/ kl + Rki lj + Rz ijk = 0, 

P/kz- pkijl = 0, Q/kz- Q/zk = 0. 
(5.24) 

Now, from (5.22) and (5.24) it follows that Q/kz has to vanish, and 
therefore (5.21) implies (5.20). 

Moreover, this simplifies to 

(5.25) n2 d 2 R2 1 2 p. 1 2 H 1 = w 1 = 1 12w 1\ w + 2111w 1\ w 1 . 

Indeed, for a Finsler surface, from (5.11) follows the following im
portant relation 

(5.26) 

i.e. the curvature form is an exact form, and therefore a closed one. Even 
though this formula is familiar in the Riemannian case, in the Finslerian 
setting it is a peculiarity of Finsler surfaces. 

We rewrite (5.20) as 

(5.27) 

using the coframe {w 1 , w 2 , w3 , w 4 } on TM. 
Remark now that from the 0-homogeneity of Pit follows 

(5.28) 

in the g-orthonormal coframe. 
Therefore, we obtain 

(5.29) 

In the case i = 2, j = 1 we obtain 

(5.30) n2 R2 1 2 p2 1 2 p2 2 3 
H1 = 112w 1\w + 1llw 1\w + 121w 1\w. 
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Due to the properties of the tensor P, we have 

(5.31) 
p1 221 = p2 2u = p2211 = 0 

P 1 211 = P1211 = -P2n1-

Let us remark that in the natural frame, the tensor P is not skew
symmetric in its first and second indices. However, the above formula is 
written in the g-orthonormal frame, and in this setting P becomes skew
symmetric in first and second indices if they contain an index equal to 
2. The reason is that an index equal to 2 means contraction with zi. 

Using now (5.11) and (5.30) we obtain (5.25). 
Moreover, from (5.11) and (5.25) we obtain 

(5.32) d 3 R2 1 2 n 1 3 
W = - 1 12 W 1\ W + .r2111W 1\ W 

and comparing this with (5.14) it follows 

(5.33) 

In the case i = 1, j = 1, (5.29) implies 

(5.34) n1 dw1 R1 1 2 p1 1 3 pl 2 3 
H1 = 1 = 1 12w 1\ w + 1 11 w 1\ w + 1 21 w 1\ w · 

On the other hand, from (5.11) and (5.14) we have 

dw11 = d( -Iw3 ) = -dl 1\ w3 - Idw 3 

(5.35) 

It follows, 

(5.36) 

= -(hw1 + hw2 + hw3 ) l\w3 - Idw 3 

= (Iw 1 + Iw 2) 1\ w3 - I(Kw 1 1\ w2 - Jw 1 1\ w3 ) 

= -IKw1 1\w2 - (h- IJ)w 1 1\w3 - l2w2 1\w3 . 

R1112 = -IK, Puu =I J- /r. 

Remark 5.5. The Gauss curvature K = R 2 1 12 is an important 
geometrical quantity because its sign decides whether geodesic rays em
anating from a common point x E M are going to focus or diverge (see 
[BCS2000]). 

The Gauss curvature is the particularization to the case n = 2 of 
the flag curvature of an arbitrary dimension Finsler manifold. Indeed, 
one constructs a flag (x, y, V) at x E M using 

• a base point x ~' 
• a flag pole y E TxM, 
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• an edge V E TxM which is transversal to the flag pole. 

K(x,y, V) 
gy(R(V, y)y, V) 

gy(y, y)gy(V, V)- [gy(y, V)J2 

Vi(y1 RjiktY1)Vk 

141 

is called the flag curvature of (M, F) and it is the Finslerian analog of 
the sectional curvature of a Riemannian manifold. 

In arbitrary dimension, a Finsler metric F is said to be of scalar 
curvature if K(x, y, V) does not depend on V. This can be rewritten 
as 

where Rik = z1 Rjiktl1• 

If K = K(x, y, V) is a constant, then F is said to be of constant 
flag curvature. 

There is an essential difference between the Gauss curvature on Rie
mannian and Finslerian surfaces. If base point x and the flag pole y 
are chosen, the tangent plane TxM is actually spanned by y and V, i.e. 
every Finsler surface is of scalar curvature K(x, y ). By contrast, when 
the surface is Riemannian the scalar curvature K(x, y) reduces to the 
Riemannian Gauss curvature K(x), which does not depend on y. 

There is another important difference between curvatures in Rie
mannian and Finslerian setting. 

In Riemannian geometry the sectional curvature completely deter
mine the curvature tensor (see for example [11997] or another standard 
textbook of Riemannian geometry). This is not the case anymore for 
a Finsler manifold (arbitrary dimension). The curvature form of the 
Chern connection Oi 1 contains two curvature tensors: the so called 
(hh)-curvature tensor R1ikl and the (hv)-curvature tensor Pjikl (see 
(5.20)). The former, also called the Riemannian curvature tensor 
of a Finsler manifold, is used for constructing the flag curvature and 
Jacobi equations. 

