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Waves in two-phase flows 
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Abstract. 

In present paper an attempt has been made to discuss weak-non 
linear waves through a two phase mixture of gas and dust particle, when 
particle volume fraction appears as an additional variable. Asymptotic 
method is used to find solution up to second order for high frequency 
harmonic waves. 

§1. Introduction 

Equations of state with one rate dependent state variable arise in the 
study of gases subject to chemical dissociation or vibrational relaxation. 
In the former case the possible effects of diffusion are normally neglected 
so that the purely chemical phenomenon is treated in isolation. Com
prehensive review articles on this field and its applications have been 
written by Lick [1]. The propagation of disturbances, governed by non
linear hyperbolic systems, may exhibit a distortion of wave profile. This 
was studied by Varley and Cumberbatch [2], Dunwoody [3], Parker and 
Seymour [4] by using theory of relatively undistorted waves as an ex
tension of the idea of Courant and Hilbert [5] for linear-waves. Sharma 
et al [6] have considered non-linear wave propagation in a hot-electron 
plasma by using theory of relativity undistorted wave. They have used a 
simple asymptotic expansion method to calculate first and second order 
solutions. 

The studies of non-linear effects on the wave propagation have been 
extensively carried out by Jeffery and Taniuti [7], Whitham [8] and 
Courant and Friedrichs [9]. If the amplitude of the disturbance is not 
sufficiently small, the wave form is also altered by non-linear effects dur
ing propagation. Vincenti and Kruger [10] and Chu [11] formulated the 
general non-linear equation for the relaxing gas flow and studied the 
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effects of relaxation on acceleration-wave during propagation and their 
termination into a shock-wave. Parker [12] has considered the effect of 
non-linearity and relaxation on the propagation of a one-dimensional 
wave. 

The study of wave-propagation in a mixture of gas and dust particle 
has received great attention. There are many engineering applications 
for flow of a suspension of powered material or liquid-droplets in a gas. 
Dusty-gas flows assume importance in such engineering problems as flow 
in rockets, nuclear-reactors, fuel-sprays, air-pollution etc. The mathe
matical analysis of two-phase flows is considerably more difficult than 
that of pure-gas flows and one of the usual simplifying assumption is 
that the volume occupied by the particle can be neglected. 

At high gas densities (high pressure) or at high particle mass-fraction, 
the particle-volume-fraction may become sufficiently large so that it 
should be included into flow analysis. Since the particle may be consid
ered as incompressible in comparison with the gas, the particle-volume
fraction enters into the basic flow equations as an additional variable. 
The interesting properties of such two-phase-flows are that even equilib
rium flow can not be treated as perfect gas flows. Effect of finite particle
volume on dynamics of gas particle mixture was studied by Rudinger 
[13]. Different aspects of particle-volume-fraction have been studied by 
different authors [14, 15, 16]. Propagation of rapid pulses through a two
phase mixture of gas and dust-particles, when particle-volume-fraction 
is negligible is studied by Sharma et al [17']. However they have used 
second order solution to describe the far field behavior of weak shocks. 

In present article an attempt has been made to discuss plane-wave 
in two-phase-flows of gas-particle mixture when particle volume fraction 
appears as an additional variable and gas is taken as dissociative di
atomic. For case, when equilibrium is eventually established equations 
of motion, wave conditions, variation of wave-strength and weak-shock
waves are discussed. Asymptotic analysis is used to find a solution up 
to second order approximation for high frequency harmonic waves. 

§2. Equation-of-Motion and Wave Condition 

The equations governing one-dimensional motion of two-phase flow 
of a gas with internal dissipation are given by 

1 
U,t + UU,x + p(1 _ t:)(1 + TJ) P,x = 0 

(2.1) 
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p 
(P,t + UP,x) + (1 _E) U,x = 0 

(2.2) 

(H,pP,t)+( H,p :..._ ~) P,t+H,cr.a,t+H,<E,t+(uH,pp,x)+u (H,p- ~) P,x 

+uH,cr.a,x + uH,<E,x = 0 (2.3) 

a,t + ua,x + f(p, p, a, E) = 0 
(2.4) 

E,t + EU,x + UE,x = 0 
(2.5) 

The above equations can be rewritten in the following matrix equa
tion 

A au + B au + c = o 
at ax 

(2.6) 

where 

UT = [u,p,p,a,E] 

and A, B, Care matrices which can be obtained from equation (2.1) to 
(2.5) by inspection, UT being a column vector. 

