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Plane curve singularities 
whose Milnor and Tjurina numbers differ by three 

Masahiro Watari 

Abstract. 

Bayer and Hefez described irreducible plane curve singularities 
whose Milnor and Tjurina numbers differ by one or two, modulo 
analytic equivalence. After their work, we classify the case in which 
their difference is three. 

§ Introduction 

We first define a plane curve singularity, which is the main subject in 
the present paper. Let f be an irreducible element of IC[[X, Y]] such that 
its partial derivatives fx and fy belong to the maximal ideal (X, Y). 
Set 

C := {u · f I u is a unit ofiC[[X, Y]]}. 

If f is a convergent power series, f = 0 defines a singular germ of a plane 
curve at the origin. So it is natural that we call C an irreducible plane 
curve singularity. The Milnor and Tjurina numbers of C at the origin 
are defined by, 

J.L := dimciC[[X, Y]]/(fx, Jy) and T := dimciC[[X, Y]]/(f, fx, Jy). 

It follows from these definitions that J.L 2: T. We set r := J.L- T. Let n be 
the multiplicity of C at the origin. Then there exists a positive integer 
m with m > n and n f m such that C has the following parametrization 
at the origin: 

(1) 

where x =X mod (f) andy= Y mod(!). The local ring of Cis defined 
by Oc := IC[[X, Y]]/(f). Using the parametrization (1), we have the 
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following isomorphism: Oc ~ C[[x, y]] = C[[tn, tm + am+1tm+1 + · · ·]]. 
Let D be an irreducible plane curve singularity. Then C and Dare said 
to be analytically equivalent, if there exists a <C-algebra isomorphism 
Oc ~Ov. 

Zariski ( [7]) showed that r = 0 if and only if C is analytically equiv­
alent to the singularity yn- xm = 0 with gcd(n, m) = 1. When r =/= 0, 
he introduced an important invariant>.. Recently, Bayer and Hefez ([3]) 
classified irreducible plane curve singularities with r = 1 and 2. Their 
work was reviewed by Azevedo in [2]. The aim of this paper is to classify 
irreducible plane curve singularities with r = 3. 

Theorem. Let C be an irreducible plane curve singularity whose 
parametrization is of the form (1). Then we have r = 3 if and only if 
gcd(n, m) = 1 and the parametrization takes one of the following three 
types. We write m = pn + q with 0 < q < n. 

Type(i): >.=(n-1)m-4n. 
(A) x = tn, y = tm + t>•, where n ~ 3, p ~ 2. 
(B) X = tn' y = tm + t>· + at<n-2)m-2n' 

where n ~ 5, p = 1 and a E C. 
Type (ii): >. = (n- 2)m- 2n. 

(C) X= tn, y = tm + t>· + at<n-1)m-4n + bt<n-1)m-3n, 
where n ~ 5, p ~ 2 and a(=/= 0), bE <C. 

(D) X= t4' y = tm + t>· + at3m-16 + bt3m-12' 
where p ~ 2 and a (=/=(3m- 8)/2m), bE <C. 

Type (iii) >. = (n- 3)m- 2n 
(E) X= tn y = tm + t>• + "P (a·tm; + b·tn') + " 2P b·tn; ' L.....t=1 • • L.....t=p+1 • ' 

where n > 2q, n ~ 5, m > 2nj(n - 4), ai, bi E <C, mi 
(n- 2)m- (p + 3- i)n and ni = (n- 1)m- (2p + 3- i)n. 

(F) X= tn y = tm + t>· + "p (a·tm; + b·tn') + " 2p+l a·tm; ' L.....,= 1 • • L.....t=p+ 1 • ' 

where n < 2q, n ~ 5, m > 2nj(n - 4), ai, bi E <C, mi 
(n- 1)m- (2p + 4- i)n and ni = (n- 2)m- (p + 4- i)n. 

Furthermore, the coefficients in the parametrizations (E) and (F) must 
satisfy the relations given in Tables 1 and 2 in Section 4, respectively. 

The present paper is organized as follows: In Section 1, we recall 
some results on the parametrization of plane curve singularities. The 
notion "genus" g of an irreducible plane curve singularity plays an im­
portant role. We infer from a result of Bayer and Hefez that if r = 3, 
then g = 1 or g = 2. In Section 2, we study the properties of plane curve 
singularities of genus one. In particular, we consider the certain types 
of >. which are needed in the proof of Theorem. In Section 3, we prove 
the following fact. 
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Proposition 1. If r = 3, then we have g = 1. 

In Section 4, we develop the method in [3] and prove Theorem by using 
it. 

Acknowledgement. The author would like to express his sincere 
gratitude to Professor Fumio Sakai for his valuable ad vices and warm en­
couragement during the preparation of the present article. He also would 
like to thank Dr. Ken-ichi Nishiyama who helped us with Lemma 18. 

§1. Semigroups and differentials 

Let C be the nonsingular model of C and we denote by 0 c its 
local ring. Since Oc ~ C[[t]], the order function v on C((t)) gives a 
discrete normalized valuation of Oc· We define the semigroup of C to 
be S := {v(A) I A E Oc }. The conductor c of Sis characterized by the 
following properties: 

(2) c- 1 ¢-. S and c + n E S for any n E N. 

It is well known that J-L = c (See [6], Theorem 1). An element of G := 
N U {0} \Sis called a gap of S. The properties (2) implies that c- 1 is 
the biggest gap of S. We define two sequences (ei) and (f3i) associated 
to the parametrization (1) as follows: 

eo= f3o = n, f3J = min{i I i ¢. 0 mod ej-1 and ai =/= 0}, 

e1 = gcd( ej-b {31 ). 

It follows that !31 = m. Since the relevant exponents in a parametriza­
tion of C are coprime, there exists an integer g such that e9 _ 1 =/= 1 and 
e9 = 1. We call this integer g and the set {{30 , ... , {39 } the genus of 
C and the characteristic of C respectively. The characteristic of C is 
denoted by Ch(C). Define the integers ni by 

no= 1 and ei-1 = niei, (i = 1, ... , g). 

It follows that n = n 1 · · · n9. The semigroup S of Cis minimally gener­
ated by the set of integers {v0 , v1, ... , v9 }, defined by 

Vo =nand Vi= ni-1Vi-1 + f3i- f3i-1, (i = 1, ... , g). 

(See [8], Theorem 3.9) We easily see that v1 = m and v0 < v1 < · · · < v9. 
We denote by O.h and 0.~ the module of differentials of Oc and 

that of Oc, respectively. Note that O.h is the Oc-module generated by 
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dx and dy, modulo fxdx + /ydy = 0. Similarly, nb is the 0 0-module 

generated by dt. Consider the map 1r* from n~ to nb defined by 

7r* (A(x, y)dx + B(x, y )dy) = A (tn, <p(t)) dtn + B(tn, <p(t) )d( <p(t) ), 

where (tn, <p(t)) is the parametrization of C. We naturally extend the 
valuation II of Oc to D"b through 7r*. Namely, for ( = H(t)dt E nb, 
we define 11(() to be 11(H(t)). Let~ be an element of n~. Since n~ 
can be regarded as a submodule of nb through its image of 1r*, we 

define 11( ~) to be 11 ( 7r* ( ~)) . A differential ~ is said to be exact, ifthere 
exists an element A E Oc such that ~ = dA. We denote by dOc 
the set of all exact differentials. Set V := 11 ( n~) \ 11( dOc). Since 
11(dOc) = {l- 1 EN ll E S}, we have V = {l-1 E 11 (n~) ll E G}. 
Zariski ( [7]) showed that 

(3) r =dime (n~jdOc) = "(V). 

