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Diffusion phenomenon for abstract wave equations 
with decaying dissipation 

Taeko Yamazaki 

Abstract. 

We consider the initial value problem of the abstract wave equa
tion with dissipation whose coefficient tends to 0 as t -> oo. In the case 
that the coefficient of the dissipation is a positive constant, lkehata
Nishihara and Chill-Haraux obtained the decay estimate of the dif
ference between the solution of this equation and the solution of the 
corresponding abstract heat equation. In the case that H = L2 (1Rn) 
and A is the Laplace operator and b(t) is a positive valued monotone C 2 

function satisfying the sufficient assumption, Wirth obtained the decay 
estimate of the difference between the solution of the dissipative wave 
equation and the solution of the corresponding heat equation. The 
purpose of this paper is to show the decay estimate of the difference 
between the solution of the abstract wave equation with decaying dis
sipative term and the solution of the corresponding abstract parabolic 
equation. 

§1. Introduction 

Let H be a separable Hilbert space with norm II · II· Let A be a 
non-negative self-adjoint operator with domain 'D(A). Then, for a non
negative number "(, the space 'D(A") becomes a Hilbert space with the 
graph-norm of A~' denoted by 11·11"· 

For a positive valued C 1 function b( t) on [0, oo), we consider the 
difference of the solution of the initial value problem of the abstract 
dissipative wave equation 

(1.1) u" + b(t)u' +Au= 0, u(O) = uo, u'(O) = u1, 
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and the solution of the corresponding heat equation (1.2): 

(1.2) b(t)v' + Av = 0, v(O) = vo, 

where 

(1.3) vo = uo + u 1 100 
exp( -18 

b(cr)dcr)ds, 

U1 { 00 b'(s) r 
= uo + b(O) - u1 Jo b(s) 2 exp(- Jo b(cr)dcr)ds. 

Let n be an exterior domain in !Rn with smooth boundary an, or 
n = !Rn. Let H = L 2 (n) and let AD= AR =-~with domain 

V(AD) = {u E H 2 (n); u(t,x) = 0 on an}, 

2 au 
V(AR) = { u E H (n); a)t, x) + cr(x)u(t, x) = 0 on an}, 

where cr(x) is a non-negative smooth function on an. Then AD and AR 
become non-negative self-adjoint operators (see Mizohata [8, Chapter 
3, section 16] for AR), and the abstract dissipative wave equation (1.1) 
becomes the following initial boundary value problem: 

(1.4) 
a2u au 
(Jt2 - ~u + b(t) at = 0 in [0, oo) X n, 

(1.5) 
au 

u(O,x) = uo(x), at (O,x) = u1(x) inn, 

with the Dirichlet boundary condition 

(1.6) u(t,x)=O on [0, oo) X an 

in the case A= AD, or with the Robin boundary value condition 

(1.7) 
au 
av (t, x) + cr(x)u(t, x) = 0 on [0, oo) X an. 

The abstract heat equation (1.2)-(1.3) becomes the following initial 
boundary value problem: 

(1.8) 

(1.9) 

where 

av 
b(t)-- ~v = 0 

at 
v(O, x) = vo(x), 

in [0, oo) X n, 

inn, 

(1.10) vo(x) = uo(x) + u1(x) 100 
exp( -18 

b(cr)dcr)ds, 
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with the Dirichlet boundary condition 

(1.11) v(t,x)=O on [0, oo) X an 
in the case A = AD, or with the Robin boundary value condition 

(1.12) 
av av (t, x) + <J(x)v(t, x) = 0 on [0, oo) X an 

in the case A= AR. Here we note that if we take <J = 0, then (1. 7) and 
(1.12) are the Neumann boundary conditions. 

In the case that b(t) is a positive constant and that A is the Dirichlet
Laplace operator on L 2 (n) in exterior domain, Ikehata [6] showed that 
the L 2 norm of the difference between the solution u of (1.4)-(1.6) with 
b(t) = 1 and the solution v of the corresponding heat equation (1.8)
(1.11) decays faster than each of the solution does (diffusion phenom
enon). Ikehata-Nishihara [7] showed the diffusion phenomenon for the 
abstract dissipative wave equation (1.1), by obtaining the decay esti
mate of the norm of the difference between the solution u of (1.1) with 
b(t) = 1 and the solution v of the corresponding abstract parabolic equa
tion (1.2)-(1.3). This estimate is an improvement of the previous one in 
[6]. Chill-Haraux [3] improved their estimate to the following one: 

