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On the Stokes and N avier-Stokes equations in a 
perturbed half-space and an aperture domain 

Takayuki Kubo 

Abstract. 

We discuss LP - Lq type estimate of the Stokes semigroup and its 
application to the Navier-Stokes equations in a perturbed half-space 
and an aperture domain. Especially, we have the LP-Lq type estimate 
of the gradient of the Stokes semigroup for any p and q with 1 ~ p ~ 
q < oo, while the same estimate holds only for the exponents p and q 
with 1 < p ~ q ~ n in the exterior domain case, where n denotes the 
space dimension. And therefore, we can get better results concerning 
the asymptotic behavior of solutions to the Navier-Stokes equations 
compared with the exterior domain case. 

Our proof of the LP-Lq type estimate of the Stokes semigroup is 
based on the local energy decay estimate obtained by investigation of 
the asymptotic behavior of the Stokes resolvent near the origin. The 
order of asymptotic expansion of the Stokes resolvent near the origin 
is one half better compared with the exterior domain case, because we 
have the reflection principle on the boundary in the half-space case 
unlike the whole space case. And then, such better asymptotics near 
the boundary is also obtained in a perturbed half-space and an aperture 
domain by the perturbation argument. This is one of the reason why 
the result in our case is essentially better compared with the exterior 
domain case. 

§1. Introduction 

We study the global existence and asymptotic behavior of a strong 
solution to the Navier-Stokes initial value problem in a perturbed half
space and an aperture domain n c ]Rn with smooth boundary an: 
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(NS) { 

atu- ~u + u · V'u + Y'rr = 0 
Y'·u=O 

u(x, t) = 0 on 
u(x, 0) = a(x) 

in 
in 

in 

n x (O,oo), 
n X (O,oo), 
an X (0, oo), 

n 

for the unknown velocity field u(x, t) = (u 1(x, t), ... , un(x, t)) E W 2·P(n)n 
and the unknown scalar pressure term Y'rr E LP(n) where 1 < p < oo. 

The perturbed half-space is such a domain whose boundary is not 
flat only around the origin; to be precise, we call an open set the per
turbed half-space if there is a positive number R such that n\BR = 
H\BR where BR = {x = (xb ... ,xn) E lRn llxl < R} and H := {x E 

JRn I Xn > 1 }. The aperture domain is a compact perturbation of two 
separated half-space H+ U H_ where H± = {x E lRn I ±xn > 1}; to 
be accurate, we call an open set the aperture domain if there is a posi
tive number R such that n\BR = (H+ U H_)\BR· Since the aperture 
domain n is connected, we may choose a smooth n - 1 dimensional 
manifold M c n U BR such that n\M consists of two disjoint "half
spaces" n+ and n_ with M = an+ n an_, n = n+ U M U n_ and 
n± \BR = H± \BR. Let N denote the outward unit normal vector on 
an or the normal vector on M directed to n_. 

The aperture domain is a particularly interesting class of domains 
with noncompact boundaries. In 1976, Heywood [18] pointed out that 
the solution is not uniquely determined by usual boundary conditions 
even for the stationary Stokes system in this domain and therefore in 
order to get a unique solution u we may have to prescribe either the 
pressure drop [rr] at infinity between the upper and lower subdomains 
n± or the flux ¢(u) through the aperture Mas an additional boundary 
condition: more precisely, we must prescribe either the pressure drop [rr] 
which is a number defined by 

[rr] := lim rr(x)- lim rr(x), 
lxl--+oo, xE!1+ lxl--+oo, xE!1-

or the flux ¢(u) which is a number defined by 

¢(u) := JM N ·u da. 

Here the flux ¢(u) is independent of the choice of M since Y' · u = 0 in 
n. 

We shall introduce the known results concerning the half-space, the 
perturbed half-space and the aperture domain. To this end, we first 
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define the spaces JP(r2) and GP(r2) by the relations: 

JP(r2) = {u E C(f(n)n I V'. u = 0 in n}II·IILP(n)n) 

GP(r2) = {V'p E £P(n)n I p E Lfoc(n)}. 

