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Semi-classical analysis of the Hartree equation 
around and before the caustic 

Satoshi Masaki 

Abstract. 

We consider the asymptotic behavior of the solution to the semi­
classical Hartree equation in the limit of short wave length, with an 
initial data which causes focusing at a point. It is known that there 
exists a critical index which indicates whether or not the asymptotic 
behavior reflects the effect of the nonlinearity in the neighborhood of 
the caustic. Investigating time range where the nonlinear effect ap­
pears, we improve previous convergence results. In particular, we show 
that the solution behaves as a free solution before the caustic in some 
super critical cases. 

§1. Introduction 

This paper is devoted to the study of the asymptotic behavior of 
the solution to the semi-classical Hartree equation 

(HE"') { i:8tu"' + ~c:2~~"' = >.c:"'(lxl-' * lu"'l 2)u"', 
ult=0 (x) = e 2e f(x). 

as positive parameter c: goes to zero. Here u"' is a complex function de­
fined in n + 1 dimensional space-time, at denotes the time derivative, ~ 
denotes the Laplace operator in JRn, and >. is a real constant. The initial 
datum f belongs to :E := H 1 n :F(H1 ), where :F denotes the Fourier 
transform. a and 1 are two positive constants, which characterize the 
size of nonlinearity and the long distance behavior of interaction, respec­
tively. In particular 1 distinguishes between the short range case and 
the long range case. 

In three dimensions, for the case where we convolute with the New­
tonian potential lxl- 1 , the Hartree equation is the Schrodinger-Poisson 
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system: 

(t, x) E JR.l+3 

(1.1) 

This equation arises typically if we consider the quantum mechanical 
time evolution of electrons in the mean field approximation of the many 
body effect, modeled by the Poisson equation. The parameter c cor­
responds to the Planck constant and the limit c ---+ 0 is known as the 
semi-classical limit. It is relevant when coupling quantum models to 
classical models. 

Up to a constant, the equation (1.1) is equivalent to the Hartree 
equation 

(1.2) 

We restrict our attention to the case that initial data have the form 
u6 = ca12 e-x2 12£ J, where f is independent of c and a > 1. Note 
that "small data" is equivalent to "small nonlinearity", since, denoting 
c-a1 2u£ by again u'", we see that (1.2) becomes 

{
i:OtU£ + ~~:2~Uc: = ca(lxl- 1 * luc:l 2 )uc:, 

ult=O = e 2s f. 
(1.3) 

Now, we will consider the semi-classical Hartree equation (HEc:) which 
has more general nonlinearity. 

One seeks in general a solution of the form 

(1.4) u t,x rv u t,x,--- ' c:( ) ( ¢(t,x)) 
E-+0 C 

for some profile U independent of c. The phase ¢ solves an eikonal 
equation. Since the initial datum of uc: has quadratic oscillation, ¢ has 
a singular point, where the asymptotic expansion of geometrical optics 
ceases to be valid ( [ C 1]). This phenomenon is well understood for linear 
equations. However, for a nonlinear equation, few results are available. 
In general, it is known that there exist two distinct notions of critical 
index depending on the equations, the nonlinearity, the amplitude of the 
initial datum and the geometry of propagation. One critical index tells 
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us whether or not the nonlinear term is negligible outside the caustic, 
and another one tells the same argument near the caustic. In the case 
of Hartree equation, the first distinction is whether a is greater than 1 
or not, and the second one is whether a is greater than 'Y or not. Such 
distinctions were proved by Joly, Metivier and Rauch ([JMR4]) for some 
nonlinear wave equations, and by Carles ([C1, C2]) for some nonlinear 
Schrodinger equations. In particular, Carles and Lannes present a gen­
eral formulation, and apply it to Hartree equations and Klein-Gordon 
equations ([CL]). 