(1.13) 

[3] also showed that this estimate is optimal in the sense that the in
equality 

lim sup sup tllu(t)- v(t)ll 1; 2 > 0 
t->oo lluoll 1 ; 2 ,lluiii9 

holds, when 0 belongs to the essential spectrum of A. 
Recently, in the case that A is the Laplace operator on L 2 (JRn), 

Wirth [10] considered Cauchy problem of (1.4)-(1.5) in JRn, where b(t) 
is a positive valued C 2 function satisfying the following assumption: 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

b(t) is a monotone function, 

lim lb'(t)l = 0 
t->oo b(t)2 ' 

I dk b I b(t) 
dtk (t) :::; (t+1)k for k = 1, 2, 

roo ds 
Jo b(s)3 < oo. 
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(1.18) r= )ts )2 < 00. 
} 0 b(s 1+s 

Then, by using the WKB-representation of the solution, he obtained the 
estimate 

(1.19) 1 + t ( t ds ) - 2 

llu(t, ·)- v(t, ·)11£2 ~ C b(t)3 Jo b(s) ' 

in the case b(t) is monotone decreasing, where u is the solution of the 
Cauchy problem of (1.4)-(1.5) in JR;_n and v is the solution of the cor
responding parabolic equation (1.8)-(1.10) in JR;_n. For the estimate in 
the case b(t) is monotone increasing, see [10]. Wirth noted in [10] that 
for the WKB representation of the solution, the monotonicity of b(t) 
is weakened to the assumption that b(t) is a small perturbation of a 
monotone function 1; there exists r E C 1 ([0, oo); (0, oo)) such that r is 
monotone and limt_,= tr(t) = oo, and that 

(1.20) lb(t)- 2r(t)l ~ c;~)t" 
The purpose of this paper is to show the decay estimates of the 

difference between the solution u(t) of the abstract hyperbolic equation 
(1.1) and the solution v(t) of the corresponding abstract parabolic equa
tion (1.2)-(1.3) under the following assumption on b(t): 

Assumption. b( t) is a positive valued C 1 function on [0, oo) sat
isfying the following: There exist positive constants b0 , b1 , b2 and () and 
strictly monotone decreasing continuous function f ( t) on [ t0 , oo) and 
monotone decreasing continuous function g( t) on [to, oo) for some t0 ;::: 0 
satisfying 

(1.21) lim g(t) = 0 
t-->cxo 

such that the following inequalities for every t ;::: t 0 : 

(1.22) bof(t) ~ b(t) ~ brf(t), 

(1.23) b2f(t) ~ f(2t), 

(1.24) f(t);::: b3(t + 1)0 - 1 , 

(1.25) 
lb'(t)l 
b(t)2 ~ g(t), 
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(1.26) 21t g(s)2 
sup b(t) -b( ) ds < oo. 
t~to o S 

We easily see that the following functions satisfy the above assump-
tion on b(t). 

Example 1. b(t) = (t + 1)-" (0:::;; a< 1). 

Example 2. b(t) = (t + 1)-" log(t + 2) (0 :::;; a < 1). 

Example 3. b(t) = (t + 1)-"(sin(t.B) + 2) (a, (3 > 0, a+ 2(3 < 1) 

Example 4. b(t) = (t + 1)-"'(sin(log(t + 1)) + 2) (0:::;; a< 1). 

Here we note that b(t) in Examples 1 and 2 also satisfy Wirth's 
assumption. However b(t) in Example 3 does not satisfy (1.14) (nor 
(1.20)) nor (1.16), and b(t) in Example 4 does not satisfy (1.14) (nor 
(1.20)). 

Chill-Haraux [3] obtained the estimate (1.13) as follows: They 
showed that the restriction of each of the solutions of (1.1) and (1.2) 
with b( t) = 1 in high frequency region decays exponentially, by using 
the energy method. In low frequency region, they estimated the dif
ference between solutions of (1.1) and (1.2)-(1.3) by using an explicit 
formula of the solution of the dissipative abstract wave equation (1.1) 
with b(t) = 1. Wirth [10] obtained the decay estimate (1.19) by us
ing the WKB-representation of the solutions. Here, we use a different 
method. We show that the restriction of the each solution of (1.1) and 
(1.2) in high frequency region decays exponentially by using the energy 
method similar to [3], with the separating points and the energy de
pending on t. We cannot use the method of [3] for the estimate in low 
frequency region, since we do not have the direct representation formula 
as in [3], of the solution of (1.1) for general function b(t). We transform 
the equation (1.1) into a system of integral equations, and from integral 
inequalities we give the decay estimate of the difference of the solutions 
in low frequency region. 