For our domains, Farwig and Sohr [15], [16] and Miyakawa [27] proved 
that the Banach space LP(r2)n (1 < p < oo) admits the Helmholtz 
decomposition : 

(HD) 

where EB denotes the direct sum. Let P be a continuous projection from 
LP(n)n to JP(r2). The Stokes operator A is defined by A= -PD. with 
domain 

(SD) D(A) = { u E JP(n) n W 2·P(n)n I ulan = 0}. 

We consider the following non-stationary Stokes equation: 

(S) { 
OtU- D..u + V'7r = 0, V'. u = 0 in n X (0, oo), 
u(x,t)lan = 0, u(x,O) = a(x), 

subject to the flux condition ¢;( u) = 0 if n is an aperture domain (see 
Farwig and Sohr [15] and Miyakawa [27]). 

By use of the Stokes operator A, the Stokes equation (S) can be for
mulated as an ordinary differential equation in the Banach space JP(r2): 

(0) 
d 
dt u(t) + Au(t) = 0, u(O) =a. 

By the resolvent estimate 

for I arg .AI ::::; 7r - 5 with arbitrary small 5 > 0, we see that -A gener
ates a bounded analytic semigroup T(t) on JP(r2) (see Farwig and Sohr 
[15], [16]). Through the inverse of the Laplace transform, we have the 
representation formula: 

(Rf) 

where r ={A= ei0s 1 s;:::: c:} u {A= e-ies 1 s;:::: c} u {A= c:eie 1 -e::::; 
s::::; 8} with 8 E (1rj2,1r) and c: > 0. 
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The purpose of this paper is to prove the LP- Lq estimate of Stokes 
semigroup: 

(1) 

(2) 

for a E JP(O) and t > 0, where 1 < p :S q < oo. In particular, the 
gradient estimate (2) without any restriction on (p, q) is our important 
contribution. 

The LP- Lq estimates of the Stokes semigroup have been already 
studied by many authors in the different cases of the domains. In fact, 
when n = IRn, applying the Young inequality to the concrete solution 
formula, we have (1) and (2) for 1 :S p :S q :S oo (p =/= oo, q =/= 1). 
When n is a half-space H, applying the Fourier multiplier theorem to 
the concrete solution formula obtained by Ukai [34], we have (1) and (2) 
for 1 :S p :S q :S oo (p =/= oo, q =/= 1) (cf. Borchers and Miyakawa [5] and 
Desch, Hieber and Pruss [12]). 

When n is an exterior domain, (1) holds for 1 :S p :S q :S oo ( 
p =/= oo, q =/= 1) but (2) holds only for 1 :S p :S q :S n (q =/= 1). This 
result was first proved by !washita [20] for 1 < p :S q < oo in (1) and 
1 < p :S q :S n in (2) when n ~ 3. The refinement of his result was done 
by the following authors: Chen [8] (n = 3, q = oo), Shibata [31] (n = 3, 
q = oo), Borchers and Varnhorn [7] (n = 2, (1) for p = q), Dan and 
Shibata [9], [10] (n = 2), Dan, Kobayashi and Shibata [11] (n = 2, 3), 
and Maremonti and Solonnikov [29] (n ~ 2). Especially, that !washita's 
restriction: q :S n in (2) is unavoidable was shown by Maremonti and 
Solonnikov [29]. 

When n is an aperture domain, Abels [2] proved (1) for 1 < p :S 
q < oo and (2) for 1 < p :S q < n when n ~ 3 ; and Hishida [19] proved 
(1) for 1 :S p :S q :S oo (p =/= oo, q =/= 1) and (2) for 1 :S p :S q :S n 
(q =/= 1) and 1 :S p < n < q < oo when n ~ 3. We prove (1) for 
1 :S p :S q :S oo (p =/= oo, q =/= 1) and (2) for 1 :S p :S q < oo (q =/= 1) when 
n ~ 2 ([24]). 

When n is a perturbed half-space, we prove (1) for 1 :S p :S q :S 
oo (p =/= oo, q =/= 1) and (2) for 1 :S p :S q < oo (q =/= 1) when n ~ 2([25]). 