The aim of this paper is to improve the results of [CL]. We treat 
only the case a > 1 (" linear propagation ", see [C1, CL]). Roughly 
speaking, in [CL] they introduce the scaling 

(1.5) I ( t-1 X) u"'(t, x) =e-n 2'1/J"' -c-, "i , 

and consider the equation for '1/J"': 

(1.6) {
i8t'I/J"' + ~~'1/J"' = Ac"~"~~lxl--y * I'I/J"'I2)'1/J"', 
·'·"' (x) = 10nf2e-•"'x f2J(cx) '~-'lt=-1/e · 

Note that the equation of '1/J"' has no parameter in its linear part, and 
the size of the L 2 norm of its initial data is independent of c. Therefore, 
it seems to be natural that if a > "(, the nonlinear term is negligible, 
and that if a = "(, it is not negligible, which follows from the results 
on (usual) Hartree equations. Moreover, since (t- 1)/c goes to -oo (if 
t < 1) and oo (if t > 1) as c ---+ 0, the nonlinear effect near the caustic (it 
causes the change of asymptotic behavior) is described by the scattering 
theory in the case a = "(. However, this argument is not suitable for 
the case a < 'Y since the right hand side of the first line of the equation 
(1.6) diverges to oo as c ---+ 0. Obviously, strong nonlinear effect should 
happen. 

Our strategy is based on a converse idea, that is, we shall adapt the 
methods of usual Hartree equation to the original equation (HE"'). It 
enables us to prove the convergence of the solution u"' to a free solution in 
a stronger topology than that in [CL] (see Theorem 3.5 and Remark 3.6). 
Moreover, we can prove that the solution behaves as a free solution also 
in some supercritical case (the case a<"(: Theorem 4.1). As above, in 
supercritical case we encounter very strong nonlinear effect. Therefore, 
the description of caustic crossing and the asymptotic behavior beyond 
the caustic are difficult (Remark 4.4). 

This paper is organized as follows. In section 2, we collect a num­
ber of definitions and preliminary estimates. We shall then study the 
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existence theorem and the asymptotic behavior of solutions in sections 
3 and 4. We treat the case a > 1 ("linear caustic") in section 3, and the 
case a ~ 1 ("nonlinear caustic" and "supercritical caustic") in section 
4 (for the terminology, see [Cl, CL]). 

§2. Preliminaries 

2.1. Scaled Strichartz estimate and time decay estimate 

In this section we summarize some elementary facts on semi-classical 
Schrodinger equation, which will be used in the following sections. Let 
us first consider the free semi-classical Schrodinger equation 

(2.1) ( iE8t + (1/2)c2 ~)u = 0. 

This equation is solved by the use of unitary group ue:(t) = exp(i(ct/2)~). 
That group can be written as 

(2.2) 

where 

(2.3) 

(2.4) 

Me:(t) = exp(ix2 /2ct), 

D(t)¢(x) = (it)-n1 2 ¢(xjt). 

Obviously, it holds that 

(2.5) 

where Uo(t) = exp(it~/2) is a usual Schrodinger group which solves 

(i8t + (1/2)~)u = 0. 

Therefore, one can easily observe that ue: inherits many properties of Uo. 
We make an essential use of the following scaled Strichartz inequalities. 
It is a scaled version of well known estimates on Uo. Before stating 
the details, we make several definitions. For real number r, we use the 
following notation: 

8(r) := n (~- ~), 
where n denotes space dimensions. A pair of real numbers ( q, r) is said 
to be admissible if 2 ~ r ~ 2n(n- 2) (2 ~ r ~ oo if n = 1, 2 ~ r < oo if 
n = 2) and 

2 
- = 8(r). 
q 

Note that ( oo, 2) is admissible for any n. 
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Proposition 2.1 (scaled Strichartz inequalities). 

(1) For any admissible pair (q,r), there exists Cr such that 

c:t IIU"(t)uiiLq(JR;Lr) ~ Crllull£2. 

(2) For any admissible pairs (qb rt) and (q2, r2), and any interval 
I, there exists Cr1 ,r2 such that 

The constants above are independent of c: and I. 

From (2.2), the following formula are obtained by elementary com­
putations 

(2.6) 
X X 

UC(t- 1)-UC( -t + 1) = - + i(t- 1)V' 
c c 

= Mg(t- 1)i(t- 1)V' Me( -t + 1). 

We denote this by J" ( t). Namely, 

(2.7) J"(t) :=::. + i(t- 1)V'. 
c 

J"(t) is the Galilean operator which is adapted to our scaled problem, 
and has the following properties: 

• commutation property 

[J"(t),ic:8t + ~c:2 6.] = 0. 

• the modified Sobolev inequality 

llultu ~Cit -11-c5(r)llulli-;-"(r)IIJ"ull~t;') 

for r which satisfies 0 ~ 8(r) < 1. 

Combining the modified Sobolev inequality and the Gagliardo-Nirenberg 
inequality, we obtain the following time decay estimate. 