Here u is the material velocity, p the pressure, p the density, a an 
internal state variable which may either represent the degree of disso
ciation in a diatomic gas or be some measure of vibrational energy, E 

is the volume fraction of the particles. H = H[p, p, a, E] is the specific 
enthalpy of the system and a comma followed by an index denote partial 
differentiation with respect to that index. The propag~ttion of waves into 
an equilibrium state, defined at a point (po, Vo, ao, Eo) is given by 

f(po, Vo, ao, Eo) = 0, . (2.7) 

where V = ~ which is said to be (locally) asymptotically stable at a 
p 

constant pressure and volume. 

If¢ = <P(x, t) defines a 'wavelet' and we assume that <P,t f= 0, the 
transformation of coordinates (x, t) to (x, ¢) transforms any function X 
as 

Thus 

x(x, T(x, ¢)) = U(x, ¢) 

ax ax ar -+--
ax at ax 

au 
ax 

(2.8) 

(2.9) 
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Equation (2.6) can be written as 

(BT,x - A)U,t = BU,x + C, (2.10) 

where U must satisfy the compatibility condition 

f(BU,x +C) = 0 (2.11) 

Condition for relatively undistorted wave is defined by 

11:~11 << 11~~11 (2.12) 

where II II denotes the Euclidean norm of a vector. 

As equation (2.8) holds exactly at an acceleration wave-front prop
agating into an undistorted region in thermodynamic equilibrium and 
also on other 'wavelet' in a non-dissipative gas, U,x = 0 and hence 

x(x, T(x, ¢)) = U(¢), 

thus to a first approximation 

(BT,x - A)U,q, = 0. (2.13) 

From equation det(B- w-1 A) = 0 eigenvalues are given by 

(2.14) 

where 

and 
def 1 

J1 = 
p(1 - E)(1 + 1]) ( H,p- ~) 

aR being local resulting sound speed. 

The left eigenvector associated with eigenvalue (2.14) is given by 

- J1P H H] 
aR(1 -E) ,p ,< 

(2.15) 
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I 

Substituting (2.14) in (2.13) and using relation a'h = 'Y p, the solution 
p 

appropriate to a plane wave propagating into a region in thermodynam-
ical equilibrium is given by 

a= ao, P = pr, u = (r -1)(1 ~~;:;2(1 + 1])1/2 [/21 - P~21J } 

a'h = 1' pr-1 , and..:_=.!!.... 
t:o Po 

(2.16) 
where r = (1-t:)(1+1Jh' and po,Po and ao, t:o are the values of the state 
variables on the leading characteristic and without loss of generality the 

units of pressure have been chosen so that p~ = 1. 
Po 

§3. Variation of Wave Strength 

Since equation (2.16) gives the relations between u, p, p, a and t: 
substituting£ from equation (2.15) into equation (2.11) we have 

U,x-~{aR(u:aR)}H,of(p,p,a,t:) = 0 (3.1) 

where 

2r1/ 2 [r+1 r-1 r-1] 
u + aR = (r- 1)(1- t:)1/2(1 + 1])1/2 -2-p_2_ -Po 2 (3.2) 

and 

(ar) 1 ax =(u+aR)-. (3.3) 

Equation (3.1) can also be written as 

1 ( aR ) u +- ---,x 2 u +aR 
a1 { (1- t:)H ·} 

(aJ +a~) pH,p ,o f(p, p, a, t:) 0, (3.4) 

where 
_J.LpH,p- Ht:H 

1 r- ,€ -t: 
and 

2 -J.LpH,p a2 
af = , P 1-t: 

Introducing linearization 
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etc. 

and 
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Equations (3.4) and (3.3) reduces to 

aul + ~( 1 _Eo)~ (H,01.) 
ax 2 aRo H,p 0 

{(a I) 2 (a I) Eo (a I) } 
X ap o aRo + ap o + Po aE o 

aT _1 { r + 1 } - = aR 1--- Ul ax 2aR0 

0 (3.5) 

(3.6) 

respectively where it has been assumed that l(p, p, a, E) may be ex
panded in terms of its arguments at equilibrium. 