Our proof of the LP-Lq estimates of the Stokes semigroup is based 
on the local energy decay estimate obtained by investigation of the as
ymptotic behavior of the Stokes resolvent near the origin. The order 
of asymptotic expansion of the Stokes resolvent near the origin is one 
half better compared with the exterior domain case, because we have 
the reflection principle on the boundary in the half-space case unlike the 
whole space case. 
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Next we consider the application of the LP - Lq estimate to the 
Navier-Stokes equations. For the following domains, so far, the global 
existence of the N avier-Stokes flow with small Ln data has been proved: 
Giga and Miyakawa [17] for bounded domain, Kato [21] for whole space, 
Ukai [34] for half-space, !washita [20] for exterior domain, Abe and Shi
bata [1] for infinite layer and Hishida [19] for aperture domain. 

We derive various decay properties of the global strong solution as 
t ---+ oo in a perturbed half-space case and in an aperture domain case. 
For the aperture domain case, compared with the previous results of 
Hishida (n ~ 3) [19] and Kozono and Ogawa (n = 2) [22], the new points 
in Theorem 2.5 are decay properties of IIV'u(t)llu (3 ::=; n < r < oo) and 
llu(t)IIL= (n = 2). 

To discuss our results more precisely, at first we outline at this point 
our notation used throughout the paper. We fix Ro enjoying ( 4) if D is 
the perturbed half-space and enjoying (5) if D is the aperture domain. 
Given R ~ R0, we define the cut-off function '1/!±,R as follows: 

(3) for H± \BR+l, 
for H"f' U BR. 

To denote the special sets, we use the following symbols: 

BR = {x E lRn llxl < R}, DR= D n BR, B~ = H± n BR, 

(D) DR= {x E ]Rn I R < lxl < R + 1}, D~ = H± n DR, 

CR = {x E lRn llx'l < R, lxnl < R}, C~ = H± nCR. 

And we set the sectorial domain ~s and the ball Ur in C as follows: 

(s) 

(b) 

~s ={A E C\{0} II arg.A.I < 1r- c}, 

Ur={.A.ECII.A.I<r} 

forE> 0. We will use the standard symbol Lq(D) with norm ll·ll£q(!1)· 
For N ~ 1 we set 

L~(D)n = {u E LP(D)n I u(x) = 0 for lxl > R}, 

WaN,p(D) = {f E wN·P(D) I o';flav = 0 for lal ::=; N -1}, 

wN,p(D) = {f E wt·P(D) I l fdx = 0}, 

W0·P(D) = {f E LP(D) 11 fdx = 0}, 

W1·P(D) = {f E Lfoc(D) I V' f E LP(D)}. 
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For Banach spaces X andY, .C(X, Y) denotes the Banach space of 
all bounded linear operators from X to Y. We write .C(X) = .C(X, X). 
B(U; X) defines the set of all X-valued bounded holomorphic functions 
on U. And A(Ue:, X) denotes the set of all X-valued holomorphic func
tion defined on Ue: which is defined by (b). To denote various constants 
we use the same letter C, and by CA,B, ... , we denote the constant de
pending on the quantities A, B, · · ·. The constants C and CA,B, ... may 
change from line to line. 

§2. Main results 

In this section, we will state our main results concerning the Navier
Stokes system (NS) in the perturbed half-space and the aperture domain. 
As we already stated in the section 1, Farwig and Sohr [15], [16] and 
Miyakawa [27] proved the Helmholtz decomposition and the resolvent 
estimate (RE) in the perturbed half-space case and the aperture do
main case. Therefore, we know that the Stokes operator with domain 
(SD) generates the analytic semigroup {T(t)}t>o on JP(O). We need to 
impose the following assumption on the domain n. 

Assumption 2.1. Let n 2 2. BR is defined by (D). 

(Case I) 0 is the perturbed half-space, namely, there is R > 0 such that 

(Case II) 0 is the aperture domain, namely, there is R > 0 such that 

We obtain the following theorem. 

Theorem 2.1 (LP- Lq estimate of Stokes semigroup). Let n > 2. 