Proposition 2.2 (time decay estimate). Let r satisfy 0 ~ 8(r) < 1. 
Then 

llull£r ~ C(c: +It -11)-c5(r)llull~-;-c5(r) (llc:V'ull£2 + IIJ"ull£2)8(r) 

for all t E R 
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2.2. Estimates on the Hartree type nonlinearity 

The following estimates are useful for the Hartree type nonlinearity. 

Proposition 2.3. Let r, si satisfy 0 ::::; J(r), J(si) < 1 (i = 1, 2, 3), 
0 < 1 < min(4, n). Then 

where 
0 < J(r) + J(s3) = 1- J(sl)- J(s2) <f. 

Proof. By the Holder and the Hardy-Littlewood-Sobolev inequali­
ties, we obtain 

provided 

ll(lxl-' * (v1v2))v3IILr'::::; lllxl-' * (vlv2)1J£mllv3IIL'3 
::::; llvi!IL''IIv2IIL'211v311u3, 

J(r) + J(s3) = n --- =-(1 1) n 
r' s3 m 

= n (2 + (~ + ~) - 1) = 1- J(sl)- J(s2) 
n s1 s2 

and 0 < 1/m < lfn. Q.E.D. 

If J(r) + J(s3) = 0, the above proposition fails. Therefore, we use the 
following one in place of it. 

Proposition 2.4. Let 0 < 1 < 2 and 7) > 0 be sufficiently small 
such that l± satisfy 0 < J(l±) = (r ± rJ)/2 < 1. Then we have 

Proof We estimate by the Holder inequality 

llxl-' * (v1v2)l ::::; l{lxl-'x(lxl::::; a)}* (v1v2)l 
+ l{lxl-'x(lxl;;?: a)}* (v1v2)l 

::::; C(a'711vii!Lz+ llv2IIL1+ + a-1JIIv1IIL1-IIv2IIL1- ). 

By minimizing the right-hand side with respect to a, we have 

Q.E.D. 
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2.3. Conservation laws and a priori estimates 

Next we see basic conservation results. Multiplying (HE<) by uE, 
integrating over JR.n, and taking imaginary part, we obtain conservation 
of charge 

(2.8) 

Next, multiplying the equation by Dtuo, integrating over JR.n, and taking 
real part, we obtain conservation of energy 

(2.9) 

where the energy E is given by 

(2.10) 

with 

(2.11) 

From above conservation laws, we deduce a priori estimates. From (2.8), 

(2.12) 

Note that it is independent of E. Secondly, we obtain 

E(u 6 (t)) = E(u<(O)) = llc'Ve-i~: /11 2 + AEa ~"(lxl-'"~ * lfl 2 )1/l 2 dx 

:::;; Cllxflliz + Cc2 II'Yflliz + C>.callfllir 

by (2.9) and Proposition 2.3 with c5(r) = r/4. If A> 0, we deduce that 

(2.13) sup llc'Vu<(t)ll£2 :::;; C(>., IIJIIE)· 
<<l,tEIR 

2.4. Function spaces 

At the end of this section, we introduce several function spaces. For 
an admissible pair (q, r) and an interval I C lR., we define 

I:.<,r(J) = { ¢ E U(J, £") : ll¢1b r(J) = 11¢11£<1(/,L') 

+ llc'V¢11Lq(I,L") + IIJ6 ¢11£q(J,Lr) < oo}. 
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And, for an interval I c lR and p > 0 we define the spaces xc:(I) and 
XZ(I) as follows. 

where 

X"(I) = { ¢ E C(I, L 2 ) : ll¢11x•(J) < oo}, 

x;(I) = { ¢ E C(I, L2 ) : li¢11x•(J) < P}, 

1 

II ·llx•(J) = sup 611 · IIE•·r(J)· 
(q,r):admissible 

We multiply c1/q to II · liE• q(I) for the reason of adapting them for the 
use of scaled Strichartz inequalities. 

Remark 2.5. If n = 2 then the pair (2, oo) is not admissible. There­
fore, we understand that the above supremum is took over all admissible 
pairs (q, r) which satisfy 2 ~ r ~ r 0 for a fixed sufficiently large r 0 . We 
also note that the endpoint Strichartz estimates hold for n ~ 3 ([KT]). 