For the case where r > 0, he also showed that .X= min{V}- n + 1 is an 
analytic invariant with the following property: 

(4) .X, .X+ n ~Sand m <.X 5:. !32 = v2- (n1- 1)vl. 

We call .X the Zariski invariant of C. The differential w := mydx- nxdy 
gives the minimal order .X+ n- 1 in V (See [7]). Furthermore, C is 
analytically equivalent to the plane curve singularity given by 

(5) X = tn, y = tm + t>' + · ... 

By the way, any integer t can be written in a unique way as 

(6) t = t9 v9 + · · · + h v1 - tovo, 

where to, ... , t9 are integers such that 0 5:. ti 5:. ni - 1 for i = 1, ... , g 
(See [1], Lemma !.2.4). It follows from (6) that t belongs to S if and 
only if to 5:_ 0. The biggest gap of S, c- 1, is expressed as (n9 -

1)v9 + · · · + (n1 - 1)v1 - v0 • The Zariski invariant is also written as 
.X= .X9v9 + · · · + .X1v1- .Xovo where 0 5:. Ai 5:. ni- 1 fori= 1, ... , g. 
By the properties (4), we easily see that .X0 ;::: 2. 

The C-vector space n~ is expressed as the following form ([3], Propo­
sition 2): 

(7) n~ = Ocw +dOc. 

So any element of n~ can be written as Aw +dB for some A, BE Oc. 
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Definition 2. We define the subsets VQ, V1 of V by 

Vo := v(Ocw) \ v(dOc), V1 := V \ VQ. 

Furthermore, define the sets v+' vo+ and vt by 

v+ :={a+ 11 a E V}, Vct :={a+ 1 I a E Vo}, 

vl+ := {a+ 1 I a E VI}. 

Note that we have v+ = V0+ u Vt c G where V0+ n V1+ = 0. A 
positive integer a is contained in V if and only if a + 1 is contained 
in v+. So we have ~(V) = ~(V+). It is also clear that the relations 
~(V+) = ~(V) = ~(Vo) + ~(V1), ~(V0+) = ~(Vo) and ~(V1+) = ~(V1) hold. 
The formula (3) can be rewritten as 

Lemma 3. Let the genus of C be 1. Then we have 

Proof Recall that vo = n, v1 = m and v(w) = A1m- (Ao -1)n-l. 
If "f E V0+, then we have "f = v(Aw) + 1 for some A E Oc. The gap "f is 
expressed as (h + Al)m- (Ao -lo -1)n where v(A) = hm + lon. So we 
have 

+ { + I 0 < lo < Ao - 2, } V0 = (h + A1)m- (Ao -lo- 1)n E V h ~ 0 - · 

Define a subset Uft of V0+ by 

+ _ { I 0 ::; lo ::; Ao - 2, } U0 _ (h + Al)m- (Ao -lo- 1)n 0 ::; h + Al ::; n _ 1 · 

We prove that V0+ = Uft, which gives the desired result. It is enough to 
show that V0+ c Uft. Take an element "t = (h + Al)m- (Ao -lo- 1)n 
from Vct If h + A1 ::; n- 1, then there is nothing to prove. So we 
assume that h + A1 > n - 1. Then there exists a positive integer k such 
that 0 ::; h + Al - kn ::; n -1. By using this k, we rewrite"( as the form 
of (6). That is, 

"( = (h + A1- kn)m- (Ao- km -lo -1)n. 

Since "f E v+, the inequality Ao - km -lo - 1 > 0 holds. Then "f is given 
by v(xkm+low) + 1, so"( E Uft. Q.E.D. 
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Remark 4. We infer from Lemma 3 that ~(V0+) is determined by 
A for the case where g = 1. 

For any genus, the following relations hold (See [3], Proposition 1, Corol­
lary 5): 

(9) 

(10) 

r?: (Ao- 1)(nl- AI)··· (n9 - A9 ), 

r?:29 - 1 . 

Let ( = (atv(t;) +terms of higher degree)dt be an element ofO~. We 

denote by LT( () the leading term atvW. Let LC( () denote the leading 
coefficient a. For ~ E Ob we simply write LT(~) = LT(rr*(~)) and 
LC(~) = LC(rr*(~)). 

Lemma 5. Let C be an irreducible plane curve singularity of genus 
g. If~= Aw +dB is an element ofOb with v(~) + 1 E V/, then~ sat­
isfies the following conditions: 

(11) LT(Aw) + LT(dB) = 0, 
9 

(12) v(~) + 1 < ~)ni- 1)vi- vo. 
i=l 

Proof. If LT(Aw) + LT(dB) =I 0, then v(~) belongs to V0 or to 
v(dOc ). Hence the condition (11) must occur. Let A = l:f=1 AiVi- Aovo 
be the Zariski invariant of C. Then v(w) + 1 is expressed as l:f=1 AiVi­
(Ao -1)vo. We know that max{V+}:::; l:f=1(ni -1)vi- vo. Let Zi be 
an element of Oc with v(zi) =vi fori= 0, ... , g. Then the differential 

>.0 -2I19 (n;-.>.;-1) . h d "'9 ( 1) 1 H z0 i=l zi w g1ves t e or er L...i=l ni - Vi - vo - . ence 
l:f=l(ni -1)vi- Vo E vo+· We have the desired consequence. Q.E.D. 

There are some criteria for simplifying the parametrization of C 
modulo analytic equivalence (See [4] and [8], Ch.III, Proposition 1.2; 
Ch.IV, Lemma 2.6 and Proposition 3.1). 

Lemma 6. Let asts be a term of y in the parametrization (5) 
where s > A and as =I 0. If either 

(EC 1): s belongs to S, or 
(EC 2): s + n = lm for some lEN, or 
(EG 3): s-A belongs to the subset of S generated by n and m, 

then C is analytically equivalent to an irreducible plane curve singularity 
given by a parametrization of the same form, but with as = 0 and ai 
unchanged for i < s. 
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Applying Lemma 6 to the parametrization (5), we have the following 
parametrization: 

X = tn' y = tm + t>' + L aiti. 
iEG 

We always consider such parametrizations of C in this paper. 

§2. Singularities of genus one 

In this section, we consider irreducible plane curve singularities of 
genus 1. Note that g = 1 if and only if gcd(n, m) = 1. In this case, we 
have vo = n = n1 and v1 = m. We write m = pn + q where 0 < q < n. 
We first prove the following proposition: 

Proposition 7. If C is given by 

(13) 

where 1 :::; R :::; p + 1, then we have r = R. 

Proof Note that >. = (n- 1)m- (R + 1)n in (13). If 1 :::; R :::; p, 
then we have (n- 2)m- n < (n -1)m- (p+ 1)n:::; (n -1)m- (R+ 1)n. 
So the gaps which are greater than >. are 

(14) (n-1)m-Rn, ... , (n-1)m-n. 