§6. Berwald and Landsberg surfaces 

A Finsler surface is said to be of Landsberg type if J = 0, or 
equivalently, 12 = 0. Both Riemannian surfaces and (locally) Minkowski 
surfaces belong here. Recall that a Finsler manifold (M, F) is called 
locally Minkowski if there exists certain privileged local coordinates 
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(xi) on M which, together with the coordinates on TM induced by 
.a 

y = y' axi' make F dependent only on y and not x ([M1986], [BCS2000]). 

Minkowski planes are always locally Minkowskian. 
A stronger condition on a Finsler surface is that the Chern connec

tion local coefficients depend only on x, i.e. rijk(x, y) = rijk(x). These 
Finsler surfaces are said to be of Berwald type. 

The geometrical meaning of these special Finsler spaces can be de
scribed by means of parallel translation. 

Let us consider an arbitrary curve cr : [a, b] ---+ M with velocity 
. a 

vector T(t) = a(t), and an arbitrary vector field W(t) = W'(t) axilu(t) 
along cr. 

The linear covariant derivative of W along cr is defined by 

(6.1) [dwi . k . ] a 
DrW := -d- + W 3 T fjk(cr(t), T(t)) -a . , 

t X'lu(t) 

where rJk are the coefficients of the Chern connection. 
The vector field W(t) is said to be linearly parallel along cr(t) if 

DrW = 0. 

Remark 6.1. Remark that in this case the Chern connection coeffi
cients rJk are evaluated along cr, i.e. at the points (cr(t), T(t)) E Tu(t)M. 
In other words the linear covariant derivative Dr W is with ref
erence vector T. 

Remark also that if one deals with Berwald spaces, then the Chern 
connection coefficients satisfy rJk(x, y) = rJk(x), therefore the reference 
vector is irrelevant in this case. 

Remark 6.2. Recall that from the torsion-freeness and almost com
patibility conditions of the Chern connection (5.2), (5.3) it follows 

(6.2) ![gr(U, V)] = gr(DrU, V) + gr(U,DrV) + 2A(U, V,DrT), 

for any two vector fields U, V along cr. 
Moreover, if one of the following three conditions holds 

(1) 
(2) 
(3) 

then 

U or V is proportional to T, 
cr is geodesic, 
A vanishes along cr, 

(6.3) ![gr(U, V)] = gr(DrU, V) + gr(U, DrV), 
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for any two vector fields U, V along a (see [BCS2000] for details). 

Let us consider now the case when the curve a : [a, b] ----t M is a 
geodesic of the Finsler space (M, F). The linear parallel translation 
along a(t) is given by the map 

(6.4) Pa(v) = w, 

where V(t) is a linearly parallel vector field along a with V(a) = v, 
V(b) = w. 

An immediate property of the linear parallel transport on Finsler 
manifolds follows ([CS2005]). 

Lemma 6.1. Let (M, F) be a Finsler manifold, a : [a, b] ----t M a 
da 

geodesic ofF with velocity vector T(t) = dt, and U(t), V(t) linearly 

parallel vector fields along a. Then we have 

(6.5) gT(t) ( U(t), V(t)) = 0. 

Proof Since a is geodesic, and U, V are two parallel vector fields 
along a, using Remark 6.2 it follows 

![gT(U, V)] = gT(DTU, V) + gT(U,DTV) = 0. 

Therefore gT(U, V) is constant along a. 

Q.E.D. 
Let a : [a, b] ----t M be again an arbitrary coo piecewise curve on M 

with velocity vector T(t), and let W(t) be an arbitrary vector field along 
0'. 

Another way of defining the covariant derivative of W is with ref
erence vector W. Indeed, the nonlinear covariant derivative of W 
along a is defined by 

(6.6) (W) [dWi · k · ] a 
DT W := -d + W 3T rjk(a(t), W(t)) -a . , 

t x• icr(t) 

where r;k are the coefficients of the Chern connection. The top letter 
indicates the reference vector. If it is absent it means that the reference 
vector is T. 

The vector field W(t) is said to be nonlinearly parallel along a(t) 
if D¥W =0. 
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Using this covariant derivative one can define another kind of parallel 
translation of W along a. The nonlinear parallel translation along 
a(t) is given by the map 

(6.7) Pa(v) = w, 

where V(t) is a nonlinearly parallel vector field along a with V(a) = v, 
V(b) = w. The top letter n means "nonlinear". If it is missing, then 
it means the linear parallel translation. This is the canonical parallel 
translation on a Finsler manifold. 

Let us also remark that for a coo piecewise curve a on a Finsler man
ifold ( M, F), the nonlinear parallel translation preserves the Finslerian 
norm, i.e. if W(t) is nonlinearly parallel along a, then F(a(t), W(t)) = 
constant (for a proof of this fact see for example D. Bao's paper in the 
present volume). 

In the case of Berwald manifolds, the nonlinear parallel translation 
has the following important property. 

Lemma 6.2. ~!1978]) Let (M, F) be a Berwald manifold and a : 
da 

[a, b] --+ M a coo curve on M with velocity vector field T(t) = dt. 

Then, the nonlinear parallel translation P:; : Ta(a)M --+ Ta(b)M is a 
linear isomorphism. 