(i) For all t > 0, f E JP(O) and 1 ::::; p::::; q::::; oo(p -=1- oo, q -=1- 1), 
there holds the estimate: 

(6) IIT(t)JII£q(fl)n :::::: Cp,qC~(i-~) IIJIILP(fl)n• 

(ii) For all t > 0, f E JP(O) and 1 ::::; p::::; q < oo (q -=1- 1), there 
holds the estimate: 

Main step in our proof of Theorem 2.1 is to show the following local 
energy decay estimate. 
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Theorem 2.2 (Local energy decay estimate). Let n ~ 2 and 0 c 
1Rn satisfy Assumption 2.1. Let 1 < p < oo and let m be a nonnegative 
integer. R is any positive number satisfying ( 4) if 0 is a perturbed half
space or (5) if 0 is an aperture domain. Then there exists a positive 
constant Cp,m such that 

(8) ll8f'T(t)Pallw2,p(f!n)n ::::; Cp,mC~-mllalbcn)n 

for any t ~ 1 and a E L~(O)n. 

If we consider the Stokes system in the half-space H: 

(9) atv- ~v + V'7r = 0, div v = 0 in (0, oo) X H, 

vlxn=O = 0, Vlt=O = b, 

then we know by Ukai [34] and Borchers and Miyakawa [5] that the 
solution v of (9) satisfies the LP-Lq estimate: 

(10) 

(11) 

llv(t)tqcHl ::::; Cp,qc~U-~) llbiiLP(H), 

IIV'v(t)tqcHl::::; Cp,qt-~(~-~)-!llbiiLP(H) 

for any t > 0 and 1 ::::; p::::; q::::; oo (p :/=- oo, q :/=- 1). Since 

llv(t)IILP(Cnl ::::; CRIIV'v(t)IILP(cn) 

as follows from the boundary condition: vlxn=o = 0, using (11) and 
Theorem 2.2, we have 

(12) 

for any a E £P(O) and t ~ 1. Combining (10), (11) and (12) by the 
cut-off technique and following the argument due to Hishida [19, the 
proof of Theorem 2.1], we can show Theorem 2.1. 

In order to prove Theorem 2.2, we need some precise information 
about solutions to the resolvent problem in H: 

(13) (>.- ~)w + V'O = f, div w = 0 in H, 

wlxn=O = 0, 

which are stated in the following two theorems. 

Theorem 2.3. Let R(>.) and II(>.) denote the solution operators of 
(13) which are defined by 

w = R(>.)f = T (Rl(>.)f, ... , Rn(>.).f) and 0 = II(>.)f 
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for>.EC\(-oo,O]. LetR>O, 1<p<oo andset 

B~,R = C(L~(H)n, WJ,P(BR)) 

for j = 1, 2. Then there exist operators Gj(>.) E A(U1/16, s;,R), k = 
1, 2, 3, j = 1, ... , n, and G~(>.) E A(U1; 16 , B~,R), k = 1, 2, 3 such that 

Rj(>.)j = >. n2' Gj(>.)j +(>.~log >.)GJ(>.)j + GJ(>.), 

II(>.)j = >. n2' G~(>.)j + (>. ~ log>.)G;(>.)j + c;(>.) 

in B R when n ~ 2 and n is even; and 

Rj(>.)j = >.~Gj(>.)j + (>. n2' log>.)GJ(>.)j + GJ(>.), 

II(>.)j = >.~G~(>.)j + (>.n2' log>.)G;(>.)j + c;(>.) 

in BR when n ~ 3 and n is odd, provided that,\ E U1; 16 and f E L~(D). 

Theorem 2.4. Let 1 < p < oo, 0 < E < Jr/2, and let R(>.) 
and II(>.) be the operators given in Theorem 2.3 for,\ E C \ ( -oo, OJ. 
Let 2::6 be the set defined by (s). Then, there exist operators R(O) E 

C(L~(H)n, WJ~':(H)n) and II(O) E £(L~(H)n, W1~':(H)n) which satisfy 
the following three conditions: 

(i) Given f E L~(H)n, v = R(O)f and e = II(O)f satisfy the 
equation: 

- ~v + \18 = j, div v = 0 in H, 

(ii) We have 

IIR(>.)j- R(O)j llwr.P(BR) ~ Cl>-1 ~ IIJ IILP(H)' 

IIII(>.)j- II(O)f IILP(BR) ~ Cl>-1~ II! IILP(H) 

for any f E L~(H)n and>. E I:c: with 1>-1 ~ 1/16, where C = 
Cp,R,c: is a constant independent off and >.. 