If R = p + 1, then we have (n- 1)m- (R + 1)n < (n- 2)m- n < 
( n - 1 )m - Rn. The gaps which are greater than >. are 

(n-2)m-n, (n-1)m-Rn, ... , (n-1)m-n. 

For both cases, clearly, we have V0 = {v(w), v(xw), ... , v (xR- 1w) }. 
Note that v(xiw) + 1 = (n -1)m- (R- i)n fori= 0, ... , R -1. Since 
min{V+} = v(w) + 1, we conclude that V/ = 0. Hence we conclude 
that r = R by (8). Q.E.D. 

Remark 8. Since>.= (n -1)m- (R + 1)n, we infer from Propo­
sition 7 that r is determined by >. for the plane curve singularity given 
by the parametrization (13). 

Remark 9. The cases where R = 1 and R = 2 in Proposition 7 
correspond to Theorems 7 and 17 in [3], respectively. 

Corollary 10. Fix a positive integer n (~ 3). For any positive 
integer R, there exists an irreducible plane curve singularity of g = 1 
with multiplicity n and r = R. 
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Proof Put m = (R+1)n+1 and A= (n-1)m-(R+1)n. Then we 
have..\> m and (n-1)m-(R+1)n > (n-2)m-n. Hencethegapswhich 
are greater than ..\ are same as (14). Therefore the parametrization 

gives the desired singularity. Q.E.D. 

In what follows, we consider three types of the values of..\: (i) A = 
(n- 1)m- 4n, (ii) ..\ = (n- 2)m- 2n, (iii) ..\ = (n- 3)m- 2n, which 
will be used in the proof of Theorem. 

2.1. Type (i): A= (n- l)m- 4n 

Since..\ > m, we must have (n- 2)m > 4n, hence n 2:: 3. We first 
consider the case in which p 2:: 2. Furthermore, if p 2:: 3, then the gaps 
which are greater than A are 

(n -1)m- 3n, (n -1)m- 2n, (n -1}m- n. 

On the other hand, if p = 2, then we have the following gaps: 

(n- 2)m- n, (n -1)m- 3n, (n- 1)m- 2n, (n- 1)m- n. 

For both cases, by Lemma 6, the parametrization of C can be taken as 

(15) 

Next we consider the case in which p = 1. This case occurs only when 
n 2:: 5. The gaps which are greater than ..\ are 

(n- 2)m- 2n, (n- 1)m- 3n, (n- 2)m- n, 

( n - 1 )m - 2n, ( n - 1 )m - n. 

By Lemma 6, the parametrization of C can be taken as 

(16) X= tn, Y = tm + {>• + at(n-2)m-2n, (a E C). 

Remark 11. According to the conditions: (1) gcd(n, m) = 1, (2) 
m > 4nj(n- 2), we have some restrictions on p, q. First of all, we must 
have q 2:: 1. We also infer that gcd(n, q) = 1. 
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2.2. Type (ii): A= (n- 2)m- 2n 

It follows from >. > m that n 2: 4 and m > 2n/(n - 3). Since 
v(w) + 1 = (n- 2)m- n, we find that Vo = {v(w), v(yw)}. The gaps 
which are greater than >. are 

(n- 1)m- (p + 2)n, (n- 2)m- n, (n- 1)m- (p + 1)n, 

(n -1)m- pn, ... , (n -1)m- n. 

By Lemma 6, the parametrization of C can be taken as 

(17) 
p 

X = tn, y = tm + t>· + L aitm', 
i=l 

where mi = ( n - 1 )m - (p + 3 - i)n and ai E C. 

Definition 12. Define the differentials 'T/k for k 2: 1 by 

-n(m- >.) 
'TJk := xkw + d (ukxk-lyn- 2 ) where Uk = -,---.,.......;-.,----=--.,--

(k- 1)n + (n- 2)m 

Then we have 

Furthermore, we see that 

n*('TJk) = n [(m _ >.)t(n-2)m+(k-l)n-1 

+ t ai(m- mi)t(n-l)m-(p+2-i-k)n-1] dt 

(18) + Uk(k _ 1)n [t(n-2)m+(k-1)-1 

+ (n _ 2)t(2n-5)m-(3-k)n-1 + ... J dt 

+ uk(n- 2) [mt(n-2)m+(k-1)-1 

+ {m(n _ 3) + >.}t(2n-5)m-(3-k)n-1 + ... ]dt. 

So we have LT(xkw) + LT (d (ukxk-lyn- 2)) = 0 for any k. Comparing 
(n -1)m- (3- k)n- 1 with (2n- 5)m- (3- k)n -1 in (18), we have 
the following relations according to n. 

(n- 1)m- (3- k)n- 1 < (2n- 5)m- (3- k)n- 1 for n 2: 5, 

(n- 1)m- (3- k)n- 1 = (2n- 5)m- (3- k)n- 1 for n = 4. 
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So we consider the cases (C) n 2: 5 and (D) n = 4 separately. 

Lemma 13. Let e be an element of D.h with v( e)+ 1 E V1+. Then 
we have v(e) 2: v(ryk) for some k. 

Proof. Put e = Aw +dB where A, BE Oc. There exists only one 
term c1xk1 yh in A such that v(A) = v(clxk1 yh ). Then we must have 
lt = 0. Indeed, if not, we have 

v(Aw) + 1 = (h + n- 2)m + (k1- 1)n 2: (n- 1)m- n. 

By (12), we see that v(e) + 1 ~ v+, which is a contradiction. 
Since the cancellation (11) occurs, we have v(dB) = (n-2)m+(kl-

1)n-l. So the function B contains only one term h1xk1 -lyn-2 such that 
v(dB) = v(hlxk1 -lyn-2). Since LT (c1xk1 w) + LT (d (h1xk1 - 1yn-2)) = 
0, we easily see that hl = Cl Ukl. Hence e can be written as Cl 'f/kl + 6 
where6 = (A-clxk 1 )w+d(B-hlxk1 - 1yn-2). Ifv(6)+1 E V1+, 
then we can apply the same argument to 6- Namely, there exists 'f/k2 

such that e = Cl'f/k1 + C2'f/k2 + 6 where 6 = (A- C1Xk1 - C2Xk2 ) W + 
d (B- h1xk1 -lyn-2 - h2xk2 -lyn-2). Note that v(A- c1xk1 - c2xk2 ) > 
v(A - c1xk1 ). We can continue this procedure successively. After the 
j~th step, we have 

j 

e = L:ci'f/k; +ej, 
i=l 

Since we have v (A - 'L{:!:t cixk') > v (A - 'L{=l cixk;), there exists 

a positive integer j such that v( ej) :::: !I ( (A - 'L{=l CiXk;) w) > ( n -

1)m- n- 1. It follows from (12) that v(eJ) + 1 ~ V1+. So we have 
e = L Ci'f/k; + ej where v('L Ci'f/kJ < v(ej ). Thus we obtain v(e) :::: 
min{v('f/k;)}. Q.E.D. 

Lemma 14. Let C be an irreducible plane curve singularity given 
by (17). If n 2: 5 and p = 1, then we have V1+ = 0. 