. a 
Proof For a vector field V = V' ( t) -a . that is nonlinearly parallel 

x• 
along a(t), it follows 

(6.8) [dvi . k i ] a 
dt + V 3T rJk(a) axila(t) = 0, 

where rjk(a, T) = rjk(a) are the coefficients of the Chern connection of 
the Berwald manifold (M, F). 

One can see that (6.8) is a linear ODE in V. Therefore it induces 
a linear map between Ta(a)M and Ta(b)M. The details follows immedi
ately. 

Q.E.D. 

Geometrically, Lemma 6.2 states that for a Berwald manifold, par
allel translation is an isometry of linear spaces. 

Remark 6.3. In the proof of Lemma 6.2, the condition that the 
Finsler manifold (M, F) is a Berwald one is essential. Indeed, we used 

(6.9) 
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This relation is not true for other Finsler manifolds that are not of 
Berwald type. 

Remark 6.4. In a Berwald space (arbitrary dimension) the Chern 
connection defines a linear connection directly on the underlying mani
fold M. 

Z. I. Szabo ([Sz1981]) proved that this linear connection is in fact 
the Levi-Civita connection of a (non-unique) Riemannian metric on M. 
In this way any Berwald space is metrizable by such a Riemannian 
metric. Of course the Finsler metric and induced Riemannian metric on 
M have the same geodesics as curves on M. 

For a Landsberg surface, it is remarkable that the Gauss curvature 
K at any point y(t) of the indicatrix SxM is determined by the Cartan 
scalar I by 

(6.10) K(t) = K(O)e- [t~; I(r)dr]. 

Indeed, from the Bianchi identities (5.15) on a Landsberg surface, i.e. 
when J = 0, one obtains the following ODE: 

K(t) + I(t)K(t) = 0. 

Taking into account that I(t) is continuous, the result follows di
rectly by integration ([BCS2000]). 

Obviously, any Berwald space (arbitrary dimension) is a Landsberg 
space. Even though there are many examples of Berwald spaces, unfor
tunately concrete example of Landsberg spaces that are not Berwald are 
not studied yet enough. Especially the construction of such examples in 
the two dimensional case remains to be considered in the future. See D. 
Bao's and Z. Shen's papers in the present volume, as well as Asanov's 
recent results [A2006]. 

For Berwald surfaces there exists the following rigidity result (see 
[Sz1981]). 

Theorem 6.1. Rigidity theorem for Berwald surfaces 
Let (M, F) be a connected Berwald surface for ~ich the Finsler 

structure F is smooth and strongly convex on all ofT M. 

(1) If K = 0, then F is locally Minkowski everywhere. 
(2) If K ¢. 0, then F is Riemannian everywhere. 

Proof. We give here the idea of the proof. 
If on a surface K = 0, then (5.33), (5.36) imply R/ kl = 0. 
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On the other hand, the surface being Berwald it follows that the 
Chern connection coefficients depend on the position only, in other words 
q1(x, y) = q1(x), therefore these coefficients determine a torsion free 
linear connection D on M having the Christoffel coefficients precisely 
r;1(x). It follows immediately that D must be flat on M. Therefore there 
is a preferential coordinate chart x = (xi) on M where q1(x) = 0, or 

og. 
equivalently, oxt~ = 0. This is of course equivalent with F(x, y) = F(y), 

i.e. F is locally Minkowski. 
Conversely, if one assumes now that K ¢. 0, then there exists an 

indicatrix SpM, at a certain p E. M, such that K =J 0 at some point of 
it, and therefore nonzero at all points of this SpM (because of (6.10)). 

On a Berwald surface, the main scalar I is horizontally constant 
([M1986], [BCS2000]), i.e. h = I 2 = 0, where the subscripts mean 
directional derivatives with respect to the vectors of the g-orthonormal 
frame on SM. 

Ricci identity (5.16) written for the Cartan scalar I on a Berwald 
surface implies KI3 = 0, in other words on SpM we have Kj = 0, and 
therefore I =constant on this SpM. 

Taking into account the fact that the average value of the Cartan 
scalar I over the indicatrix TpM is zero ([BCS2000]), i.e. J0L I(t)dt = 0, 
one sees that this constant has to be in fact zero. Therefore, F(p, jj) has 
to be Riemannian for any jj E SpM. 

On the other hand, recall from Lemma 6.2 that on a connected 
Berwald surface the Minkowski plane (TxM, F(x, ·))is linearly isometric 
to (TpM, F(p, ·))for any x EM. 

Since M is connected there exists a smooth path a from x to p. If we 
denote by (x, y) and (p, jj) the corresponding points in T M, respectively, 
and taking into account that jj is related to y by a linear transformation 
depending on x and a, it follows that F(x, y) is equal to F(p, jj) and 
therefore F is Riemannian everywhere. 

Q.E.D. 

The geometrical meaning~ Landsberg space is that the induced 
Riemannian tangent spaces (TxM,gx) are isometric to each other by 
nonlinear parallel translations. 