§3. Linear Caustic 

3.1. Existence Theorem 

Theorem 3.1. Let n ~ 2, a> 'f, and a> 1. Assume that if 'I= 1, 
vis any positive constant and if 'I< 1, 0 < v < (a-1)/(1-'f). We put 

if'/> 1, 

if'/~ 1. 

Then for any fEE there exists E* = c*(llf;EII,a,'f,V,C0 ) such that 
(HEc:) has a unique solution in Xc:(I) for all E satisfying 0 < E < E*. 

Here, Co is a positive constant. 

Its proof is done by contraction argument. We first rewrite (HE") 
to an integral equation, that is 

(IHEc:) uc:(t) = UC:(t)uft=O- iAca-l fat UC:(t- s)(lxi-"Y * luc:l 2 )uc:(s)ds. 

Now, let us denote the right hand side of (IHEc:) by F(u"). We shall 
show that F is a contraction map from xc:(I) to itself with suitable 
choice of I. 

Lemma 3.2. Under the assumption of Theorem 3.1, there exist two 
constants p and E* such that F : xz (I) -+ xz (I) for 0 < E < E*. 
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1 
Proof What we have to show is that the norm 6 IIF(u")IIE•,r is 

bounded by p for all admissible pair (q, r). 

Step 1. Let us start with estimate for the norm of F(u"). Let 
(qb rl), (q2, r2) be admissible pairs. From scaled Strichartz estimate, 
we have 

1 

(3.1) cO!IIF(u")IILn(Ip1) ~ CIIJII£2 
+ Cca-1-fi ll(lxl-'i' * lu"l2)u"IILq2(J;Lr2r 

From technical reason, we can not treat entire range of 'Y at once. So, 
we first consider the case 'Y > 4/3. We let I = ~ and choose r 2 so that 
6(r2) = 'Y/4, then q2 = 2/6(r2) = 8/'Y. Now, we estimate u; norm in 
(3.1) by Proposition 2.3. 

where 

6(r2) + 6(k) = 'Y- 26(k), 

that is, 

Applying time decay estimate to llu"llik, we can derive time decaying 
term: 

(3.2) ll(lxl-'i' * lu"l2)u"IILr2 ~ C(c +it- 11)-~ llu"ll~~~ 
x (llcV'u"ll£2 + IIJ"(t)u"ll£2)~11u"IILk· 

Taking Lq; (~) norm in time, we have 

where 1/q~ = 1/y+"(/8, that is, y = 4/(4-"(). We denote Lq(I: U) by 
L'fL~, for short. If 'YY/2 > 1, the integral in right hand side of (3.3) is 
convergent. This condition is equivalent to 'Y > 4/3, which we impose. 
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Therefore, 
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( 21= (c: + T)--l!:r dT) 
4

"4"' 

~ cc:<--Er+ 1HYl = Cc:1-h. 

From definition of function space xc:, we have 

Then, from (3.1) and (3.3) we obtain 

(3.5) 
1 ::t. 7 

c ;;]" iiF(uc:) iiLql (1Ft;Lr1) ~ Ciifii£2 + Cc;<>-l- 8 X c1- 8 ' iiuii\'(!Ft) 
~ Ciifii£2 + Cc:"'-'iiuii\'(!Ft)· 

Next, let us consider the case 1 < 1 ~ 4/3. We assume I = JR, and 
choose r2 = 2, then q2 = oo. We estimate the L 2 norm by Proposition 
2.4. 

ii(ixi-' * iuc:i 2 )uc:ii£2 ~ ii(ixi-' * iuc:i 2 )1/L= iiuc:ii£2 
~ CiiuiiLz+ iiuiiLz-iiuii£2, 

where l± satisfy b"(l±) = (r ± ry)/2 with TJ > 0. TJ is so small that 
0 < b"(l±) < 1. Note that b"(l+) + b"(L) = r· Then, we can derive time 
decay effect from iiuc:I/Lz± as previous case: 

iiuii£'+ iiuii£'- ~ C(c: +it- 1i)-(o(l+)H(L))iiuc:iii;<o(l+)H(L)) 
x (iic:V'uc:ii£2 + iiJc:(t)uc:ii£2)0(l+)H(l-) 

= C(c: +it -1i)-'iiuc:ii~-;'(iic:V'uc:ii£2 + iiJc:(t)uc:ii£2)'. 

Therefore, 

(3.6) ii(ixi-' * iuc:i 2 )uc:ii£2 ~ C(c: +it- 1i)-'iiuc:iif-;' 
(iic:V'uc:ii£2 + 1/Jc:(t)uc:ii£2)'. 