Proof Assume that V1 =/= 0. Let e be a differential with v(e) E V1. 
Then we have v(e) 2: v(ryk) for some k by Lemma 13. However we have 

{
(n-1)m-n-1 fork=1, 

v(ryk) > 
- (n-1)m+(k-2)n-1 fork2:2. 
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Since v(ryk) + 1 ~ (n- 1)m- n for any k, we have v(~) + 1 ¢. V/ by 
(12). This is a contradiction. Q.E.D. 

Lemma 15. IfV/-/= 0, then we have v(ryl) + 1 = min{V1+}. 

Proof We here prove this lemma for Case (C). We can similarly 
deal with Case (D). We have 

7r*('T/1) = [n E ai(m- mi)t(n-1)m-(p+1-i)n-1 + .. ·] dt, 
•=1 

(19) 

where we abbreviate the terms whose degree is greater than ( n- 1 )m -
2n - 1. Assume that V/ =I= 0. We must have p ~ 2 by Lemma 14. 
We first show that v(ryl) E Vi. If v(ryl) ¢. V1. then v(ry1) E Vo or 
v(ryl) E v(dOc). Now we have V0 = {v(w), v(yw)}. If v(ry1) E Vo, then 
we have v(ryl) = v(yw) by the definition of ry1. At least the coefficients 
in (19) must satisfy 

(20) ai = 0 for i = 1, ... , p - 1. 

Let ~ be a differential with v(~) E V1. By Lemma 13, we have v(~) ~ 
v(TJk) for some k. Under the conditions (20), if k ~ 2, then we have 

7r*(TJk) = [apn(m- mp)t(n-1)m+(k-2)n-1 + ... J dt. 

Since v(ryk) + 1 ~ (n- 1)m- n for all k, we have v(~) + 1 ¢. v1+ by 
(12), which is a contradiction. On the other hand, if v(ry1) E v(d00 ), 

then (20) must hold again. Since same contradiction occurs, we have 
v(171) E V1. 

Next we show that min{V1+} = v(ryl) + 1. It suffices to consider the 
case where ~(V/) ~ 2. Let ~ be an element of nh with v(~) E V1 and 
v(~) =/=- v(171). By Lemma 13, we have v(~) ~ v(TJk) for some k (~ 2). 
We have 

(21) 7r*("'k) = [n t ai(m- mi)t<n-1)m-(p+2-i-k)n-1 + .. ·] dt. 
•=1 

Set N := min{i I ai =/=- 0}. Then we have v(ryk) = (n- 1)m- (p + 2-
N- k)n -1. It follows from (12) that (n -1)m- (p+ 2- N- k)n -1 < 
(n- 1)m- n- 1. It yields the inequality 

(22) N <p+ 1- k. 

On the other hand, it follows from (19) that v(ryl) = (n- 1)m- (p + 
1- N)n -1. We see that v(ry1) < v(TJk) by (22), which gives the desired 
consequence. Q.E.D. 
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2.3. Type (iii): A= (n- 3)m- 2n 

It follows from ,\ > m that n 2: 5 and m > 2n/(n- 4). Since 
v(w) = (n- 3)m- n- 1, we find that V0 = {v(w), v(yw), v(y2w)}. We 
divide Type (iii) into two cases: (E) n > 2q, (F) n < 2q. 
(E): n > 2q. The following gaps are greater than>.: 

(n- 2)m- (p + 2)n, (n- 1)m- (2p + 2)n, (n- 3)m- n, 

(n- 2)m- (p + 1)n, (n- 1)m- (2p + 1)n, (n- 2)m- pn, 

(n-1)m-2pn, (n-2)m-(p-1)n, ... , (n-2)m-n, 

(n- 1)m- (p + 1)n, ... , (n- 1)m- n. 

By Lemma 6 with the above gaps, we see that C has the parametrization 

p 2p 

(23) x=tn, y=tm+t>'+L:<aitmi+bitni)+ 2::: bitni, 
i=l i=p+l' 

where 

mi = (n- 2)m- (p + 3- i)n, ni = (n- 1)m- (2p + 3- i)n 

and ai, bi E C. 
(F): n < 2q. The gaps which are greater than>. are 

(n- 1)m- (2p + 3)n, (n- 2)m- (p + 2)n, (n- 3)m- n, 

(n- 1)m- (2p + 2)n, (n- 2)m- (p + 1)n, 

(n- 1)m- (2p + 1)n, (n- 2)m- pn, (n- 1)m- 2pn, ... 

(n-2)m-n, (n-1)m-(p+1)n, ... , (n-1)m-n. 

Then C has the following parametrization: 

p 2p+l 

(24) X= tn, y = tm +t,\ + L:<aitmi + Mni) + L aitmi, 
i=l i=p+l 

where 

mi = (n- 1)m- (2p + 4- i)n, ni = (n- 2)m- (p + 3- i)n 

and ai, bi E C. 

Definition 16. Define the differentials (kl (k 2: 1, l 2: 0) by 

(kl := xkylw + d (sk!Xk-lyn+l-3)' 

-n(m- >.) where Skt = ___ _;____-.:... __ 
(k- 1)n + (n + l- 3)m 



Plane curve singularities whose Milnor and Tjurina numbers 285 

We rewrite the differentials (kl as follows: 

(ll = y1¢1l and (kl = xk-2y1¢kl, 

{

¢1l = xw + Skz(n + l- 3)yn-4dy, 

where ¢kl = x 2w + Skl { (k- 1)yn-3dx 

+ (n + l- 3)xyn-4dy }(k ~ 2). 

We can easily check that LT (xky1w) +LT (d (sk1xk-Iyn+l- 3)) = 0. Note 
that ¢10 = (10 and c/J2o = (20· The following lemma is an analogue of 
Lemma 13. 

Lemma 17. If~ is an element of n~ with v(~) + 1 E V/, then~ 
has the form a(kl +~'for some (kl where v((kl) :::; v(.;') and a E C 

Proof. This proof is similar to that of Lemma 13. So we omit it. 
Q.E.D. 

§3. Singularities of genus two 

We consider irreducible plane curve singularities of genus 2 in this 
section. The aim of this section is to prove Proposition 1. We first prove 
some technical auxiliary results needed in the proof of Proposition 1. 
Recall that if g = 2, then we haveS= (v0, VI, v2) where vo <VI < v2, 
vo = n = nin2 with ni ~ 2 (i = 1, 2), VI = m = eimi for some positive 
integer mi and ei = n 2. Set A= A2V2 + AIVI- Aovo. In case r = 3, by 
(9), we have 

(25) 3 ~ (Ao- 1)(ni- AI)(n2- A2) > 0. 

Lemma 18 (Nishiyama). If C is an irreducible plane curve sin­
gularity of genus 2 with r = 3, then we have A = (ni - 1)m- 2n and 
Ch(C) = {3ni, 3mi, ,62} where ni and mi are coprime, ni < mi and 
,62 is not divisible by 3. 

Proof. We first show that n 2 -1- 2 (cf. Lemma 10 in [3]). If n 2 = 2, 
then we have S = (2p, 2q, v2 ) where p < q, gcd(p, q) = 1, p = ni and 
v2 > ni VI = 2pq. Furthermore, we can rewrite S with some positive and 
odd integer d as 

s = (2p, 2q, 2pq +d). 