(iii) We have 

I[R(O)f](x)l ~ Cv,Rixl-(n- 1)11! IILP(HJ' 

I'V[R(O)f ](x) I ~ Cv,Rixl-(n- 1) II! II LP(HJ' 

I[II(O)f](x)l ~ Cv,Rixl-(n- 1)11! IILP(HJ 

for any f E L~(H)n and x E H with lxl ~ 2v'2R, where Cp,R 

is a constant independent off and x. 
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Constructing a parametrix to the resolvent problem in a perturbed 
half-space and an aperture domain, we can derive from Theorem 2.3 and 
Theorem 2.4 that the resolvent operator (>. + A)- 1 has the expansion 
formula of the same type near>.= 0 in the space .C(L~(O)n, W 2,P(OR)n) 
as in the half-space case, which is applied to the representation formula 
(Rf) implies Theorem 2.2. The fundamental idea of the proofs of The
orems 2.1 and 2.2 by using Theorems 2.3 and 2.4 goes back to a paper 
due to Shibata [30]. 

Next we apply the LP- Lq estimate to the Navier-Stokes initial value 
problem. To this end we consider the Navier-Stokes equations (NS) in a 
perturbed half-space and an aperture domain : Applying the solenoidal 
projection P to (NS), we can rewrite (NS) as follows: 

(P-NS) OtU +Au+ P(u · \i'u) = 0, u(O) =a 

where A= -P~ is the Stokes operator. 
For given a E Jn(O) and 0 < T :::;: oo a measurable function u 

defined on 0 x (0, T) is called a strong solution of (NS)(with ¢(u) = 0 
if 0 is an aperture domain) on (0, T) if u belongs to 

u E C([O, T); r(O)) n C((O, T); D(A)) n C1 ((0, T); r(O)) 

together with limt--+0 llu(t) -aiiLn = 0 and satisfies (P-NS) for 0 < t < T 
in Jn(O). 

We can show the next theorem which tells us the global existence of 
a strong solution to (NS) that has several decay properties with small 
llall£n: 

Theorem 2.5. Let n 2: 2. There is a constant 15 = 15(0, n) > 0 with 
the following property: if a E r(O) satisfies llallu, :S: 15, the problem 
(NS) (with ¢(u) = 0 ifO is an aperture domain) admits a unique strong 
solution u(t) on (0, oo). Moreover as t----+ oo, 

(14) 

(15) 

1+ n 
llu(t)llu = o(C 2 2r) 

IIY'u(t)llu = o(cl+*) 

for n :::;: r :::;: oo, 

for n :::;: r < oo. 

If we assume that a E L 1 nJn(O) has smallllall£n, then we can show 
the better decay properties of the solutions as in the following theorem: 

Theorem 2.6. Let n 2: 2. There is a constant 'f/ = 'fi(O, n) E (0, 15] 
with the following property: if a E L 1 n r(O) and a satisfies llall£n :::;: 'f/, 
then the solution u(t) obtained in Theorem 2.5 enjoys 

(16) 

(17) 

llu(t)llu = O(c'S'(l-~l) 

IIY'u(t)ll£r = O(c'S'( 1-~l-!) 

for 1 < r :::;: oo, 

for 1 < r < oo 
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as t----> oo. 

Remark 2.1. Due to Kozono and Ogawa [22], we can remove the 
smallness condition of llall£2 in Theorem 2.5 and in Theorem 2.6 when 
n = 2. 