As applications, we obtain the estimate of the difference between the 
solution of the initial boundary value problem (1.4)-(1.5) with boundary 
condition (1.6) or (1. 7) and the solution of the corresponding parabolic 
equation (1.8)-(1.10) with (1.11) or (1.12), respectively. 

Throughout this paper, we assume that b(t) satisfies (1.21)-(1.26), 
and consider the solution of (1.1) as the mild solutions, the unique exis
tence of which is well-known. As is well-known, if the initial data (uo, u1 ) 

belongs to V(A) x V(A112 ), then the solution becomes the strong solu
tion. 
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Last we note that, independently of Wirth [10], we gave in [11] the 
detailed proof of corresponding theorems under the following assumption 
on b(t) : b(t) is a C 1 function on [0, oo) satisfying the following. 

(1.27) 

(1.28) 

where 0 <a< 1, bo, b1 , b2 > 0 are constants. 
It is easy to see that the assumption (1.27) and (1.28) is stronger 

than the assumption (1.21)-(1.26). 

§2. Results 

2.1. Abstract theorems 

Our main result in this paper is the following, which gives the es
timate of the difference between the solution u(t) of the abstract wave 
equation (1.1) and the solution v(t) of the corresponding abstract para
bolic equation (1.2)-(1.3): 

Theorem 1. Let (3 and 1 be arbitrary non-negative numbers. Let To 
be an arbitrary positive number. Then there exists a positive constant C 
such that the following estimates hold for every (u0 , u 1 ) E (V(A.8+ 112 ) n 
R(A')) x (V(A!3) n R(A')): 

(2.1) 

IIA!3(u(t)- v(t))ll 1; 2 

1 (b(t))/J+r ~ C tb(t) -t- (lluoll/3+1/2 + lluoll + lluiii 13 + llihll), 

for every t 2: To, where u and v are the solution of the equation (1.1) 
and (1.2)-(1.3) respectively, and uo and u1 are elements of H such that 
u0 = A 1 u0 and that vo = A1 v0 respectively. Here R(A') denotes the 
range of A'. 

Remark 1. If 0 is an eigenvalue of A and 1 > 0, then the elements 
u0 and vo are not determined uniquely. 

Remark 2. By the same argument as in the proof of Theorem 1.3 by 
Chill-Haraux [3], we have the individual estimate by using the estimate 
(2.1), 

( t ) /J+r 
t~~ tb(t) b(t) IIA!3(u(t)- v(t))ll 112 = 0, 
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for each fixed initial data (u0 , u1) E (V(Ai3+1/2 ) n R(A')) x (V(Ai3) n 
R( A 1 )). Similar individual estimates hold in Theorem 2 and corollaries. 

Remark 3. Taking f3 = '/ = 0 in Theorem 1, we obtain 

(2.2) llu(t)- v(t)ll 1; 2 ::; C b(~)t (lluolll/2 + llulll) 

for every t ::=: T0 . By the assumption (1.22) and (1.24), we have tb(t) ::=: 
bob3 (t+ 1 )11 ( 8 > 0) fort :::: to. On the other hand, when 0 is an eigenvalue 
of A or belongs to the essential spectrum of A, we easily see that 

lim sup sup llv(t)ll = 1. 
t-->oo llv(O) 119 

Hence the solution of (1.2) and therefore the solution of (1.1) itself are 

not bounded by C (11uoll 1; 2 + llulll) jtb(t). Thus, (2.2) implies the dif

fusion phenomenon of (1.1). 

Next we obtain that if the initial data belongs to R(A1 ), the solution 
itself decays faster accordingly to T 

Theorem 2. Let f3 and'/ be arbitrary non-negative numbers. Then 
there exists a positive constant C depending only on a, /3, "(, b0 , b1 ,b2 

and the operator A, such that the following estimates hold for every 
(u0 , u1) E (V(AJJ+l/2) n R(A1 )) x (V(AJJ) n R(A1 )): 

(2.3) IIA,au(t) II 

::; C (1 + b(t)) -,6 (lluoll,a + lluoll + lludmax{,6-~,o} + llu1ll) 

- 1 
for every f3 such that 0 ::; /3 ::; f3 + 2, 

for every t ::=: 0, where u is the solution of equation (1.1) and u0 and u1 

are an element of H such that uo = A1 uo and u1 = A1 u1 respectively. 