Luengo and Pfister ([5]) showed that the irreducible plane curve sin­
gularity C with such semigroup has 7 = J-L - (p - 1) ( q - 1). That is, 
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r = (p- 1)(q- 1). So if we set r = (p- 1)(q- 1) = 3, then we have 
p = 2 and q = 4. This implies that m = 2n, which is a contradiction. 

Let A = A2V2 + Al v1 - Aovo be the Zariski invariant of C. We first 
consider the case where A2 =f. 0. Recall that A ~ !32 (See (4)). Assume 
that A < !32· Since v2 = n1v1 + !32- !31 and /32 can not be divisible by 
e1. A is also not divisible by e1. This contradicts the definition of !32· 
Hence we have A= !32 = v2 + v1- m1vo. It follows that A2 = 1, Al = 1, 
Ao = m1. Since m1 > n1 2: 2, we easily see that n2 = 2 by (25). So the 
case in which A2 =f. 0 does not occur by the above argument. 

On the other hand, if A2 = 0, then we must have n2 = 3 by the above 
argument and (25). It follows that S = (3n1, 3m1, v2). We also obtain 
A1 = n1 - 1 and Ao = 2 by (25). The corresponding characteristic is 
Ch(C) = {3nl> 3mb /32} where /32 = v2-(n1-1)m. We have completed 
the proof of Lemma 18. Q.E.D. 

By Lemma 18, we have only to consider the case where 

A= (n 1 - 1)m- 2n and Ch(C) = {3nl, 3ml, /32}-

In this case, We have S = (vo, v1. v2) where v0 = n = 3nl, v1 = m = 
3ml and v2 = 2m+ /32. We also have n1 2: 3 by A > m and the following 
conditions are satisfied: 

{
nl + 1 for n1 2: 4. 

m1 2: 
7 for n1 = 3. 

Lemma 19. Let C be an irreducible plane curve singularity with 
Ch(C) = {3nl> 3mb /32} and A= (n1 -1)m-2n. Then the parametriza­
tion of C can be taken as 

Proof. Let h1 be the biggest positive integer satisfying m + h1 e1 < 
/32. Note that e1 = 3 and A= m + 3{(nl- 2)m1 - 2n1}. So we can take 
the parametrization of C as 

where m + 3i E G for any i. Since each m + 3i is a gap, it is written in 
a unique way as 

(28) 
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where 0 :S t2 :S 2, 0 :S t1 :S n1 - 1 and to > 0 (See (6)). Since the left 
hand side of (28) is divisible by 3 and v2 is not divisible by 3, we must 
have t2 = 0. Since >. = ( n 1 - 1 )m- 2n, no integer satisfies this condition 
other than (n1 - 1)m- n. If /32 < (n1 - 1)m- n, then we obtain (26). 
On the other hand, if (n1 - 1)m- n < /32, then (27) becomes 

X ·= tn, y _ tm + tA +a t(n1-l)m-n + atf32 + - (n1-2)m1-n1 · · · · 

By using (EC 2) in Lemma 6, we can rewrite this as (26). Q.E.D. 

Lemma 20. If a positive integer k = am+bn (a, bE .Z) is greater 
than (n1 - 1)m- n, then we have k E (n, m) c S. 

Proof. By (6), we can rewrite k as l2v2+ltv1 -lovo where 0 :S l2 :S 2 
and 0 :S h :S n1 - 1. Now we have l2 = 0. Indeed, if not, then we have 

bv2 = 3{(a- h)ml + (b + lo)ml}. 

Since l2 is equal to 1 or 2, the integer v2 must be divisible by 3, which 
is a contradiction. Thus we have k = lt m - lon. Since the biggest gap 
of such form is (n1 - 1)m- n, the positive integer k is contained inS. 

Q.E.D. 

Proof of Proposition 1. It follows from (10) that if r = 3, then 
g = 1 or 2. We shall show that if g = 2, then r f. 3. It is enough to 
consider the plane curve singularity C with >. = (n1 - l)m- 2n and 
Ch(C) = {3nt, 3mt, /32 } by Lemma 18. By Lemma 19, we may assume 
that Cis given by (26). Since (>.o- 1)(n1 - >.1)(n2- >.2) = 3, there 
exist three distinct elements of V0 . They are given by v(w), v(zw) and 
v(z2w) where z E Oc with v(z) = v2 • We shall inductively construct a 
differential ~ such that 

(29) 

Since /32 + 2n -1 = v2 + m- (m1 - 2)n -1 is different from v(w), v(zw) 
and v(z2w), we would haver :::=: 4 by (8). We first set ~o = (m/n)xw. 
Then we have 

7r* (~o) = { m(m _ >.)t(n1-l)m-l 

+ am(m- f32)tf32+2n-l + · · · }dt. 

Next we set 6 = ~0 - (m- >.)yn1- 2dy as the first step. We have 
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ynl -2 = t(nl -2)m [ 1 + ( n1; 2) { t>--m + at.B2-m + ... } 

(30) 

+ (n1; 2) { t2(.~-m) + 2at.B2+.>.-2m + ... } 

( n1 - 2) { 3(.>. m) } + . 3 t - + ... + ... 

+ (:~ = D { t(n1-2)(.>.-m) + ... } ]· 

We consider the cases where {32 -m< 2(A.- m) and where 2(A.- m) < 
!32 - m separately. 

If !32-m< 2(A.- m), then we have 

rr* (yn1-2dy) = [mt(n1-1)m-1 + {m(n1 _ 2) + A.}t(2n1-3)m-2n-1 

+ a{m(n1 - 2) + f32}t.B2+(nl-2)m-1 + ... J dt. 

Since (2n1 - 3)m- 2n > {32 + 2n, we have 

rr*(6) = [am(m- f32)t.B2 +2n-1 + · · ·] dt, 

which is the desired differential. In particular, if n1 = 3, then this case 
always occurs. 

Next we consider the case where 2(A.- m) < {32 - m. This case 
occurs only when n1 ~ 4. Set N1 :=max{ i I i(A.- m) <!32-m and 2 :::; 
i :::; n1 - 2}. Then (30) becomes 

yn1 -2 =t(n1-2)m + f (n1; 2) t(i+1)(n1-2)m-2in 

•=1 

+ a(n1 - 2)t.B2+(nl-3)m + .... 

So we have 

rr* (yn1 -2dy) = [ mt(n1 -1)m-1 

+ t, { m(n1; 2) + .x.(~1_-12)} tni-1 + .. ·] dt, 

where ni = { ( i + 1 )n1 - 2i - 1 }m - 2in. In a similar manner as in the 
previous case, we set 6 =eo -(m-A.)yn1- 2dy. Since nNl-1 < f32+2n < 
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nN1 holds, we have 

1r*(~i) = [ _ (m _A) ~~1 
{ m(nl; 2) + A(~1--12)} tni-1 

+ am(m- f32)tf32 + 2n- 1 + · · ·] dt. 

Note that ni E (n, m) by Lemma 20. Starting with 6, we inductively 
define a differential ~k. Assume that ~k ( k 2': 1) satisfies the following 
condition: 

(31) 7r*(~k) = { _L Ck, atm"- 1 + am(m- f32)tf32 + 2n-1 + · · ·} dt, 
fimte sum 

where ma E (n, m). Putting v(~k) = akm + bkn- 1, we set 

if ak = 0 and bk I= 0. 

if ak I= 0 and bk I= 0. 

if ak I= 0 and bk = 0. 