Integrating equation (3.5), we have 

u1 = g(¢) exp[->.(x- x*)], (x ~ x*) (3.7) 

where 

). = ~(1 - Eo)-1 (H,01.) { (a1) ah. + (a1) +Eo (a1) } 
2 aRo H,p 0 ap 0 ° ap 0 Po aE 0 

and g((/J) = u1(x*, t), i.e. ¢is the time that a "wavelet" leaves the station 
x* when ). will be positive. On substituting equation (3. 7) in equation 
(3.6) and integrating the equation of any "wavelet", ¢ =constant, we 
have 

aR0 (T-¢) = (x-x*)+ f+~ g(¢)(exp{-.X(x-x*)}-1). (3.8) 
2aRo/\ 

The formation of a shock wave is characterized ~~ = 0 so that by 

(3.8), if g'(¢) > 0 (the prime denoting differentiation with respect to¢) 
we have 

aT = 1 + (f + ;)g}¢) (exp{ -.X(x- x*)}- 1) = 0. (3.9) aq; 2aRo 

Value of x at which shock wave will occur can be obtained by putting 
¢ = 0 in equation (3.9). The acceleration on any characteristic or wavelet 
is obtained from (3.7) as 

aul I (aT) -l at = g (¢) aq; exp{ -.X(x- x*)}. (3.10) 
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Along the leading wave or wave front the strength of the discontinu
ity in acceleration is obtained through (3.9) and (3.10) by the relation 

aau11 = g'(O) exp{ ->.(x- x*)} 
t </>=0 

x { 1 + (r ;a~og~(O) (exp{ ->.(x- x*)}- 1)} -1 
(3.11) 

The relatively undistorted approximation is valid if 

I 
g' ( ¢) 1 ( (r + 1) * ) aT 

g(¢)aRo>. >> 1 + 2aRo g(¢) exp{ ->.(x- x )} a¢' (3.12) 

which is satisfied automatically at a wave front ¢ = 0 or near a shock 

where ~~ = 0. It is also satisfied in the degenerate case of (aR0 >.)---> 0 

in which case the results for an ideal classical non-dissipative gas are 
obtained. 

aT 
At x = x* 0 

= ' a¢ 1 the approximation is valid if the local 

frequency 

WL = ~~(~;I>>(~~) aRoA = aRaA· (3.13) 

The validity of the approximation may be extended to all values of 
( x, ¢) provided 

(3.14) 

where M is finite, and (3.13) is satisfied. 

The condition (3.14) may be satisfied by small amplitude high fre
quency sound waves, i.e. the frequency is high in a sense relative to the 
natural time (aR0 >.)- 1 . The relation (3.13) suggests a parameter for an 
asymptotic analysis. 

§4. Weak Shock Wave 

It may be shown that the behavior of dissipative gas through a shock 
is exactly similar to that of its non-dissipative counterpart. In particular 
the relations 

[a] = 0 [S] > 0 
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where the [ ] brackets denote the discontinuity in a variable across the 
shock, must hold. For weak shock the entropy jump is third order in 
the density jump, while the shock speed u is that of the local resulting 
speed of sound to a first approximation i.e. u ~ aR S being entropy. 

In the limits of weak shocks the relations (2.16) appropriately when 
linearized satisfy the compatibility condition which must hold across a 
shock, i.e. the jumps in any variable when computed from (2.16) for two 
values of ¢ satisfy these conditions. 

Since two characteristics, say ¢1 and ¢2 coalesce at a shock it follows 
from (3.7) that 

[u] = [g(¢1)- g(¢2)] exp{ -A(x- x*)}. 

The speed G of the shock surface is then given by 

1 
G = 2{(aR1 + u1) + (aR 2 + u2)}. 

To a first approximation and through (3.3) the relation 

1"' 1( f+1 *) G = aRo 1- 4aRo {g(¢1) + g(¢2)} exp{ -A(x- x )} 

can be derived. 