Taking L 1 (JR) norm in time, 

(3.7) ii(ixi-' * iuc:i 2 )u"iiLiL~ ~ C (1 (c: +it- 1i)-'dt) iiu"iif?L; 

x (iic:V'u"iiLrcL; + iiJ"(t)uc:iiLrcL;)'. 
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Since we assume "( > 1, the integral is convergent and bounded by 
Cc1 -"~. So, from (3.1) and (3.7), we conclude 

Let us proceed to the case 0 < "( ~ 1. The choice of r2 is the same 
as previous case 1 < "( ~ 4/3, that is (q2, r2) = (oo, 2). We can obtain 
estimate (3.6) in the same way, however, the time integral in (3.7) does 
not converge with I = R Therefore we set 

(3.9) 

where Co and v are positive constants. Then, there exists some constant 
C such that 

Note that we can suppose c < C0c-v and C0 c-v :» 1 for small c. 
Combining (3.1), (3.6) and (3.10), we obtain 

(3.11) eft- IIF(ue:) IILn (J;Ul) ~ Cll/11£2 + Cc"'-1-v(1--y) lluii~•(J) 

for 0 < "( < 1, and 

(3.12) 

eft- IIF(ue:)IILn(J;Ul) ~ Cll/11£2 + Cc"'- 1 1log(2Coc-"')l·llue:II~·(J) 

for"(= 1. 

Step2. We estimate c\7 F( ue:). Since the operator cV' commutes 
W(t}, it is obtained from (IHEe:) that 

Therefore, for admissible pairs (q1 , r 1 ) and (q2, r2), we deduce that 

(3.13) eft- llcV' F( ue:) IILn (I;Lrl) ~ CllcV'e-ix2 
/ 2e: /11£2 

+ Cc"'- 1-12 llcV'(Ixl~"~ * lue:l 2 )ue:llu~(J;Lr~) 
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by scaled Strichartz estimate. One easily verifies by elementary compu­
tations that 

(3.14) IIEV'e-ix2/ 2c fll£2 = 11(-ix + EV')fll£2 

:::; llxfll£2 + EIIV' fll£ 2, 

and 

(3.15) IEV'(Ixl--r * lucl 2)uc:l :::; l(lxl--r * 2Re(ucEV'uc:))uc:l 

+ l(lxl--y * luc:I 2)EV'uc:l· 

We first consider the case 1 > 4/3. We choose r 2 so that J(r2) = 1/4 
and estimate the u·z norm in (3.13) by Proposition 2.3: 

(3.16) IIEV'(Ixl--y * luEI 2)uc:IILrj :::; ll(lxl--y * 2Re(ucEV'uE))uc:IILrj 

+ II (lxl--y * luE I2)EV'Uc: II Lr!J 

:::; 3lluEIII,.IiEV'uEIIu, 

where k satisfies J(k) = 1/4. Note that lluiiik appears in (3.16). This is 
the only term which produces time decay effect in Step 1, and now we 
have it. Therefore we can obtain 
(3.17) 

IIEV'(Ixl--y * lucl2)ucll (8hJ' rj:::; CEl-hllullk· (EiiiEV'uciiLshu). 
Lt Lx t x 

in the exactly same way. Now, since we have 

(Ei IIEV'uc:IILsh(IR;£k)) :::; llucllx•(IR) 

from the definition of xc:, we conclude from (3.13), (3.14), and (3.17) 
that 
(3.18) 

E* I lEV' F( uE) llun (IR;L'l) :::; Cllxfll£2 + CEIIV' fll£2 + CEa--y lluii1-'(IR). 

The case 1 < 1 :::; 4/3. We choose (q2 , r2) = (oo, 2). From (3.15), 
we have 

IIEV'(Ixl--y * lucl 2)uc:ll£2 :::; ll(lxl--r * 2Re(ucEV'uc:))uc:ll£2 

+ ll(lxl--r * luEI 2)EV'ucll2· 

:::; ll(lxl--y * 2Re(ucEV'uc:))ucll£2 

+ lllxl--y * luc:I 2IIL= IIEV'uc:ll2· 
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Then, estimating the first term by Proposition 2.3, and the last term by 
Proposition 2.4, we obtain 