2.2. Application to dissipative wave equations in exterior 
domains 

Throughout this subsection, let f2 be an exterior domain in JRn with 
smooth boundary an. 

We can apply our abstract theorems to the problems for wave equa
tions with dissipative term in exterior domains (or in the whole space) 
(1.4)-(1.5) with Dirichlet boundary condition (1.6) or with Robin bound
ary condition (1.7). 
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Before stating our results, we introduce some notations. For s 2:: 0, 
let 

H8(1Rn) = {f E S'(JRn) I (~)8 j E L2(JRn)}' 

with the norm IIJIIHs = 11(~) 8 fll£2· For s <~,let 

If8(1Rn) = {f E S'(IRn) ~~~~8 j E L2(1Rn)}, 

with the norm IIJIIJis = 111~1 8 fll£2 (see Bergh-Lofstrom [1, Chapter 6] 
and Bourdaud [2]). Let 

H 8(n) = {! I ::lg E H 8(1Rn) such that gjn = /}, 

with the norm IIJIIHs(f!) = inf { llgiiHs(JRn) I gin = f }· 

Remark 4. If 0 ::; 1 < n/2, Hardy's inequality implies the following 
continuous embedding: 

(2.4) 

for p E (1, 2] and J.l 2:: 0, where 

Let An and AR be operators defined in the introduction of this 
paper. The characterization of the fractional powers of An and AR 
given by Fujiwara [4] and Grisvard [5] yields the following: 

(i) (The Dirichlet boundary condition) 

V(A~) ={u E H 2f3(n); ( -~)ku(x) = 0 on an 

for every non-negative integer k such that k < (3 - ~} 
1 

(for (3 2:: 0 such that (3- 4 rf. N U {0} ); 

V(A~) ={u E H 2f3(n); (-~)ku(x) = 0 on an 

for every non-negative integer k such that k < (3- ~, 

and In((~) l((-~)f3-!u(xWdx < oo} 

1 
(for (3 2:: 0 such that (3- 4 EN U {0} ). 
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(ii) (The Robin boundary condition) 

a 
D(A~) ={u E H 2!3(f!); (a11 u(x) +a(x))(-~)ku(x) = 0 on an 
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for every non-negative integer k such that k < (3 - ~} 
3 

(for (3 ~ 0 such that (3- 4 1- N U {0} ); 

a 
D(A~) ={u E H 2!3(f!); (a11 u(x) +a(x))(-~)ku(x) = 0 on an 

for every non-negative integer k such that k < (3 - ~, 
r 1·au {33 2 

and Jn ((x) I( a( + a(x))( -~) -4u(x)l dx < oo} 

3 
(for (3 ~ 0 such that (3- 4 EN U {0} ). 

Taking A = AD or AR, Theorem 1 with "' = 0 yields the decay 
estimate of the difference between the solutions of the dissipative wave 
equation and the solution of the corresponding parabolic equation in 
exterior domains. 

Corollary 1. Let A= AD or A= AR. Let (3 be an arbitrary non
negative number. Let T0 be an arbitrary positive number. Then there 
exists a positive constant C such that the following estimates hold for 
every (uo, ul) E 1J(Amax{f3+1/2,1}) X 1J(Amax{f3,1/2}): 

{3 1 (b(t)){3 
IIC-~) (u(t)-v(t))jjHl :::;ctb(t) -t- (iluoiiH21l+l +llu1IIH2f3), 

for every t ~ To, where u E ni=O,l,2 Ci([O, oo ); Hmax{2f3+1, 2}-i(O.)) is 
the solution of the .equation (1.4)-(1.5) and v E C 1 ((0, oo); H 2 (f!)) n 
C([O, oo); L2 (0.)) is the solution of the parabolic equation (1.8)-(1.10), 
with the boundary conditions (1.6) and (1.11) in the case A= AD, and 
with the boundary conditions (1.7) and (1.12) in the case A = AR re
spectively. 