Indeed, one has: 

Lemma 6.3. {(11978]} Let (M, F) be a Landsberg manifold, and let 
a: [a, b] ~ M, a( a)= p EM, a(b) = q EM, be a piecewise coo curve. 
Then, the nonlinear parallel translation 

~ ~ 

(6.11) P:;: (TpM,gp) ~ (TqM,gq) 
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is an isometry, where 9x is the induced Riemannian metric in TxM, for 
anyxEM. 

For a proof see the initial paper [11978] or D. Baa's paper in the 
present volume for an alternative proof. 

On Landsberg surfaces, the following interesting properties hold. 

Theorem 6.2. ([BS1994]) 
The indicatrix length of a Landsberg surface is constant. 

Let us consider the Riemannian length of the indicatrix 

Bx := {y E TxM; F(x, y) = 1, x E M}. 

Recall from §2 that the indicatrix length is computed by integrating 
the Landsberg angle. 

Therefore, we have 

(6.12) L(x) = { the pure dy part of w12 . ls1 
Some computations lead to the following lemma. 

Lemma 6.4. ([BCS2000]) The Riemannian length of the indicatrix 
satisfies 

(6.13) aaL=(-1)i f J(l3-i..J9)dB, 
x' Jsl 

where i E {1, 2}, d() is the 1-form given in (3.3), g is the determinant of 
the matrix 9ij, and J is the scalar in (5.14). 

Therefore the· constantly of indicatrix length follows. However, typ
ically this is NOT 211" as already shown in §2. 

§7. Curves on a Finsler surface 

Let us consider the unit speed curve 1 : [a, b] --> M on a Finsler 
surface (M, F), given by xi = xi(t), T(t) = i'(t), F(r(t), T(t)) = 1, for 
any t E [a, b]. 

Using some ideas from [Sh2001], we are going to construct a Fins
lerian unit normal vector field N of 1 such that the pair {T(t), N(t)} 
is an oriented gN-orthogonal basis in the fiber of rr*T M over the point 
(r(t), N(t)). 
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Proposition 7.1. For each fixed point x(t), t E [a, b], o~ curve 

"(, there exists a Finsle'rian unit length vector field N(t) E Tx(t)M such 
that 

(7.1) 9N(t)(N(t), T(t)) = 0. 

Pmof. For each x = x(t) E M fixed, let us regard TxM as a 
Minkowski plane with the Minkowski norm F(x, y) = F(y) induced by 
the Finslerian structure F of M. 

For the sake of simplicity we omit writing the dependency on the 
parameter t of the curve. All the vectors are assumed to be taken along 
the curve 'Y· 

First of all, we are going to construct the vector N. Consider an 
arbitrary vector V in the plane Txl11, other than T. Then the function 

f: R--> [0, oo), j(>..) := F(V- >..T) 

attains its minimum for a unique value >..0 , i.e. 

(7.2) min F(V - >..T) = F(V - >..0T) = m. 
A 

The vector >..0 T is in fact the "projection" of Von T (see Figure 3). 
We define now 

(7.3) 
N ·= V - >..oT V - >..oT 

. F(V- >..0T) m 

Obviously, F(N) = 1. 
y2 

v 

V ->..oT 

T 
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Figure 3. The construction of the normal vector field. 

Next, we are going to show that this N is independent on the 
choice of V. 

Let us consider another arbitrary vector V E TxM in the same 
upper half plane (determined by the direction of the vector T) as V. 
This vector can be written as a linear combination of V and T, for 
example 

(7.4) ftl>O. 

Consider now the function 

g : R--+ [0, oo ), g(:\) := F(V- :\T) 

that attains its minimum for a unique value .Xo, i.e. 

mjn F(V - XT) = F(V - XoT) = m. 
>. 

We can write now 

m = mjnF(V - XT) = mjn F(f-£1 v + f.L2T - :\T) 
>. >. 

(7.5) 
>.- f-£2 

= f-£1 mjn F(V- -- T) = f.L1m. 
>. f-£1 

Since F(V- >.T) attains its minimum at >.0 (see (7.2)), it follows 

(7.6) 
>.o- f-£2 

>.o = --
f-£1 

Therefore, starting with V we can construct the normal vector 

(7.7) 
- V- .XoT 
N := ---=--· 

m 

Using now (7.4), (7.5) and (7.6) in (7.7), a simple calculation shows 
that N = N, therefore N does not depend on the choice of the direction 
v. 

Finally, we are going to prove that this N is 9N orthogonal toT. 
Recall that from the homogeneity condition of F it follows 

(7.8) 
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Indeed, F 2 is a 2-positive homogeneous function in y, therefore the 
aF2(y) . 

Euler theorem for homogeneous functions gives a . · y' = 2F2 (y). 
y' 

Taking now the derivative of this relation with respect to yi, the relation 
(7.8) follows immediately. 

For any V In the fiber of 1r*TM over ('y(t),N(t)), relation (7.8) 
implies 

(7.9) 
. . 1aF2 (N) . 

9N(N, W) = 9iJ(N)N'W1 = a . W1 . 
2 yJ 

Consider now the function 

(7.10) h:R---->[O,oo), 

We have 

1 
h(>-.) := -F2 (N + >-.T). 