It follows from this definition that v(~k+I) > v(~k)· We prove that ~k+ 1 
above satisfies the condition ( 31). 
Case 1) ak = 0 and bk I= 0. We have 

7T*(~k+I) = {L Ck+1,atm"'- 1 + am(m- fJ2)t 13z+2n-1 + · · ·} dt, 

where ma E (n, m). Note that the number of ma is finite. The differ­
ential ~k+l satisfies the condition ( 31). 
Case 2) ak I= 0 and bk I= 0. Consider the differential xbk- 1 yakdx. 
Writing 

yak = takm [ 1 + (at) {tA-m + atf3z-m + ... } 

+ ( a2k) { t2(.X-m) + 2atf3z+.X-2m + ... } 

+ ( ~k) { t3(.X-m) + ... } + ... 

+ (::) { tak(.X-m) + ... } ] , 
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we set Nk+1 := max{i I i(.A- m) <(32-m and 2 ~ i ~ ak}. Then we 
have 

7r* (xbk-1yakdx) = n [takm+bkn-1 

Nk+t 
+ L Cit{(nt-2)i+ak}m+(bk-2i)n-1 

i=1 

+ aakt.B2+(ak-1)m+bkn-1 + .. ·] dt. 

By Lemma 20, the integers {(n1 - 2)i + ak}m + (bk - 2i)n belong to 
(n, m). It is easy to see that fJ2 + (ak - 1)m + bkn- 1 > (32 + 2n- 1. 
So ek+1 satisfies the condition (31). 
Case 3) ak =I 0 and bk = 0. We consider the differential yak- 1dy. By 
the same argument as Case 2, we define Nk+l := max{i I i(.A- m) < 
fJ2- m and 2 ~ i ~ ak- 1} for yak- 1. We have 

7r* (yak-1dy) = [mtakm-1 + L Catma-1 
finite sum 

+ a(m + f32)t.B2+(ak-1)m-1 + .. ·] dt, 

where m"' E (n, m). So we see that ek+1 satisfies the condition (31). 
We can therefore inductively construct ek+1 from ek· Since there 

exist finitely many elements of (n, m) which are smaller than fJ2 + 2n -1 
and v(eo) < v(6) < ... < v(ek) < ... holds, we obtain e with 7r* (e)= 
[am(m- (32)t.Bd2n-1 + · · ·] dt after finitely many steps. Q.E.D. 

§4. Proof of Theorem 

By Proposition 1, it is enough to consider the case where 9 = 1. 
Substituting r = 3 and 9 = 1 to (9), we obtain 3 = r 2: (.Ao -1)(n- .AI). 
This inequality yields the following possible five types of .A: · 

(i) .A= (n- 1)m- 4n, (ii) .A= (n- 2)m- 2n, (iii) .A= (n- 3)m- 2n, 

(iv) .A= (n- 1)m- 2n, (v) .A= (n- 1)m- 3n. 

Lemma 21. If .A is either of type (iv) or of type (v), then r =j;3. 

Proof For type (iv) (resp. type (v)), letting R = 1 (resp. R = 2) 
in Proposition 7, we conclude that r = 1 (resp. r = 2). Q.E.D. 
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We consider the remaining three types separately. We freely use the 
notations and the results in Section 2. 
Type {i): .X = (n- 1)m- 4n. We show that r = 3. We first consider 
the case in which p ::::: 2. We may assume that C is given by (15). By 
Proposition 7, we haver= 3. 

Next we consider the case in which p = 1. The parametrization of 
C has the form (16). We have 

rr*(w) = n { (m- .X)t(n-l}m-3n-1 + a(m- ml)t(n-2}m-n-1} dt. 

It follows from v(w) = (n-1)m-3n-1 that Vo = {v(w), v(xw), v(x2w)}. 
By (8), we haver = 3 if and only if Vt = 0. Assume that V1+ =f. 0. 
Let ~ = Aw +dB be an element of Oh with v(~) E V1. If we set 
(Aw) = (uxkyl + · · ·) w where u E C, then we have 

(32) v(Aw) = (n + l- 1)m + (k- 3)n- 1. 

Since v(Aw) E dOc by (11), we have k ::::: 3 or l ::::: 1. Suppose k ::::: 3. 
Then we see from (32) that v(Aw) > (n- 1)m- n- 1. So the order 
v(~) can not belong to V1 by (12). Thus we must have l ::::: 1. If l ::::: 2, 
then we have v(Aw) > (n- 1)m- n- 1 again. Hence l = 1. Then (12) 
yields (k- 1)n + q < 0. We infer from this that k = 0. Thus we have 
Aw = (uy +terms of higher degree)w. We have 

rr*(uyw) = un [(m- .X)t<m-3)n-l- abt(n-l)m-n-l] dt. 

where b := (n - 3)m- 2n. Since (11) holds, the differential dB has 
the form d ( -u(m- .X)xm-3 f(m- 3) + · · · ). So~ can be rewritten as 
uyw + d ( -u(m- .X)xm-3 /(m- 3)) +e. If we write ~' = (u'xkyl + 
· · · )w +dB', then (k, l) =f. (0, 1) and hence v(€') ~ V1. This fact implies 
that v(~) = v(yw) +d(-u(m-.X)xm-3/(m-3)) Ifn = 5, 6, we find 
that v(Aw) > (n- 2)m- n- 1. Since (n- 1)m- n is the only gap 
greater than (n-2)m-n, there exists no element of V1. That is, V1 = 0. 
For 7 ::::: n, we have 

rr* (uyw +d (-u(m- .X) xm-3)) = -abunt(n-l)m-n-ldt. 
(m- 3) 

By (12), v(~) can not be in V1. We conclude that V1 = 0 for 7::::: n. 
Type (ii): .X = (n- 2)m- 2n. By Lemma 3, ~(v~t) = 2 holds. So we 
haver= 3 if and only if ~(V1+) = 1 by (8). Furthermore, by Lemma 15, 
we obtain ~(V1+) = 1 if and only if V1+ = {v(171) + 1}. 
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(C): n 2: 5. It follows from the inequality A > m that p 2: 1 for n 2: 5. 
However we must have p 2: 2 by Lemma 14. If ~(V/) = 1, then the 
coefficients in (19) must satisfy 

(33) ai = 0 fori= 1, ... , p- 2 and ap- 1 =/= 0. 

Conversely, assume that the coefficients in the parametrization (17) sat­
isfy (33). Then we have v(ryl) = (n -1)m- 2n -1. Since (n -1)m- n is 
the only one gap of S which is greater than ( n -1 )m- 2n, by Lemma 15, 
we have V/ = {v(ryl) + 1}. 
(D): n = 4. It follows from the inequality A > m that p 2: 2. We have 

[ 
p-2 

7r*(ryl) = 4 8 ai(m- mi)t3m-4(p+1-i)-1 

{ m 2 - A2 } 3m 8 1 ] +4 ap-1(m-mp-1)- m t -- +··· dt. 

If ~(V/) = 1, then we must have the following condition: 

3m-8 
(34) ai = 0 fori= 1, ... , p- 2 and ap_ 1 =/= . 