§3. Outline of the proof 

In this section, we shall show the outline of the proof of Theorem 
2.1 and Theorem 2.2, comparing with the exterior domain case. For an 
aperture domain case, we can show Theorem 2.1 and Theorem 2.2 in a 
similar way to a perturbed half-space case, so we shall introduce the only 
perturbed half-space case. (see Kubo and Shibata [25] for a perturbed 
half-space case and Kubo [24] for an aperture domain case, for details) 

3.1. Local energy decay estimate 

Constructing a parametrix to the resolvent problem in a perturbed 
half-space, we can derive from Theorem 2.3 and Theorem 2.4 that the 
resolvent operator (.X + A)-1 has expansion formula of the same type 
near A= 0: 

Theorem 3.1. Let 1 < p < oo and R > R 0 . Set 

Bn = .C(L~(n); W 2·P(f1R)n x W 1·P(f1R)) 

and U>..0 = U>..0 \ ( -oo, OJ. Then there exists a Ao > 0 and (U(.X), 8(-X)) 
such that 

U(.X)f =(.X+ A)-1 Pf 

for f E L~(n) and A E U>..0 , and 

(U(.X), 8(-X)) 

= {H1(.X).X :2 1 + H2(.X)n~~ log .X+ H3(.X), 
H1(.X).X 2 + H2(.X).X-2 log .X+ H 3(.X), 

where n is even, 

where n is odd 

for any A E U>.. 0 where Hi E B(U>..0 ; Bn), j = 1, 2 and H3 E B(U>..0 ; Bn). 

From (Rf), we know that the semigroup is described as follows : 

where 

rl ={A E c I 0 <I-XI< c:, arg.X = ±8}, 

r2 = {A E c I I-XI > c:, arg A = ±8} 
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for ~ < 80 < 8 < 7f and 0 < c < Ao, where Ao is the same constant as in 
Theorem 3.1 

In the same manner as in !washita [20], we can prove Theorem 2.2 
by using the following Lemma: 

Lemma 3.1. (i) For a> 0 and t > 0, it holds that 

1 1 tz a-ld sin a7f r( ) i7ra -a -. e z z= -- a e t . 
27ft r 1r 

(ii) For a nonnegative integer j and any t > 0, 

-. e ZZJ logzdz =- --r(a)e'"" cJ- . 1 1 t . d [sin a1r . ] I . 1 

27ft r da 7f a=j+l 

3.2. LP - Lq estimates of Stokes semigroup 

In this subsection, we introduce the outline of the proof of LP - Lq 
estimate. At first we shall prove the following lemma. 

Lemma 3.2. Let n ~ 2, 1 < p < oo and R ~ R 0 . Then there exists 
a positive number C = C(f!, n,p, R) such that 

n 1 

IIT(t)fllwl,p(f!R) ::; CC2P- 2 II!IILP(f!), t ~ 2 

for f E JP(f!). 

Proof Fix R ~ Ro + 2. For f E JP(f!) we set g = T(1)f. Then 
g E D(AN) for any N EN and there holds the estimate: 

II AN gll£vcnl ::; CN,pii!IILP(f!)· 

We set u(t) = T(t)g = T(t + 1)f for f E JP(f!). Then u(t) belongs 
to C 1 ([0, oo); JP(f!)) n C 0 ([0, oo); D(A)) and u is the solution of the 
following Stokes problem with some pressure term 1r(t): 

{
8tu(t)- ~u(t) + '\i'1r(t) = 0 in f! X (0, oo), 

(18) Y'·u=O inf!x(O,oo), 

ulan = 0, ult=O = g. 

Seth= '¢+,Rg -lffi[(V''¢+,R) · g], where lffi[·] is the Bogovskii operator 
on the bounded domain D~ (see Bogovskii [4], Borchers and Sohr [6]). 
And then by (3) we have h = g for lxl ~ R + 1. Moreover we can see 
that h E D(AH) where AH denotes the Stokes operator on H. In the 
course of the proof of this lemma, for simplicity, we abbreviate '¢+,R to 
'1/JR. 
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By the solvability of the Stokes equation in the half-space ( cf. Ukai 
[34]) we know that there exists a ( v, p) such that 

v(t) E C1 ([0, oo); JP(H)) n C0 ([0, oo); D(AH)), 

V'p(t) E C 0 ([0,oo);LP(H)) 

and (v, p) solves the following equation: 