Next we consider the problem in the whole space. Let 

(2.5) H = L 2(JR.n), A= -~ with domain D(A) = H 2 (JR.n) 

Then D(A~') = H 2"Y(JR.n) and R(A~') = .H- 2~'(JR.n) n L2(JR.n) for"'~ 0. 
Hence, Theorem 1 implies the decay estimate of the difference between 
the solutions of the dissipative wave equation and the solution of the 
corresponding parabolic equation in the whole space. 
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Corollary 2. Let f3 and 1 be arbitrary non-negative numbers. Let 
To be an arbitrary positive number. Then there exists a positive constant 
C such that the following estimates hold for every (uo, ul) E 

(H2.8+l(JRn) n J:{-21'(JRn)) X (H2.8(JRn) n I:{-21'(JRn)): 
(2.6) 

11(-~).a(u(t)- v(t))IIHl 

( b(t)) .8+1' 
~ C -t- (iluoiiH2f3+1 + lluoiiJ{-2-r + llutiiH2f3 + llutiiJ{-2-r) 

for every t ~To, where u E ni=o, 1,2 Ci([O, oo); H 2.8+l-i(JRn)) is the so
lution of the equation (1.4)-(1.5) with n = IRn, and 
v E C 1 ((0, oo); H 2 (1Rn)) n C([O, oo); L 2 (1Rn)) is the solution of the para
bolic equation (1.8)-(1.10) with !1 = IRn. 

Remark 5. Under the assumption (1.22)-(1.23) for monotone de
creasing function f, the decay order of (2.6) with f3 = 1 = 0 is same as 
that of (1.19) by Wirth. 

By taking A = AD or AR, Theorem 2 with 1 = 0 implies the 
following estimate of the solution of the dissipative wave equation. 

Corollary 3. Let A= AD or A= AR. Let /3 be an arbitrary number 
such that /3 ~ ! . Then there exists a positive constant C such that the 
following estimates hold for every (u0 , u1 ) E V(A.B+l/ 2 ) x V(A.B): 

11(-~).Bu(t)ll£2 ~ C (1 + b!t)) -,8 (iluoiiH2f3 + lluliiHmax{2/3-l,o}) 

for every t ~ 0, 

for every f3 such that 0 ~ f3 ~ /3 + ! , where 
u E ni-o 1 2 Ci([O, oo); H 2.8+1-i(D)) is the solution of the equation (1.4)
(1.5), :;;ith' the boundary condition (1.5) in the case A= AD, and with 
the boundary condition (1.7) in the case A= AR respectively. 

In the same way as in Corollary 2, Theorem 2 yields the following 
decay estimate of the solution of (1.4)-(1.5) with n = IRn. 

Corollary 4. Let /3 be an arbitrary number such that /3 ~ ! . 
Let 1 be arbitrary non-negative numbers. Then there exists a positive 
constant C such that the following estimates hold for every ( u0 , u 1 ) E 
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(H2.8+l(JR.n) n j[-2'Y(JR.n)) X (H2,8(JR.n) n j[-2-y(JR.n)): 

II( -~)13 u(t)ll£2 ~ C ( 1 + b(t)) -/3--r (lluoiiH2f3 + lluoiiJi-2-, 
(2.7) 

+ lluliiHmax{2{3-l,O} + lluii!If-2"1) 
for every t ~ 0, 

for every f3 such that 0 ~ f3 ~ {3 + ! , where 
u E n. Ci([O oo)· H 2!3+1-i(JR.n)) is the solution of the equation 

t=0,1,2 ' ~ 

(1.4)-(1.5) with n = JR_n. 

Remark 6. If we take f3 = 0 in (2.7), we have 

llu(t)ll£2 
(2.8) ~ C (1 + b(t)) --r (lluoll£2 + lluoiiii-2-r + lludl£2 + lluii!Ji-2"1) 

for every t ~ 0, where u is the solution of the equation (1.4)-(1.5) with 
n = JR_n. Hence by (2.4)' if Uo and Ul belong to L~ (JR.n) of (2.4) with 'Y 
replaced by 2"( for 0 < 2"( < n/2, then llu(t, ·)11£2 decays as (1+t/b(t))--r. 
Wirth [10] obtained similar estimate 

(2.9) 

llu(t)ll£2 

~ C ( 1 +lot b~~)) --r (lluoll£2 + lluoiiJi-2"1 + llud£2 + lluii!Ji-2"1) 

for every t ~ 0, under the assumption (1.14)-(1:17) and f0
00 bls) ds = oo. 