Through (3.8) it is implied that at the shock 

( 4.1) 

( 4.2) 

(4.3) 

¢1-¢2 r + 1 = ---(exp{ -A(x- x*)}- 1). (4.4) 
g(¢1)- g(¢2) 2ah0 A 

where (x1, ti) and (x2, t2) are the coordinates of a point on ¢1 and ¢2 
and at shock t1 = t2 and x1 = x2. 

In general characteristics have the explicit form 

t = f(x, ¢) + ¢ (4.5) 

and any curve intersected by these curves may be represented in ( x, ¢) 
coordinates. Since the shock will be described by a curve t = s(x) it 
follows from ( 4.5) and the implicit function theorem that along the shock 

¢ = w(x). ( 4.6) 

Therefore on the shock wave we have 

t = f(x, w(x)) + w(x). 
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Considering the specific form of (4.5), which is (3.8), we derive a 
further relation for the shock speed 

1 ds(x) f"V -1 { r + 1 * } - = -- = aR 1- --g(¢)exp{-A(x- x)} 
G dx 0 2aRo 

{ f+1 }d¢ + 1 + 2a1zo A g'(¢)(exp{ -A(x- x*)}- 1) dx (4.7) 

which hold for both the ¢1 and ¢2 sets of characteristics or wavelet. 
Equations (4.3) and (4.7) then imply that on the shock the relation 

{g(¢1)- g(¢2)- (¢1- ¢2)9'(¢1)} dx1 

= {g(¢2)- g(¢1)- (¢2- ¢I)g'(¢2)} d: (4.8) 

must be satisfied by ¢1 and ¢2, and the shock path is then determined 
by (3.8), (4.4) and (4.8). 

In the case of a shock propagating into an undistorted region equa
tions ( 4.3) and ( 4. 7) yield the relation 

- r + 1 g(¢2) exp{ -A(x- x*)} 
4a2 Ro 

+ { 1 + ~~ ~ g'(¢2)(exp{ -A(x- x*)}- 1)} dx2 = 0 (4.9) 

as ¢1 = 0, after integration we have 

f+1 _ f'"•g(s)ds 
- 2aJzoA (exp{ -A(x- x*)}- 1) - 2 Jo g2(¢2)" (4.10) 

This result is similar to that obtained by Whitham [18] whose result 
follows from (4.10) (in the limA--+ 0). Taking the limit of (4.10) as ¢2 
tends to zero, we find 

lim ¢2 --+ o 2141
• ~~~~:; = {g'(o)}-1 (4.11) 

which confirms the result obtained from (3.9) viz that the shock first 
aT . . 

occurs when a¢ = 0. If the compressive phase of a wave 1s followed by 

one of the rarefaction, then g( ¢) has a zero and some of the wavelets in 
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the neighborhood of this zero wavelet will not catch up the shock. It 
follows that the integral in (4.10) is bounded and that at large distance 

{ 
f+1 }-1/2 

g((h) ex: --2 - (exp{ -.\(x- x*)}- 1) 
2aRo.\ 

( 4.12) 
From (3.7) and (4.12) it follows that 

1 

[u] ex: {~aho~ (1-exp{-.\(x-x*)})exp{2.\(x-x*)}}- 2 (4.13) 

Similarly the distance by which the shock is ahead of the zero 
X • 

"wavelet" t = ¢0 + So mcreases by an amount 

{ f+1 }-! 
L ex: 2ako.\ (1- exp{ -.\(x- x*)}) (4.14) 

In limit >. ----+ 0, all the above results reduce to those obtained by 
Whitham [18] for a nondissipative ideal gas. 

§5. Asymptotic Analysis 

The analysis in article three has suggested a parameter aR0 A with 
which we form an asymptotic analysis. It was seen there that the "undis
torted" approximation was valid provided (3.13) and (3.14) were satis
fied. In this section the propagation of "high frequency" harmonic wave 
is considered . At x = 0, the initial conditions are taken to be 

so that a given wavelet is described by (3 =constant and the conditions 
. w 

(3.13) and (3.14) are seen to be satisfied for --, >> 1. The constant 
aR0 A 

0' is then maximum acceleration and is finite. 