2 

h(>-.) = ~F2 (V- >-.oT + >-.T) = ~2 F 2 (V- (>-.o- m>-.)T) 
2 m 2m 

1 2 1 2 1 22 1 
~ 2m 2 F (V- >-.0T) = 2m 2 F (mN) = 2m 2 m F (N) = 2, 

for any>-., where we have used (7.2). 
1 

In other words, the minimum of h is h(O) = 2. 
On the other hand, 

Taking now into account the minimum of the function h computed be
fore, it follows 

1aF2 . 
h'(O) = --;:;-:-(N)T1 =gN(N,T) =0. 

2 uyJ 

Q.E.D. 

Remark 7.1. One can see that there exists exactly two normal 
vectors, one in the upper half plane determined by the direction ofT, 
and the other one in the opposite half plane. However, remark that 
these two normals are not parallel unless F is absolute homogeneous. 
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We have therefore constructed a Finslerian unit normal vector field 
N = N(t) along the curve 'Y with the following properties 

(1) N is 9N-orthogonal toT, 
(2) F(N) = 1. 

We have to remark however, that in the fiber over ('Y(t),N(t)) we 
have F 2 (T) -1- 9N(T, T). We denote this quantity by a 2 := 9N(T, T). 
Therefore, the frame {T(t), N(t)} is not a 9N-orthonormal basis, but 
only a 9N-orthogonal one. In the particular case when M is a Riemann
ian surface with the Riemannian metric g, the pair {T(t), N(t)} is a 
g-orthonormal basis. 

Next, we will define the geodesic curvature for the curve 'Y on the 
Finsler surface ( M, F). 

Let us recall that if M is a Riemannian surface with the Riemannian 
metric g, then 

(7.11) 

is called the geodesic curvature vector of the curve 'Y, 

(7.12) 

1 

k(t) := [g(K(t), K(t))] 2 

is called the geodesic curvature of 'Y, and 

(7.13) kN(t) := g(K(t), N(t)) 

is called the signed curvature of 'Y· Here, Dis the Levi-Civita connec
tion of g and 'YJk(x) the Christoffel coefficients of D. Recall also that if 
'Y is a geodesic of the Riemannian metric g, then K(t), k(t) and kN(t) 
all vanish. In other words the geodesic curvature vector K(t) measures 
the failure of the curve 'Y from being a geodesic. 

Now we return to the more general case of a Finsler surface. We 
would like to define a geodesic curvature vector and a geodesic curvature 
with similar properties as in the Riemannian case. Keeping in mind the 
geometrical meaning these quantities should have, one might define 

(7.14) 

and 

(7.15) 

(T) ·- (T) - ( dTi i j k) 8 
K (t) .-Dr T- dt + r3k(x, T)T T Bxilr(tl 

1 

k(Tl(t) := [gr(K<Tl(t), K(Tl(t))] 2. 
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These quantities might be called the geodesic curvature vector over 
T, and the geodesic curvature over T of the curve'"'(, respectively. 

Remark two things about the quantities defined in (7.14), (7.15): 

(1) they are defined in the fiber of1r*TM over ('Y(t),T(t)), 
(2) if 'Y is a geodesic of the Finsler structure, in other words the 

tangent vector field is autoparallel along '"'(, i.e. DfJlT = 0, 
then both K(T) (t) and k(T) (t) vanish like in the Riemannian 
case (see [BCS2000] for more on Finslerian geodesics). 

These definitions are used in [Sh2001]. 
However, if one wants to work with the normal vector field N(t) 

constructed in Proposition 7.1., then the definitions (7.14), (7.15) are 
not satisfactory simply because our N lives in the fiber of 1r*T M over 
('"'(( t), N ( t)). 

We are led in this way to the following definitions. Let 

(7.16) 

and 

(7.17) 

1 

k(N) (t) := [gN(K(N) (t), K(Nl(t)) J 2 

be the geodesic curvature vector over N, and the geodesic cur
vature over N of the curve'"'(, respectively. 

We remark that the quantities defined in (7.16), (7.17) 

(1) are defined in the fiber of1r*TM over ('Y(t),N(t)), 
(2) if 'Y is a geodesic, i.e. DfJlT = 0, then K{Nl(t) and k{Nl(t) do 

not vanish anymore as in the Riemannian case. Instead, if 'Y is 
a curve along which N is parallely displaced, i.e. D!j!l N = 0, 
then they will vanish. The reason behind this strange fact is 
that in the Riemannian case along a geodesic 'Y the conditions 
DrT = 0 and DrN = 0 are equivalent, but for a Finslerian 
surface, D~T)T = 0 and D!j!l N = 0 are not. 

Let us assume that 'Y is a smooth closed curve in the plane. Then 
we can regard 'Y as the boundary of a bounded open set n C M. Recall 
that if 'Y is parametrized so that T(t) is consistent with the induced 
orientation on 'Y = an in the sense of Stokes' theorem, then 'Y is called 
positively oriented. Intuitively, this means that 'Y is parametrized 
in the counterclockwise direction, or that n is always to the left of '"'( 
([L1997]). 
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We can regard now {T(t), N(t)} as an oriented 9N-orthogonal basis 
for T-r(t)M for each t. If 'Y is positively oriented as the boundary of n, 
this is equivalent to N being the inward-pointing normal to an. 