Estimates (2.8) and (2.9) are equivalent, under the assumption (1.22)
(1.23) iff is monotone decreasing. 

§3. Sketch of the proof of Theorem 1 

3.1. Reduction of the equations to ordinary differential 
equations 

Chill-Haraux [3] derived an ordinary differential equation from (1.1) 
by using the spectral theorem for self-adjoint operators. We also use 
the spectral theorem as in [3]. The self-adjoint operator A is unitarily 
equivalent to a multiplication operator on some £ 2 space, by the spectral 
theorem (see Reed-Simon [9, Theorem VIII.4, p. 260]). Namely, we can 
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identify H as H = L 2 (E, dJ-L) on a measure space (E, J-L) and A as the 
multiplication operator as follows: 

(Au)(~)= a(~)u(~) (~ E E, u E V(A)), 

where a is a nonnegative J.-L-measurable function, and 

D(A"Y) = L 2 (E; (1 + a21')dJ-L) for 'Y ~ 0. 

Then the equation (1.1) is equivalent to 

(3.1) { 
u"(t, ~) + b(t)u'(t, ~) + a(~)u(t, ~) = 0, 

u(O,~) = uo(~), u'(O,~) = u1(~), 

for every fixed ~ E E, where 1 means the derivative by t. Also, the 
equation (1.2)-(1.3) is equivalent to 

(3.2) { 
b(t)v'(t,~) +a(~)v(t,~) = 0, 

v(O, ~) = vo(~) = uo(~) + u1(~) J0
00 exp(- J; b(u)du)ds, 

for every fixed ~ E E. 
Chill-Haraux [3] showed that the restriction of the solutions of (3.1) 

and (3.2) with b(t) = 1 to the region {a(~)~ 1/16} decay exponentially 
for t ~ 1 by proving that some energy decays exponentially, and showed 
the estimate of the difference between solutions of (3.1) and (3.2) with 
b(t) = 1 restricted to the region {a(~) < 1/16}. Here, since b(t) decays, 
the separating point of the spectrum depends on t. 

Since bE C 1 ([0, to]; (0, oo)), we have inftE[O,to] b(t) > 0, 
suptE[O,to] b(t) < oo and suptE[O,to] lb'(t)i < oo. From these facts and that 
f(to) > 0, we can extending the function f and g on [0, oo), such that 
(1.21 )-(1.26) hold on [0, oo) by changing positive constants b0 and b1 . 

Thus, we can assume that (1.21)-(1.26) hold on [0, oo). We define the 
function A on [0, oo) by 

(3.3) A(t) = 136 b~b~f(tj2) 2 for 0 :=::; t < oo 

Put 

(3.4) 

Then A : [0, oo) ---+ (0, >.o] has the inverse function T : (0, >.0] ---+ [0, oo) 
defined by 

T(>.) = 2/-1 ( 4y')." ) for 0 < >. :=::; >.a, 
v'3bob2 
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We define the sets g+, g_ and 90 as follows: 

g_: = {(t,~) E [O,oo) x E;a(~) < A(t)} 

(3.5) = {(t,~) E [O,oo) x E;a(~):::; .X0 ,0:::; t < T(a(~))} 
g+: = {(t,~) E [O,oo) x E;A(t):::; a(~)} 

For each t 2: 0, put 

(3.6) 

3.2. 

g_ (t) := {~ E E; 0:::; a(~) < A(t)} 

g+(t) := {~ E E;a(~) 2: A(t)}. 

Estimate for low frequency 
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In this subsection, we estimate the difference between the solutions 
of (3.1) and (3.2) for (t,~) E g_, 

By the assumptions (1.22) and (1.23) and the definition of A(t), we 
have 

~b(t) 2 2: ~b~b~f(t/2) 2 > 4a(~) 
for (t,~) E g_, Thus, we have 

y'b(t) 2 - 4a(~) 2: ~b(t) 

for (t,~) E g_, Put 

1 
w+(t,~): = u'(t,~) + '2(b(t) + y'b(t) 2 - 4a(~))u(t,~), 

1 
w_(t,~): = u'(t,~) + '2(b(t)- y'b(t) 2 - 4a(~))u(t,~) 

1 2a(~)u(t,~) 
- u ( t ~) + -:-;-:-~~=====:==;= 
- ' b(t) + y'b(t) 2 - 4a(~) 