Again applying the transformation of article two we have 

t = T(x,(J,w). (5.2) 

Equations (5.1) and (5.2), imply the further boundary conditions 

(5.3) 



Waves in Two-phase Flows 313 

In terms of characteristic co-ordinates the equations (2.13) and (2.14) 
become 

u 

(B_aT -A··) auj 
~J ax ~J a{J 

aT 
ax 

~~ (Bij ~; + ci) } 
= (aR + u)-1 

Considering asymptotic expansion of the form 

N N 
L '1/Jnun(x, {3), P = Po+ L '1/JnPn(x, {3) 
n=l n=l 

N N 

(5.4) 

p Po+ L '1/JnPn(x,{J), aR = aRo + L '1/JnaRn (x, f3) 

T 

n=l 
N 

O:o + L '1/Jno:n(X, {3), 
n=l 

N 
To(x) + L '1/JnTn(x, {3), 

n=l 

n=l 
N 

f = L '1/Jn fn(X, {3) 
n=l 

N 
t = to+ L '1/Jntn(x, {3) 

n=l 
(5.5) 

as suggested by the conditions (5.1) and (5.3), the constants appearing in 
(5.5) are the equilibrium values of the respective variables and 'ljJ = w- 1, 

where successive terms are such as Un and Un+l have the ratio UUn = 
n+l 

O(aR0 A). For each eigenvalue there exists a left eigenvector £. Since 
there is an asymptotic expansion for each eigenvalue it is implied that a 
similar expansion exists for£, viz. 

N 

f = fo + L '1/Jnfn. (5.6) 
n=l 

Also, on any characteristic curve the relations 

0 (5.7) 

must hold. 

Equations (5.4), (5.5) and (5.6) from the basis of the approximating 
scheme. 

Zeroth Approximation 

On substituting (5.5) into (5.4) and equating coefficients of zero 
powers of 'ljJ equal to zero in both the resulting relation and (5.7), we 
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obtain 

(5.8) 

{ aTo } 
flo Bo ax - Ao 

The solution of these equations, appropriate to the boundary con
ditions are 

To = 
X 

and 

flo [ Po (H ) JLoPo (H )2 JLoPo (H ) 
-1 - ,p 0, - (1 ) ,p 0' (1 ) ,p o, - Eo aR0 - Eo aRo - Eo 

JLoPo JLoPo ( ) ] - (1 ) (H,p)o(H,a)o,- (1 ) H,p o(H,a)o 
aRo - Eo aRo - Eo 

(5.9) 

First Approximation 

Similarly by equating coefficients of the first power of 1/J equal to 
zero, we have 

aT(ll -2 
-!)- = -(aR1 + ur)aR 

ux 0 

(o) !)u(lJ 

( (o) aT _ (o)) _u_1 _ _ 
Bij ax Aij a(3 - 0 

gtoJ B(o) - 1- + c(ll = o 
t t) ax t 

{ 
au(l) } 

fl(o) {s(oJ aT(ll + B(lJ aT(o) _ A (lJ} + fl(lJ {s(oJ aT(o) _ A (oJ} = 0 
t t) ax t) ax t) t t) ax t) 

(5.10) 
The first three of equations of (5.10) and the appropriate boundary 

conditions from (5.1) and (5.2), viz u 1 = O"sin(3, T1 = (3, give the 
solution 

(5.11) 
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Also we have the relation that 

(5.12) 

constant 

£(1) (5.13) 

where 
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By reference to the solution in article three, it is implied by (3.9) that 
shocks will occur on all wavelets for which g' (;3) is maximum, i.e. on 
;3 = 2Iln (n = 0, 1, 2, · · ·) and will first be located at the station 

_ 1 ( 2a'ko .X ) 
x - - :\" log 1 - (r + 1 )0" . (5.14) 

Also through ( 4.3) it is seen that the shock formed on ;3 = 2Iln 
(n = 0, 1, 2, · · ·) propagate with the speed of sound and so a constant 
distance apart. The leading shock however moves ahead of that on 
;3 = 2II as indicated by (4.14). 