(19) {
8tv(t)- ~v(t) + V' p(t) = 0, V' · v = 0 in 

Vlt=O = h, vlxn=O = 0, 

where we choose p so that 

(20) f p(t, x)dx = 0. ln+ R 

H x (0, oo), 

Moreover from the Lq - Lr type estimate in the half-space which is 
proved by Ukai [34] and Borchers and Miyakawa [5] we have 

(21) IIV'jv(t, ·)ll£r(H) :S: Cq,r(1 + t)-~(~-~)-~ llhllw2·•(H) 

for j = 0, 1, t?: 1 and 1 ::; q::; r::; oo with (q, r) -=/= (1, 1) and 

(22) 

IIY'2v(t, ·)ll£r(H) + IIBtv(t, ·)llu(H) :S: Cq,r(1 + t)-~(~-~)-lllhllw2,q(H) 

for t ?: 1 and 1 < q ::; r < oo. 
By (19) and (22) we have 

(23) IIV'p(t)ll£r(H) :S: Cq,r(1 + t)-~(~-~)-lllhllw2,q(H) 

for t ?: 1 and 1 < q ::; r < oo. And in the cylinder C~ which is defined 
by (D), we know the estimates: 

(24) 
. . n i 

IIY'1 v(t, ·)IILP(CA) :S: CRIIY'1v(t, ·)IIL=(H) :S: CR(1 + t)-2P- 2IIhllw2.P(H) 

for j = 0,1 and 

(25) IIY'2v(t, ·)IILP(CA) + ll8tv(t, ·) b(cA) 

:S: CR,p,r (IIY'2v(t, ·)llu(CA) + IIBtv(t, ·)llu(CA)) 

:S: CR,p,r(1 + t)-H~-~)-lllhllw2,p(H) 
n 1 

:S: CR,p(1 + t)_2P_ 2 IIhllw2·P(H) 
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for t 2': 1 and 1 < p < r < oo where max(p, n) :::; r < oo. By (19), 
Poincare's inequality, (20) and (23), we have 

Since v(t, x) = f0x" Onv(t, x', Yn)dyn as follows from the fact that vlxn=D = 
0, we obtain 

(27) 

which combined with (24) with j = 1 implies that 

(28) 

Summing up (24) - (26) and (28), we have shown that 

(29) llv(t)llw2 P(CA) + ll8tv(t, ·)IILP(CA) + llp(t, ·)lb(cA) 
n 1 

:::; G(1 + t)_2P_"II!IILP(st)· 

In order to estimate ( u, 1r) in (18) we set 

(30) w(t) = u(t)- {1/!R-lv(t) -lffi[(V'1/!R-1): v(t)]}, 

(31) B(t) = 1r(t) -1/JR-lP(t). 

It is easily observed that (w(t), B(t)) satisfies the equations: 

atw(t)- t:.w(t) + V'B(t) = K(t), V' · w(t) = 0 

wlao = 0, 

w(O) = u(O)- (1/JR-lv(O) -lffi[(V'1/JR-d · v(O)]) 

= g- (1/JR-lh -lffi[(\71/JR-1) · h]), 

where 

in S1 X (0, oo), 

K(t) = 2\71/JR-1 : V'v + (t:.1J!R-dv- (at- t:.)lffi[(V'1/!R-d · v]- (\71/JR-dP· 

Noticing that supp w(O) C BR by (3) and wE W 2,P(S1), we obtain w E 
D(A)nL~(S1). Since w(t) E C0 ([0, oo); D(A)nL~(S1))nC1 ([0, oo); JP(S1)), 
we can write 

w(t) = T(t)w(O) -1t T(t- s)PK(s)ds. 

We shall show the estimate of w(t) by Theorem 2.2. (3) implies that 

supp K(t) C D~ and by (29) we see that 
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Therefore we obtain 

(32) 

fort 2: 1. 
By (29)-(31) and (32) we obtain 

fort 2: 1. In particular since T(t)f = u(t- 1), for f E JP(D.) we have 

Remark 3.1. We know that in the exterior domain, 
there holds the estimate: 

Q.E.D. 

The reason why the decay rate in the perturbed half-space case is one half 
better than the one in the exterior domain case is that (27) holds. 

Next, we can prove the following two lemmas in the analogue way 
to Hishida [19] and !washita [20]. 