Here we note that 

u(t ~) = w+(t,~) -w_(t,~) 
' Jb(t)2 - 4a(~). ' 

u' t = +- w t ( b(t) 1) 
( ,~) 2y'b(t) 2 - 4a(~) 2 -( ,~) 

2a(~) 

- Jb(t) 2 - 4a(~)(b(t) + Jb(t)2- 4a(~)) w+(t,~). 
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We see that (3.1) is equivalent to 
(3.7) 

w~ (t, ~) + b+(t, ~)w- (t, ~) = <P- (t, ~)(w+(t, ~) - w_ (t, ~)) t > 0, 

w~(t, ~) + b_ (t, ~)w+(t, ~) = ¢+(t, ~)(w+(t, ~) - w_ (t, ~)) t > 0, 

w_(O,~) = u1(~) + t (b(O)- Jb2(0)- 4a(~)) u0 (~), 
w+(O,~) = u1 (~) + "2 (b(O) + Jb2(0)- 4a(~)) u0 (~), 

where 

b+(t,~) := ~ (b(t) + Jb(t)2- 4a(~)), 

b (t 1:) ·= ~ (b(t) - vb(t) 2 - 4a(t:)) = 2a(~) 
- '" · 2 " b(t) + Jb(t) 2 - 4a(~)' 

Put 

b'±,(t) 
¢±(t,~) := Jb(t)2- 4a(~) 

- ~ (1 ± b(t) ) b'(t) 
- 2 Jb(t)2 - 4a(~) Jb(t)2 - 4a(~) · 

B±(t) : =lot b±(s)ds, 

«<>±(t) :=lot ¢±(s)ds 

1 [ ] b(t) 
= - log(r + Jr2 - 4a(~)) ±log Jr2- 4a(~) , 

2 b(O) 

and put 

[ ] 
b(t) 

ci>(t): = ci>+ + ci>_ = log(r + Jr2 - 4a(~)) , 
b(O) 

W+(t,~) := exp(B-(t,~)- ci>+(t,~))w+(t,~), 

W_(t,~) := exp(B+(t,~) + ci>_(t,€))w-(t,€). 

Equation (3.7) is equivalent to 
(3.8) 

{
W~(t, ~) = <P- (t, ~) exp((B+ - B_ + ~)(t, ~))W+(t, ~) 
W~(t,~) = -¢+(t,~)exp((B_- B+- ci>)(t,~))W_(t,~) 

W_ (0, ~) = W_ (0, ~) = U!(~) + b_ (0, ~)uo(~), 

W+(O,~) = w+(O,€) = u1(~) + b+(O,~)uo(~). 

t::::: 0, 

t::::: 0, 
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From (3.8), it follows that 

(3.9) W_(t,O = w_(o,~) 

+ lt cP- (s, a) exp((B+- B_ + <I>)(s, ~))W+(s, ~)ds, 
(3.10) W+(t,~) = G(t,~) +F(t,~), 

where 

(3.11) G(t, ~) := w+(O, ~) 

,....lot ¢+(s,a)exp((B_- B+- <I>)(s,~))dsw_(O,~), 

(3.12) F(t,~) :=-lot ls ¢+(s,a)¢-(a,~)exp((B-- B+- <I>)(s,~)) 
x exp((B+- B_ + <I>)(a,~))W+(a,~)dads. 

Then we can show that 

for (t, ~) E Q_. By the definition, it can be written as 

Jb(t)2 - 4a(~) 

_ex (- t 2a(~) ds) h(t,a(~)) G(t,~) 
- p Jo b(s) + Jb2(s)- 4a(~) h(O, a(~)) Jb(t)2 - 4a(~) 

( t 2a(~) d ) h(t, a(~)) F(t, ~) 
+ exp - } 0 b(s) + Jb2(s)- 4a(~) 8 h(O, a(~)) Jb(t) 2 - 4a(~)' 

where 
( ) 

1/2 
h(t, .\) = b(t)Jb(t)2 - 4.\ + b(t)2 - 4.\ . 

We estimate the difference between the first term of the right-hand side 
of (3.14) and 

( {t a(~) ) 
v(t, ~) = exp - Jo b(s) ds vo(~). 