2m 

Conversely, if Cis given by the parametrization (17) with (34), then we 
find that ~(V/) = 1 by the same argument as in (C). 

Type (iii): A= (n- 3)m- 2n. Since ~(V0+) = 3, we haver= 3 if and 
only if V1+ = 0 (See (8)). We here prove Case (E). We can similarly deal 
with Case (F). Now we have 

7r*((10) = n [(m- A)t(n-3)m-1 

p 

+ L { ai(m- mi)t(n-2)m-(p+1-i)n-1} 

i=1 
p 

+ L {bi(m- ni)t(n-1)m-(2p+l-i)n-1} 

i=1 

~ l + 2.:: bi(m- ni)t(n-1)m-(2p+1-i)n-1 dt 
i=p+1 

- s10 [ ( n - 3)mt(n-3)m- 1 

+ {A+ m(n- 4) }t(2n-7)m-2n-1 + ... ] dt. 
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Comparing the exponent (2n- 7)m- 2n -1 with (n -1)m- n -1, the 
following three subcases occur: 

(El): (2n- 7)m- 2n- 1 > (n- 1)m- n- 1 for n 2:: 7. 
(E2): (2n -7)m- 2n -1 = (n -1)m- 2n -1 for n = 6. 
(E3): (2n- 7)m- 2n -1 < (n -1)m- 2n -1 for n = 5. 

It follows from A > m and n > 2q that the conditions (i) p 2:: 1 for n 2:: 7, 
(ii) p 2:: 1 and q = 1 for n = 6, (iii) p 2:: 2 and q = 1, 2 for n = 5. 
(El): n 2:: 7. The differential rr*((10 ) becomes 

(35) 

rr*((w) = [ n t ai(m- mi)t(n-2)m-(p+l-i)n-1 

p 

+ n L bi(m- ni)t(n-l)m-(2p+l-i)n-1 

i=l 

~ l + n L bi(m- mi)tCn-l)m-(2p+l-i)n-1 + ... dt. 
i=p+l 

If V/ = 0, then the order v( (w) must belong to v( dOc) or Vo. Further­
more, if v((w) E Vo, then v((10 ) equals v(yw) or v(y2w). 
El.l: v((10 ) =1- v(yw). If V1+ = 0, then the coefficients in (35) must 
satisfy the following conditions. 

ai = 0 for i = 1, ... , p 

bi = 0 for i = 1, ... , 2p- 1 and Vb2p· 
(36) 

Conversely, assume that (23) has (36). If V/ =1- 0, then there exists 
a differential~ with v(~) + 1 E V1+. By Lemma 17, ~ has the form 
~ = a(kl + ~'· Recall that there exists the following relation between 
v((kl) and v(¢k!): 

(37) v((kl) = {v(¢11) + lm, if k = 1. 
v(¢kl) + lm + (k- 2)m, if k 2:: 2. 

(See Subsection 2.3). If k = 1, then we have 

n* (¢11) = [b2pn(m- n2p)t(n-l)m-n-l +higher degree terms] dt. 

So we have v(~) 2:: v(¢11) 2:: (n- 1)m- n- 1. By Lemma 12, v(~) + 1 
can not be in vl+. 

On the other hand, if k 2:: 2, then we have 

n*(¢kl) = [b2p(m- np)t(n-l)m-l +higher degree terms] dt. 
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Since v(~) 2: v((hz) > (n- 1)m- n- 1, we have v(~) + 1 tf_ V1+ again. 
Thus, we conclude that V1+ = 0. 
E1.2: v((10 ) = v(yw). If V/ = 0, then the parametrization (35) must 
have the following coefficients: 

(38) ai = bi = 0 for i = 1, ... , p- 1 and ap -=/= 0. 

For the parametrization (35) with the condition (38), we consider the 
differential ( 10 - (LT((10)/ LT(yw))yw. 

(39) 

) [
2p-2 

7r* ((10- LT((10) yw = '"" bin(m- ni)t(n-l)m-(2p+l-i)n-l 
LT(yw) ~ 

•=p 

+ b ( ) p - P t(n-l)m-2n-l { 
a2(m m )2} 

2p-l m- n2p-l - (m _ >.) n 

_ apbpmn(m- mp)(m- np) tCm-p-2)n-l + .. ·] dt. 
(m- >.) 

In (39), we must put 

bi = 0 for i = p, ... , 2p - 2 

a;(m- mp) 2 
b2p- 1 = --,-----"---:-:-'----:-:-

(m- n2p-l)(m- >.) 

(40) 

Conversely, assume that the parametrization ( 23) has ( 38) and ( 40). If 
V1+ -=/= 0, then we take a differential~ with v(~) + 1 E V1+. By Lemma 17, 
~has the form cl(k,z 1 +6 where v((k1 h):::; v(~l). Note that 6 does not 
contain (k1 z,. We first consider the case where k1 = 1. Then we have 

1r*(¢1z,) = [apn(m- mp)t(n- 2)m-n-l + · · · J dt. 

If h 2: 1, then we have v((11 ) 2: (n -1)m- n -1 by (37). Since v(~) + 1 
can not be an element of V/ by (12), it contradicts assumption. So we 
must have h = 0. Then we have v((10) = v(yw) = (n- 2)m- n- 1. So 
the relation LT((10) + LT(6) = 0 must need for v(~) + 1 E V1+. We show 
that 6 has the form { -c1 LT((10)/ LT(yw)}yw+~i· Set 6 = A1w+dB1. 
If v(A1w) > v(dBI), then v(6) E dOc. This case does not occur. If 
v(A1w) = v(dBI), then LT(A1w) + LT(dB1) = 0 holds. By the same 
argument as in the proof of Lemma 13, we have the expression 6 
a(kl + ~i for some (kl· It is clear that k-=/= 1. For k 2: 2, we have 

(41) 7r*((hz) = [ap(m- mp)t(n- 2)m-l + · · · J dt. 
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It follows from (37) and (41) that v((kz) > v(yw). Thus, only the case 
where v(A1w) < v(dBI) occurs. By the same argument as in the proof of 
Lemma 13, there exists only one term axkyl in A1 such that v(axky1) = 
v(A1w). It follows from v(6) = v(A1w) = v(yw) that k = 0 and l = 1. 
Since LT((10)+LT(6) = 0, we must set a= -c1 LT((10)/ LT(yw). Putting 
~~ = 6 + { c1 LT((10)/ LT(yw)}yw, we obtain the desired expression. Now 
we have ~ = c1 (10 - { c1 LT( (10) / LT(yw) }yw + ~~. Since 

1r* ( c1 (10- c~~~;~)) yw) = 

cl [b2pn(m- n2p)t(n-l)m-n-l + ... ] dt 

holds, the order v(~i) must equalv(~). 
( *) By Lemma 17, there exists (k2 !2 such that ~~ = c2(k2 !2 + 6 where 
6 does not contain (k2 z2 • Now (k2 z2 is different from (10 and (u. So we 
must have k2 ~ 2. If Z2 ~ 1, then v((kz) > (n -1)m- n -1 by (37). We 
must have Z2 = 0. Note that we have 