Using now (7.16) we define the signed curvature over N of 'Y by 

(7.18) 

where T(t) is considered now as a vector field in the fiber of n*T Mover 
('Y(t), N(t)). 

Remark 7.2. If (M, F) is an absolute homogeneous Finsler metric, 

or a Berwald metric, then the sign of ki:) is positive if 'Y is curving 
towards n, and negative if it is curving away. This is the meaning of 
the word "signed" here. In the more general case of a Finsler metric 
(only positive homogeneous), the sign of ki:) is positive if 'Y is curving 
towards n, but it is difficult to predict how this changes if "( is curving 
away (see (7.16)). 

We will see in the next section why we prefer our definitions (7.16), 
(7.17) to Shen's definitions (7.14), (7.15). 

Lemma 7 .1. Let U ( t) and V ( t) be two vector fields along the curve 
'Y. Then we have: 
(7.19) 

d (N) (N) (N) 
dt 9N(U, V) = 9N(Dr U, V) + 9N(U, Dr V) + 2A(U, V, Dr N). 

Proof. By straightforward computation and use of Lemma 5.1 we 
have: 

(7.20) 

d d . . (dUi . .dVJ) 
- 9N(U V) =- g· ·(x N)U'V1 + g· ·(x N) - V 1 + U'-dt ' dt t] ' t] ' dt dt 

= (9sjffk + 9sifjk + 2Aijs i) (x, N)TkUiVj 

A k dNk + 2~(x N)--UiVj 
F ' dt 

dUi . .dVJ) 
+g··(x N)(- V 1 + U"-

'1 ' dt dt ' 

where Nf::(x, N) = NJfjk(x, N) is the nonlinear connection of F. Group
ing now these terms, and taking into account of (6.6), relation (7.19) 
follows easily. 

Q.E.D. 
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Remark 7.3. If one of the following conditions holds 
( 1) U or V is proportional to N, 
(2} N is parallel transported along 1, 
{3} A vanishes along 1, 
then, 

(7.21) d _ ( (N) (N) ) 
dt 9N(U, V) - 9N DT u, V) + gN(U, DT v 0 

One might remark also that Lemma 7.1. is in fact the "with reference 
vector N" version of the Remark 6.2. 

From Remark 7.3. it also follows that the signed curvature kt) of 
1 defined in (7.18) can be also written as 

One can remark that in the Riemannian case this coincides with the 
usual signed curvature of 'Y defined in (7.13). 

Proposition 7.2. If 1 is a smooth curve on the Finsler surface 
(M, F), then the following relations hold good 

(7.22) 
1 (N) 

- a2(t) kN (t)T(t), 

(7.23) 
1 (N) 

a(t) lkN (t)l, 

where a 2 (t) = 9N(T, T), and K(Nl(t), k(Nl(t), kt)(t) are defined in 
(7.16}, (7.17}, (7.18}, respectively. 

Proof. Using Remark 7.3., in the case U = V = N, it follows 
gN(D~N) N, N) = 0. In other words, the geodesic curvature tensor 

K(Nl(t) = D~N) N is 9N-orthogonal toN. This implies that there exists 
a smooth function f such that 

(7.24) K(Nl(t) = D~N) N = f(t)T(t), 

where Tis the tangent vector to 1 in the fiber of 1r*T Mover (r, N). 
We compute now 

9N(K(N), T) = 9N(!T, T) = fgN(T, T) = fa 2 • 

It follows 

(7.25) 
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and therefore from (7.24), (7.25) we obtain (7.22). 
Next, we compute 

(k(Nl(t))2 = 9N(K(N)(t), K(Nl(t)) = (J"4~t) (k):l(t))2gN(T, T) 

1 (N) 2 
= 0"2(t) (kN (t)) ' 

and (7.23) follows immediately. 

Q.E.D. 

§8. The Gauss-Bonnet Theorem for Finsler surfaces 

The proof of the Gauss-Bonnet theorem for Finsler manifolds with
out boundary was given by D. Bao and S. S. Chern in [BC1996] using 
the transgression method. Using their method we will extend the result 
to Finsler surfaces with smooth boundary. 

Let (M, F) a compact Finsler surface with smooth boundary aA1 = 
"(: [a, b] f---+ M, given by xi = xi(t). We assume 'Y to be unit speed, i.e. 
F(T) = 1, where T = i'(t). 

For an arbitrary vector field V : A1 ---+ TA1, x >---+ V(x) E TxM, 
denote its zeros by x1, · · · , Xk E M, and denote by ia the index of V 
at Xa, for all a = 1, 2, · · · , k. By removing from M the interiors of the 
geodesic circles S~ (centered at X a of radius c > 0), one obtains the 
manifold with boundary Me:. Remark that in this case, the boundary of 
A1c: consists of the boundaries of the geodesic circles S~ and the boundary 
ofM. 