Lemma 3.3. Let f E JP(D.). Then fort 2: 2 we have 

for 1 < p::::; q::::; oo and~(~- i) < 1. And we have 

for 1 < p < oo and t 2: 2. 

Lemma 3.4. For 0 < t ::::; 2, there exists a positive number Cp,q = 
C(p, q, D.) such that 
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for 1 < p ::=; q :S: oo and ~ ( ~ - ~) < 1. And we have 

for 1 < p < oo. 

Finally we shall show Theorem 2.1 by using Lemmas 3.3 and 3.4. 

Proof of Theorem 2.1. By Lemmas 3.3 and 3.4 we have 

(33) 

for 1 < p ::=; q :S: oo, ~ ( ~ - ~) < 1 and t > 0. We will remove the 
restriction of (33). To this end we choose p1 , ... , Pt in such a way that 
p = Pl < P2 < · · · < Pt = q and !!2 (-1- - ..l.) < 1 for j = 2, 3, 4, · · · , £. 

PJ-1 P1 

Then by Lemma 3.4 we have 

Summing up we have obtained 

(34) 

for 1 < p ::=; q ::=; oo, f E JP(O) and t > 0. 

Since for¢, '1/J E CO,"a(O) we have 

where ~ + -? = 1, we obtain 

IIT(t)¢11LP::::: cc~<l-tlll¢11u, 1 < P < oo, 

IIT(t)¢ilu"' ::::: cc~ IIT(t/2)¢11£P::::: cc~ 11¢11£1. 

Summing up we have obtained (6) for 1 ::=; p ::=; q ::=; oo, f E JP(O) and 
t > 0. 
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By using (6) and (7) with p = q we have 

IIVT(t)fiiL'I(n) = llvr (~) T (~) fiiL"(n) 

:S: CqC~ liT(~) fiiLq(n) :S: CqC~C~(~-illlfiiLP(rl) 

for t > 0 and 1 :S: p :S: q < oo. 
We have completed the proof of Theorem 1.2. Q.E.D. 

3.3. The Navier-Stokes flow 

We shall consider the application of LP- Lq estimate to the Navier
Stokes equation. At first we begin to show Theorem 2.5. 

Proof of Theorem 2.5. Employing the argument due to Kato [21] 
we can construct a unique global solution u(t) of the integral equation 

(IE) u(t) = T(t)a -lot T(t- T)P(u(T) · \lu(T)) dT, 

provided that II a ilL" :S: b"o, where b"o = b"o(O, n) is some small positive 
constant. The solution u(t) enjoys the estimates: 

(35) 

(36) 

llu(t)ilu :::: cc~+f;: llalln 
IIVu(t)ilu :S: Ct-Hf;: llalln 

for n :S: r :S: oo, 

for n :S: r < oo 

for t > 0 together with the singular behavior 

liu(t)ilu = o(c~+fr) 

IIVu(t) llu = o(cl+fr) 
for n < r :S: oo, 

for n :S: r < oo 

as t---> 0. (35) and (36) implies the Holder estimate: 

for 0 < T < t and 0 < () < ~- Due to the Holder estimate the solution 
u(t) becomes actually a strong one of (NS) (see [33]). Furthermore, in 
the same way as in Hishida [19] we can obtain the decay properties (14) 
and (15) for n ~ r < oo. The proof is complete. Q.E.D. 

In the same manner as in Hishida [19] we can prove Theorem 2.6. 
The key of his proof is to show the following Lemma 3.5. According to 
Hishida's argument [19] we can also prove Lemma 3.5: 
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Lemma 3.5. Let n ~ 2 and a E L 1(!1)nJn(!1). For any small E > 0 
there is a constant TJ* = TJ*(n, n, c) E (0, <5] such that if llaiiLn ~ TJ*' then 
the solution u(t) obtained in Theorem 2.5 satisfies 

llu(t)IIL~ ~ C(l + t)-!+c:, 
1 n+l+ llu(t)ll£2n ~ CC4(1 +t)-2 2 c, 

ll"v'u(t)ll£n ~ cr!(l +t)-~+!+c 

fort> 0. 
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