(3.19) llcV'(Ixl-'~ * lu"l2)u"ll£2 ~ 2llu"IIIzllcV'u"ll£2 

+ llu"IIL'+ llu"IIL'-IIcV'u"ll£2, 

where J(l) = 'Y/2 and J(l±) = h ± TJ)/2 with small rJ > 0. In this case, 
the term llu"IIL'+ llu" IlL'- provides time decay effect. Note that the term 
llu"IIIt can play the same role, since 2J(l) = "( = J(l+)+J(L) (see (3.6)). 
Therefore, we obtain 

1 

(3.20) c;;;-llcV'F(u")IILq1(JR;L'') ~ Cllxfll£2 

+ CciiY'fll£2 + Cc"'-'~lluii1-£(!R) 

as Step 1. 

From above argument, we can derive an estimate similar to that for 
F(u"') also in the case 0 < 'Y ~ 1. Namely, if 0 < 'Y < 1 we have 

1 

(3.21) c;;;-llcV'F(u"')IILq1(I;L'1) ~ Cllxfll£2 +CciiY'fll£2+ 

Cca-1-v(l-'!) llull1-, (I)' 

and if 'Y = 1 we have 

1 

(3.22) E ;;;-llcV' F( u"') 11Lq1 (J;£'1) ~ Cllxfll £2 + CciiY' fll£2 

+ Cc"'-1llog(2Coc-v)l · llu"'II1-'(I)' 

where I satisfies (3.9). 
The estimate for J"' (t)F( u") is essentially equal to that for cV' F( u"'), 

because J"'(t)Uo(c(t ~ s)) = Uo(c(t- s))J"(s) and J"'(t) operates like 
derivative on Gauge invariant function. The only difference is estimate 
for initial value. Namely, we make use of 

(3.23) 

instead of (3.14). So we omit the detail. 

Step 3. We collect the results in Steps 1 and 2, and complete the 
proof by combining them. From (3.5), (3.8), (3.18), (3.20) and (3.23), 

(3.24) c~ IIF(u"')ll~'''(lR) ~ CIIJII£2 + Cllxfll£2 

+ C(c + 1))1V' fll£2 + Cc"'-'~llull1-,(rn:.)· 
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for "( > 1, where (q, r) is admissible. Taking supremum all over (q, r), 
finally we obtain 

(3.25) 

Now, we put p = 2CIIf; :Ell· Then, if a > "(there exist a constant c* 
depending on n, a, "(, and llf; :Ell such that 

for all 0 < c < c* and all uc: E Xg(JR). It goes without saying that it 
means F: xg(JR) __, xg(JR). 

For 0 < "( < 1, we use (3.11), (3.21), and (3.23). These inequalities 
gives us 

(3.26) 

where I= [1- Cocv, 1 + C0cv]. 
Again, we put p = 2CIIf; :Ell and assume that uc: E xg(JR). In this 

case, we need the condition that v satisfies a- 1- v(1- "f) > 0, that is 
v < (a- 1)/(1- "f) in addition to a > 1. Then there exists a constant 
c* depending on n, a, "(, v, Co, and llf; :Ell such that 

for 0 < c < c*. Lemma has been proven for 0 < "( < 1. 

In the case of"(= 1, from the inequalities (3.12), (3.22), and (3.23) 
we deduce that 

(3.27) 

where I satisfies (3.9). Therefore, if a > 1 there exists c* depending on 
n, a, v, Co, and II!; :Ell such that 

with some constant p which is proportional to llfii:E· Q.E.D. 

Lemma 3.3. For any p > 0, there exists an E** > 0 such that 
F: xg(I) -+ xg(I) is a contraction map for 0 < c < c**. 
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Proof Let Ut, u2 E x;(J) be a solution to (IHE"). One easily 
verifies the following identities: 

(3.28) F(ut)- F(u2) = -i>.c"'-1 1t U(c(t- s)){ (lxl--r * lu1l 2)u1(s) 

- (lxl--r * lu2l 2)u2(s) }ds. 

(3.29) 

(lxl--r * lu1l 2)u1- (lxl--r * lu2l 2)u2 =(lxl--r * lu1l 2)(u1- u2) 

+ (lxl--r * {u1(u1- u2)})u2 

+ (lxl--r * {(u1- u2)u2})u2. 

In exactly the same way as in the proof of Lemma 3.2, we obtain for 
"(>1 

(3.30) 

for 0 < 'Y < 1 

(3.31) 

and for 'Y = 1 

with I = [1- C0c-v, 1 + C0c-v]. Therefore, we deduce that F is a 
contraction map for small c, provided a and v satisfies the assumption 
of Theorem 3.1. Q.E.D. 