Assuming that V has all zeros in M \ aM, it follows that V has no 
zeros on A1c: and therefore we can normalize it obtaining in this way the 
application 

(8.1) 
v 

X = F(V) : Me: ---+ SM, 
V(x) 

x f---+ F(V(x)) · 

Using X we can lift Me: to S A1 constructing in this way the 2-
dimensional submanifold X(Mc:) of SM. 

Recall that on the 3-dimensional manifold S M one has the exterior 
forms, fl1 2 and W1 2 , defined in (5.19) and (5.11), respectively. 

Proposition 8.1. Let (M, F) be a compact oriented Landsberg sur
face with boundary aM. And let N: aM---+ SM be the inward pointing 
Finslerian unit normal on aM. 
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Then, we have 

(8.2) ~ { Kvg dxii\ dx2 + -L1 { w12 = X(M), 
L}M J~aM) 

where L is the Riemannian length of the indicatrix, K and g the Gauss 
curvature and the determinant of the fundamental tensor gij of the 
Finster metric, respectively, N the inward pointing normal to the bound
ary 8M, and X(M) the Euler characteristic of M. 

The proof follows [BCS2000]. Indeed, remark first that we can ex
tend the normal vector field N on 1 to a vector field X on M with 
only finitely many zeros XI, x2, ... Xk E M \ 8M. By considering the 
lift X(Me) constructed above we integrate formula (5.25) over the two 
dimensional manifold X(Me). Applying Stokes' theorem and taking the 
limit c: ---+ 0, we obtain 
(8.3) 

k 

{ X*(R1 212w1/\w2+P2I11w1/\wi2) = L lim { WI 2+ { WI 2, 
j M o=l e-+O j X(S~) j N(BM) 

where the lift X(S~) of each boundary cycle is traced out in the clockwise 
direction, and N is the inward pointing normal to the boundary 8M. 

From the degree theory (see for example [Mil1965]) it results that 

1 2 . 1 2 W1 ----+ -Z0 WI 
X(S~) S,,M 

as c: ---+ 0. Here the indicatrix Sx., M is given in the counterclockwise 
orientation. 

Recall now that 

w12 = VJ (Yl o;2- Y2 o;l), 

where oyi = dyi + Nijdxi. Taking the limit of the integral WI 2 implies 
that actually the dx terms do not contribute anymore because the metric 
radius continuously shrinks. It follows that 

(8.4) 

where L(xa) is the Riemannian length of the indicatrix at X 0 EM. 
Let us consider now the case of Landsberg surfaces. There are three 

important results that make these surfaces special. 



(8.5) 

(8.6) 
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(1) On a Landsberg surface P2111 = -J = 0, therefore the inte
grand in the left hand side of (8.3) reads now 01 2 = dw1 2 = 
R 12 12 w 1 1\ w 2 . In natural coordinates we have 

01 2 = dw1 2 = -Kyg dx 1 1\ dx2 . 

(2) Moreover, even though K = K(x, y) and yg = yg(x, y) are 
functions on SM, their product K ,;g = (K y'g)(x) lives on M. 
Indeed, taking exterior derivative of dw 1 2 = - K y'g dx1 1\ dx2 

it follows 
d(K yg) 1\ dx 1 1\ dx2 = 0, 

or equivalently, 

Taking into account the properties of exterior differential 
a(K ,;g) 

d, it follows 0 . = 0. This was remarked by S. S. Chern 
y• 

for the first time (see [BC1996] for details). 
Therefore, the first term in the left hand side of (8.3) sim

plifies to 

(3) Finally, recall that on a Landsberg surface, the indicatrix length 
L(x) is a constant, but this constant typically is not equal to 
27r as in Riemannian case. From (8.4) it follows that on a 
Landsberg surface we have 

k k k 

L lim 1 w1 2 =- L i,.L(x,.) = -L L i,. = -LX(M). 
a=1 c:--+O X(S;,) a=1 a=1 

Using now (8.5) and (8.6) in (8.3) we obtain two of the three terms 
in (8.2). 

We are going to deduce now the remainig term on the left hand side 
of (8.2). 

In order to do this, let us remark first that the normal N(t) intro
duced in Proposition 7.1. can be regarded as the mapping 

(8.7) N: oM= 'Y--+ SM 1 (t) r---> ('Y(t), N(t)), 
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where SM is the projective sphere bundle of F. 
This gives the lift i = N (aM) of the curve 'Y to S M given by 

(8.8) i: [0, 1] ~ SM, i(t) = ('Y(t), N(t)). 

Remark that i is different from the canonical lift ('Y(t),i'(t)) of"( used 
in [BCS2000]. 

The tangent vector T to i in a point u = ('Y(t), N(t)) E i is given 
by 

A d A • i a dNi(t) a 
T = dt 'Y = 'Y (t) axilb,N) + ~ ayilb,N) 

( ) . J [dNi(t) . k . ] a 
8.9 = i't(t) Jxilb,N) + ~+ N 3 (t)i' (t)fjk('Y, N) ayilb,N) 

. i 6 (N) i a 
= 'Y (t) Jxilb,Nl +(Dr N) ayil(-r,N), 

where the functions qk are the local coefficients of the Chern connection, 

and (DtN) N)i are the components in the natural basis of the fiber of the 
covariant derivative along 'Y with reference vector N defined in (6.6). 