By using (3.13), we estimate the second term of the right-hand side of 
(3.14). By using the integrals (3.9), we estimate w_ (t, ~) itself. Then, 
we obtain the following estimates on Q_: 
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Lemma 1. There exists a positive constant C such that 

I w+(t,O ( [ta(~)d) I 
Jb(t) 2 - 4a(~) - exp - Jo b(s) 8 vo(~) 

( a(~) 2 rt 1 ) ( rt 1 ) 
:::; C b(t)2 +a(~) Jo b(s)3 ds exp -a(~) Jo b(s) ds 

x (luo(OI +lui(~)!) 

+ C 1= exp ( -18 
b(a)da) ds!ui(~)!. 

!w- (t, 01 

:::; C (exp ( -~ 1t b(T)dT) +a(Oexp (-a(~) 1t bts)ds)) 

x (luo(~)l +lui(~)!) 

for every (t,~) E Q_. 

By assumptions (1.22) and (1.23) and the monotone decreasingness 
of j, there are positive constants c0 and C such that 

c -< -ds<C-. t 1t 1 t 
0 b(t) - 0 b(s) - b(t) 

t 1t 1 t c -- < --ds < C--
o b(t)3 - 0 b(s) 3 - b(t)3 · 

By using these inequality and the fact that sups>o s~' exp( -s) < oo for 
every fixed r :::=: 0, the next corollary follows from-Lemma 1. 

Corollary 5. Let (3 be an arbitrary non-negative constant. There 
exists a positive constant C such that 

(3.15) 

and 

(3.16) 

for every (t, ~) E Q_. 
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The sum of (3.15) and (3.16) implies the decay estimate of the dif
ference between the solution of the wave equation and the solution of 
the corresponding parabolic equation for low frequency: 

Corollary 6. Let {3 be an arbitrary non-negative constant. There 
exists a positive constant C such that 

for every (t,~) E Q_, where u(t,~) is the solution of (3.1) and v(t,~) is 
the solution of (3.2). 

3.3. Estimate for high frequency 

Let (t, ~) be an arbitrary fixed number of g+· Define the energy 
function 

for T 2': t/2, for some sufficiently small positive constant b4. Then by 
estimating the energy inequality for e( T, ~), we can prove that each so
lution of (3.1) itself has exponential decay estimate on g+· 

Lemma 2. There exists a positive constant C and c1 such that 

(3.18) 
(1 +a(~)) lu(t, ~) 12 + lu' (t, ~)1 2 

~ Cexp ( -c1(t + 1)8 ) (a(~)luo(~)l 2 + lul(~)l 2 ) 

for every (t,~) E 9+, where u(t,~) is the solution of(3.1). 

We easily see that the solution of (3.2) decays exponentially. 

Lemma 3. Let T0 be an arbitrary positive number. Let {3 be an 
arbitrary non-negative constant. There exists a positive constant C and 
c2 such that 

(3.19) 
a(~)IJ(1 + a(~)) 1/2 lv(t,~)l 

~ Cexp ( -c2(t + 1)8 ) (luo(~)l 2 + lul(~W) 112 , 

for every (t, ~) E {(t, ~); (t, a(~)) E 9+, t 2': To}, where v(t, ~) is the 
solution of (3.2). 
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3.4. Proof of Theorem 1 

Let t ;::: To be an arbitrary fixed number. 
We first prove the inequality (2.1) for"'(= 0. 
Integrating the square of (3.17) on Q_ (t), we obtain 

(3.20) 

Integrating (3.18) multiplied by a(,~i.6 on Q+(t), we obtain 

(3.21) 

Integrating the square of (3.19) on Q+(t), we obtain 

(3.22) (1 a(~) 213 (1 + a(~))iv(t,~WdJi~) 112 
~EQ+(t) 

::; Cexp (-c2(t + 1/1) (iluoll + llurll). 

Summing (3.20), (3.21) and (3.22) up, we obtain (2.1) with"'(= 0. 
Next, we consider the case"'( > 0. We apply the result (2.1) to initial 

data u0 and u1 . Let u(t) and v(t) be solutions of (1.1) and (1.2)-(1.3) 
with u0 and u1 replaced by u0 and u1 , respectively. Inequality (2.1) with 
f3 and 'Y replaced by f3 + "'( and 0 yields 

//Ai9+1'(u(t)- v(t))/1 112 

1 (b(t))/3+1' ( ) 
:S: C tb(t) -t- lluoll/3+1/2 + lluoll + llu1il 13 + llu1ll . 

(3.23) 

Since A1'u(t) = u(t) and A1'v(t) = v(t), the inequality (3.23) implies 
(2.1). 
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