Now, Theorem 3.1 immediately follows from Lemmas 3.2 and 3.3. 

Remark 3.4. Equation (HE") can have unique solution also in the 
outside of I for any fixed c. However, the norm X" may be divergent as 
c--> 0 on the subset of lR \I. Therefore I is the interval where the norm 
X"(!) is bounded uniformly in c. 

3.2. Asymptotic behavior 

We next consider the asymptotic behavior of u". It is an immediate 
consequence of Theorem 3.1. Define w"(t, x) to be a solution to 

{
ic8tw" + ~c2fiw" = 0, 
W e - u" 

lt=O- lt=O" 

(3.33) 
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Then, we have 

(3.34) w"'(t) = U"'(t)uft=O· 

Therefore, we obtain the following theorem. 

Theorem 3.5. Let (q, r) be an admissible pair and I be an interval 
which satisfies the condition in Theorem 3.1. 

• If a > 'Y > 1 and 1/ q < a - 'Y, then 

(c:---> 0). 

• If a> 1 ~ 'Y and 1/q <a- 1- v(1- "f), then 

Proof From (3.34), we deduce that 

(3.35) 

(c:---> 0). 

if"(>1, 

if 'Y = 1, 

if 'Y < 1. 

Therefore, the theorem follows from the definition of X"'. Q.E.D. 

Remark 3.6. In [ CL], this asymptotics is shown for 'Y > 1 and ( q, r) = 
( oo, 2). The norm X"' gives us more information about admissible pairs. 
Therefore we obtain more precise result. This theorem says that larger a 
provides better convergence. It seems to be natural because the constant 
a denotes the size of nonlinearity. 

Remark 3.7. The case 0 < 'Y ~ 1 is called the long range case. 
If t ~ I, the solution u"' does not behaves as a free solution. In this 
sense, the nonlinear effect appears near t = ±oo, that is, in the interval 
( -oo, 1 - C0cv] and [1 + C0cv, oo ). If 'Y = 1 then v is arbitrary, and 
if 'Y < 1 then v < (a -1)/(1- "f). Moreover, in the case 'Y < 1, it seems 
that the convergence becomes worse for larger v (namely for larger It I). 

Remark 3.8. In fact, we can choose I so that III = O(c:-(Coo:-v)) 
with v < a - 1 in the case 'Y = 1. 
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§4. Nonlinear and Supercritical Caustic 

4.1. Existence result and asymptotic behavior before the 
caustic 

Theorem 4.1. Let n ~ 2. Assume 1 ~ a > max(1, 1/2), 1 > 1 
and I= ( -oo, 1- C0cll] with 

( 4.1) 
a- max(1, 1 /2) 

J-L < J-La,, := 1 - max(1, 1 /2) · 

Then for any fEE there exists c* = c*(llf; Ell, a, 1, I) such that (HEc:) 
has unique solution in xc:(I) for all c satisfying 0 < c < c* and it holds 
that 

(4.2) (c---+ 0). 

Note that J-La,, ~ 1 under the above condition. 

Proof. Again, we use contraction method. We denote the right 
hand side of (IHEc:) by F(uc:). We shall restrict our attention to the 
estimate for F(uc:), because that for c\1 F(uc:) and Jc:(t)F(u") is obtained 
in the same way. 

Let us begin with the case 1 < 1 < 3. Letting (q2, r2) = ( oo, 2) and 
applying Proposition 2.3, we deduce from (3.1) that 

with 8(s1 ) = 8(s2) = (r- 8(s3))j2. Applying time decay estimate to 
llu"IIL•l and llu"ll£•2, and taking L 1(I) norm in time with I= ( -oo, 1-
C0cll], we obtain 

(4.4) ell IIF(u")IILn(J;Ul) ~ Cllfll£2 + Cc{3'llu"lli-e(I) 

with 

( 4.5) !h =a- 1 - 8 (~3 ) - J-L ( 1- 1 - 8 (~3 )) . 