One can easily see that this T gives the derivative map of the map
ping N: aM~ SM. Indeed, (8.7) implies 

d 
where dti"Y(t) is the natural basis of T"Y(t)aM. 

Now we can prove the following important result. 

Proposition 8.2 . . On the Finsler manifold (M, F) with smooth 
boundary aM= 'Y: [a, b] ~ M we have 

(8.11) 1 2 11 (N) w1 = -( ) kN (t)dt, 
N(8M) "Y 0" t 

where N is the inward pointing normal on"(, w12 the Chern connection 
form defined in {5.13), and O" = JgN(T,T). 

Proof 
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Using (8.9) and (8.10) we compute 

(8.12) 

* 2 d 2 d 
N (wl ) dth(t) = wl (N* dt) 

2 [ . i 5 ( N) i a ] = wl 'Y (t) 5xilb,N) +(Dr N) ayilh,N) 

. i 2 ( 5 ) (N) i 2 ( a ) = 'Y (t)wl 5xilh,N) +(Dr N) wl ayilb,N) . 

On the other hand, recall the local expression (5.13) of the connec
tion form w12 , and taking into account the duality of the adapted basis 

5 a . 5yi 
{ ~' F-;::;-:-} and co basis { dx', -F } it follows that the first term in the 

ux' uy' 
last equality of (8.12) vanishes and therefore we obtain 

We used here implicitly that F('Y, N) = 1. 
We would like now to express this relation using the signed geo

desic curvature kJ:l defined in (7.18). In order to do this, remark that 
writing (7.21) for U = V = N, and taking into account F(N) = 1, it 

follows 9N(D5/') N, N) = 0. We write this last relation and (7.18) in the 
components with respect of the natural basis of the fiber of n*T l'vf over 
('Y,N). We have 

(D~N) N) 1(N1gn + N 2g12) + (D~N) N)2(N1g12 + N 2g22) = 0 

(D~N) N)1(-l9n + 1'2912) + (Df'l N)2(i'19I2 + 1'2922) = -kJ:l, 

where 9;1, i,j E {1, 2} are the components of the Riemannian metric 9N 
of the fiber of n*T M over the point ( "(, N) with respect to the natural 
basis of the fiber. 
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This is a system of linear equations with the solution 

(8.14) 

(D(N) N) 1 = -k(N) N 1g12 + N 2g22 
T N g(N2,yt _ NL·y2) 

(D(N) N)2 = k(N) Nlgu + N2g12 . 
T N g(N2"yl _ Nl"y2) 

Substituting now (8.14) in the last equality of (8.13) we have 

(8.15) 

N*( 2) d _ k(N) N 2(N1g12 + N 2g22) + N 1(N1gu + N 2g12) 
W1 dth(t) - N .j§(N2"yl _ Nl"y2) 

(N) 
(N) gN(N,N) kN 

= kN .j§(N2"yl _ Nl"y2) .j§(N2"yl _ Nl"y2)" 

On the other hand, we remark that 

where () 1 and () 2 are the dual 1-forms ofT and N, respectively, and g 
is the determinant of the Riemannian metric in the fiber of n*T M over 
(r, N) with respect to thegN orthogonal basis {T, N}, i.e. 

(8.17) 9ij(r, N) = G ~2) 
and therefore its determinant is g = a 2 . 

It follows 

(8.18) 

and from here we obtain 

(8.19) 

Finally, we have 

(N) 

(8.20) [ w12 = [ N*(w12 ) = 1 N*(w12 )ddh(t)dt = 1 kN( )dt. 
jN(8M) laM 'Y t 'Y 0' t 

Q.E.D. 
From Propositions 8.1. and 8.2. we obtain the main result of this 

section: 
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Theorem 8.1. Gauss-Bonnet theorem for Landsberg sur
faces with smooth boundary. 

Let (M, F) be a compact, connected Landsberg surface with unit ve
locity smooth boundary 'Y. Then 

(8.21) 

where L is the Riemannian length of the indicatrix of (M, F), kl:) the 
signed curvature over N of"(, the scalar a = J gN(T, T), and X(M) the 
Euler characteristic of M. 

Remark 8.1. (1) On a Berwald surface without boundary an 
alternative Gauss-Bonnet formula can be given using the Rie
mannian metrizability of the Berwald surface ([BCS1996]). In
deed, let us denote by h the (non-unique) Riemannian metric 
on M having the Levi-Civita connection coefficients identical 
with the Chern connection coefficients of ( M, F). Denote by 
h K its Riemannian Gauss curvature. Therefore the following 
formula also holds: 

(2) In the case of a Landsberg surface without boundary Theo
rem 8.1 reduces to the Gauss-Bonnet theorem for Landsberg 
surfaces without boundary [BC1996]. 

(3) In the case of a Riemannian surface with smooth boundary, 
since the Riemannian metric has no directional dependence, 
and the indicatrix length of a Riemannian manifold is equal to 
2?T, Theorem 8.1 reduces to the usual Gauss-Bonnet theorem 
for Riemannian manifolds with smooth boundary [Spiv1979], 
[L1997]. 
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