Any two wavelets ;32 = 2IIn + ¢ and ;31 = 2Iln - ¢ with n -!=- 0 
coalesce with the shock at the same instant and the substitution 

g(/32) = -g(/31) = w-10" sin¢ 

satisfy ( 4. 7). By ( 4.4) these two wavelets reach the shock where 

r + 1 (exp[-.X(x- x*)]- 1) = --~-
2a'ko .X O" sm ¢ 

(5.15) 

(5.16) 

Therefore it is implied by (5.16) and (4.1) that the strength of these 
shocks 
;3 = 2Iln (n = 0, 1, 2, · · ·) decay as 

[u] ex exp{ -.X(x- x*)} 
1- exp{ -.X(x- x*)} 

Those wavelets ;3 which lie in the region 

(2n - 2)II + ¢ < ;3 < 2nii - ¢ (n=1,2,···) 

never coalesce with a shock and so form the expansion separating the 
shocks. 

Second Approximation 

The analysis required to obtain the full approximation in this case 
is algebraically complicated but as it is of interest to enquire into the 
behaviour of variable o:, which has remained constant up to the first 
approximation, this will now sketched out. The second order equations 
are 

(5.17a) 
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{ col arcoJ - coJ} aupl 
BiJ ax AiJ a(J 

__ { col ar(ll (1J arcoJ _ c1J} aupl 
- BiJ ax + BiJ ax AiJ a(J 

arC1l ( coJ aupl (1J) 
+ a(J BiJ ax + Ci (5.17b) 

gcoJ BcoJ _J_ + c(2l = _gcoJ B(1J _J _ _ gC1l BcoJ _J_ + c(ll { 
auc2J } auc1J { au(ll } 

t t} ax t t t} ax t t} ax t 

(5.17c) 
while the remaining equation for £(2) is not considered. 

Employing (5.11) and (5.12) and integrating we get 

-u(2) + p(2) 

p(0)a~)(1- E(0))(1 + TJ) 

= {!3 [-a~) A {1 + r(~ 21 g'(r)(exp(-As) -1) 
lo 2aR A 

+ r ~0~ g'(r)[exp(-As)]}] g(r)[exp(-As)]dr. 
2aR 

p(o)u(2) (2) 

a~)(1- E(O)) - p 

= {!3 [-p(O)A{1+ f+ 2
1 g'(r)(e(->-.s) -1)} lo 2a(o) A 

R 

(5.18a) 

+p(O)g'(r)(e(->-.s) - 1) X { f + 1 - 2 }] g(r)e(->-.s) dr 
2 1- E{O) 

(5.18b) 

() -1{3 p(O) [ f+1 I (->-.s) l -a 2 - (0)"" 1 + (0) 2 g (r)(e - 1) h(s, r) dr (5.18c) 
o aR 2aR A 

E{0)~{2) -E{2) = {{3 [-E(O)A{1+ f~21 g'(r)(e(->-.s) -1)} 
a( l lo 2a( l A 

R R 

+(~a~)~) g'(r)e->-.s] g(r)e(->-.s) dr, (5.18d) 
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where 

g({3) = u sin({J) 

h(s, {3) = [(8f) a~) 2 + (8f) + E(:) (8f) ] g({3)e->.s 8p 0 8p 0 p( ) 8e 0 

and 

s X-X * 

From equation (5.17c), we have following equation 

(5.19) 
Integrating equations (5.19) with respect to x, we have 

(5.20) 

where A1, B1, B2, B3 are constants which can be obtained from equation 
(5.19) by inspection and B4 is constant of integration. Substituting value 
of u(l) and p(l) from equations (5.11) and (5.12), we have a relation 
between p( 2) and u(2). Solving resulting equations and equation (5.18a), 
we have u(2) and substituting the value of u(2) in equation (5.18), we 
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can find p(2), p(2), E(2), the required second order solution, where £(1) 

given by 

g(1) = -X(1) aR _ aR x(o) aR _ !!:._ [ 
(0) (0) ( (1) (1)) 

p,(O) p,(O) a~) p,(O) ' 

X(o)(H )(1) + xUl(H )(o) -X(1) 
,p ,p ' ' 

X(o)(H,a)(1)- X(1l(H,a)(o)' 

-X(o)(H,,)(1)- X(1)(H,,)(O)], (5.21) 

where 
X 
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