Now, we shall decide 8(s3). Since /31 should be positive, we would like 
to choose 8(s3 ) as small as possible in order to expand the range of a. 
The conditions on 8(s3) are 0 ~ 8(s3) < 1, 0 < 8(sl), 8(s2) < 1 {::} 
1-2 < 8(s3) < 1 and 1-1- 8(s2)/2 > 0 (It comes from integrability). 
Therefore we set 

(4.6) 
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with small(. Note that in the case cl'(s3 ) = 0 we make use of Proposition 
2.4 instead of Proposition 2.3. With this choice of s3 , if a and J-t satisfies 

(4.7) 

(4.8) 

a> max ( 1, i), 
a- max(1,"}'/2) 

J-t < _"Y ___ m_a_x-'(-1,-'1'"-::-/2--'-) 

then (31 > 0 for sufficiently small (. 

Let us proceed to the case 3 ::::;: 1' < min(4, n). Evidently, space 
dimension n is larger than or equal to 4. We let (q2, r2) to be chosen 
later. By Proposition 2.3, we have 

ll(lxl--y * lu"l2)u"IILr2 ::::;: llu"III· X llu"IIL•, 

with cl'(s) = (1'- cl'(r2))/3. We assume I = ( -oo, 1- Coc~']. Applying 
time decay estimate to II u" IIi_., and taking Lq~ (I) norm in time, we 
deduce that 

Here, 

(4.10) 1 1 (5 1 ) fJ2 =a- -"}'- 1 - -cl'(r2) - J-t -"}'- 1 - -cl'(r2) . 
6 3 6 3 

It should be positive, and we would like to take cl'(r2) as small as possible 
at the same time. Since r2 satisfies 0::::;: cl'(r2) < 1, 1'- 3 < cl'(r2) < 1'({:} 
0 < cl'(s) < 1) and 5"}'/6- 1- cl'(r2)/3 > 0, we choose cl'(r2) = 1'- 3 + ( 
with small(. Therefore, we conclude that if 

then fJ2 > 0 for small (. 

a>1 
2' 

Q- 1'/2 
J-t < 1' /2 ' 

In the same way as the linear caustic case, the result follows from 
the estimates (4.4) and (4.9). Q.E.D. 

The condition that a is not greater than 1' restricts the distance 
between the caustic (t = 1) and the range where the solution u" asymp­
toticly behaves as a free solution. The nonlinear effect appears near the 
caustic in this sense. 
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Through the scaling u6 (t, x) = c(a-"!)/2-nf2'ljJ 6 ((t- 1)/c, x/c), we 
rewrite (HE6 ) as follows: 

{
i8t'l/Jc: + ~~'1/Jc: = -\(lxl-"~ * l'l/J~I 2 )'1/J6 , 
,J,c: (x) = E(a-"')/2+n/2e-ic:x 2 /2f(cx) 
'~-'lt=-1/c: 0 

Let us define ¢6 by ¢6 (t,x) = Uo(t)'l/Jft=- 1/c:(x). Then, Theorem 4.1 
implies that under those assumption, (SHE6 ) has unique solution and 
'ljJ 6 behaves as free solution ¢6 on I', where 

I' = ( -oo, -Coc~"-lj_ 

Note that if 0 < fL < 1, I ----+ lR \ {0} and I' ----+ 0 as E ----+ 0. Thus, from 
the view of usual Hartree equation this theorem seems to be almost 
meaningless. Our approach makes some divergent quantity stay finite, 
and hence makes the nonlinear effect clear. 

In [CL], the following v6 (t,x) is used as asymptotic behavior: 

( 4.11) v6 (t x) = 1 f (-x-) ei2d~~'l. 
' (1-t)n/2 t-1 

This is exactly of the form (1.4). It holds that there exists a continuous 
function h : lR ----+ lR which satisfies h(O) = 0 such that 

(4.12) II we:- vc:ll2:e 2 (!) ~ C(llfiiL:) sup h (-E-) 
tEl t- 1 

(by an argument similar to [C2], Lemma 1). Therefore the following 
asymptotics holds. It is an extension of the result in [CL]. 

Corollary 4.2. Under the assumptions of Theorem 4.1, it holds for 
all f E ~ that 

(4.13) (E ----+ 0). 

Remark 4.3. In [CL], it is shown that nonlinear caustic crossing 
causes the change of asymptotic profile, and that it is described by the 
scattering operator associated to equation 

(4.14) 

Remark 4.4. If,\ > 0 and a satisfies 

if~< 1 < 2, 

if 1 ~ 2, 
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then we can describe the asymptotic behavior of the solution also beyond 
caustic. The proof will appear elsewhere. 
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