7r*((ko) = [avn(m- mp)t(n-2)m+(k-2)n-1 

+ b2p-ln(m- n2p-dt(n-l)m+(k-3)n-l + ... ] dt, 
(42) 

for k ~ 2. Since v((k2 o) E v(dOc ), the equality LT(c2(k2 o) + LT(6) = 0 
must hold for v(~) E V1. Write 6 = A 2w + dB2. By the same argument 
as in the proof of Lemma 13, there exists only one term e2xkyl in A 2 
such that v(e2xky1) = v(A2w). Similarly, B 2 contains only one term 
h 2xkyl such that v(h2xky1) = v(dB2). It is easily checked that 6 has 
the form 

6 = (e2Xk2-ly + ... ) w + d (h2xk2-2yn-2 + ... ), 

where LT(c2(k2 o) + LT (e2xk2- 1yw + d (h2xk2- 2yn-2)) = 0. Further­
more, if we set~~= 6- { e2xk2 - 1yw + d (h2xk2- 2yn-2) }, then we have 
v(~~) > v(e2xk2- 1yw+d(h2xk2- 2yn-2)) = v((k2 o) holds. The differ­
ential ~~ is expressed as 

~~ = C2(k2 !2 + e2Xk2- 1yw + d (h2xk2 - 2yn- 2) + ~~-

Since 6 dose not contain (k2 o, so does not~~- We easily see that v(~~­
~~) ~ (n-1)m-n-l. Hence we must have v(O = v(~~). The argument 
started from ( *) is applicable to ~~. So we obtain 

~~ = c3(k30 + e3xk3-lyw + d (h3xk3-2yn-2) + ~~' 
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where v(~3) > v (c3(k3 o + e3xk3 - 1yw + d (h3xk 3 - 2yn-2)) E v(dOc). 
Note that v((ko) < v((k'O) if and only if k < k' by (42). Since v((k2 o) < 
v(~3), we obtain k2 < k3 . We continue this process successively and 
after j-th step we have 

t:' r + k -1 d (h k -2 n-2) + c' '>j-l = Cj<,k10 ejX 1 yw + jX 1 y '>j· 

where v({j) > v (cj(k1o + ejxk1- 1yw + d (hjxk1- 2yn- 2)) E v(dOc). 
Then ~ is rewritten as 

c _ r _ C1 LT((w) 
., - c1 -.Io ( ) yw 

LT yw 
j 

+ L { c;(kio + e;xki+lyw + d (h;xkiyn-2)} + {j. 
i=2 

where k2 < k3 < ... < kj and v(~j) > v((k1o). Since v (~- ~j) tf. V1, 
we must have v(~) = v(~j). However, the inequalities v(~j) > v((k1o) > 
( n - 1 )m - n - 1 occur after finitely many steps. It contradicts the 
assumption v(~) + 1 E V1+. Hence we have V1+ = 0. 

For the case where k1 2: 2, we can apply the argument started 
from ( *) to ~ by replacing ~i by ~. Then we find V1+ = 0, so r = 3. 

The proofs of (E2), (E3) and Case (F) are essentially same. So we 
omit them. Q.E.D. 

We summarized the consequences for Case (E) and Case (F). If 
r = 3, then the parametrizations (23) and (24) have the coefficients in 
Table 1 and in Table 2 respectively. 

No. Conditions 
E1.1 n2:7 

E1.2 n2:7 

E2.1 n=6 
m = 6p+ 1 

E2.2 n=6 
m = 6p+ 1 

Table 1 
Coefficients 
a; = 0 ( i = 1 , . . . , p), 
b; = 0 (i = 1, ... , 2p- 1), Vb2p· 
a;= 0 (i = 1, ... , p- 1), ap =/=- 0, 
b; = 0 (i = p, ... ' 2p- 2), 
b2p-l = a~(m- mp) 2 /(m- n2p-I)(m- >.), Vb2p· 
a;= 0 (i = 1, ... , p), b; = 0 (i = 1, ... , 2p- 2), 
b2p-l = (5m- 12)/2m, Vb2p-
a; = 0 (i = 1, ... , p- 1), ap =/=- 0, 
b; = 0 (i = 1, ... ' 2p- 2), 
b2p-l = (9a2m +20m- 48) /Sm, Vb2p· 



E3.1 

E3.2 

E3.3 

E3.4 

E3.5 

No. 
F1.1 

F1.2 

F2.1 

F2.2 

F3.1 

F3.2 
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n=5 

p::::3 

n=5 
p::::3 

n=5 
m=ll 

n=5 
m= 12 
n=5 
m=12 

Conditions 
n::::7 

n::::7 

n=6 
m = 6p+5 
n=6 
m = 6p+5 
m = 6p+ 5 
n=5 
p::::2 

n=5 
p::::3 

ai = 0 (i = 1, ... , p- 2, p), 
ap-1 =(3m- 10)/2m, 
bi = 0 (i = 1, ... , 2p- 4, 2p- 2, 2p- 1), 
b2p-3 = 4(m- 5)(2m- 5)/3m2, '<lb2p· 
ai = 0 (i = 1, ... , p- 2), ap-1 =(3m- 10)/2m, 
ap -=1- 0, bi = 0 (i = 1, ... , 2p- 4), 
b2p-3 = 4(m- 5)(2m- 5)/3m2, 
b2p_2 = 3ap(4m2 - 45m + 100)/m(3m- 25), 
b2p-1 = a~(2m- 15)2 /(3m- 20)(m- 10), 'Vb2p· 
a1 = 23/22, 'Va2, b1 = 136/121, 
b2 = 440215/56689952 + 267a2/88, Vb4, 
b3 = -103195941517/43159874536064 

-440813a2/66997216 + 49aV13. 
a1 = 13/12, a2 = 0, 
b1 = 133/108, b2 = 0, b3 = 5225/559872, 'Vb4. 
a1 = 13/12, a2 -=1- 0, b1 = 133/108, b2 = 34a2/11, 
b3 = 81a~/32 + 5225/559872, 'Vb4. 

Table 2 
Coefficients 
ai = 0 (i = 1, ... , 2p), 'Va2p+b 
bi = 0 ( i = 1, . . . , p). 
ai = 0 ( i = 1, . . . , 2p - 1), 
bi = 0 (i = 1, ... , p- 1), bp -=1- 0, 
a2p = b~(m- np)2 /(m- m2p)(m- >.), '<la2p+1· 
ai = 0 (i = 1, ... , 2p-1), a2p = (5m-12)/2m, 
Va2p+1, bi = 0 (i = 1, ... , p). 
ai = 0 ( i = 1, ... , 2p - 1) 
a2p = (9b~m +20m- 48) /8m, Va2p+1, 
bi = 0 (i = 1, ... , p- 1), bp -=1- 0. 
ai = 0 (i = 1, ... , 2p- 3, 2p- 1, 2p), 
a2p-2 = 4(m- 5)(2m- 5)/3m2, 
'Va2p+b bi = 0 (i = 1, ... , p- 2, p), 
bp-1 = (3m- 10)/2m. 
ai = 0 (i = 1, ... , 2p- 3), 
a2p-2 = 4(m- 5)(2m- 5)/3m2, 
a2p_1 = 3bp(4m2 - 45m + 100)/m(3m- 25), 
a2p = b~(2m- 15)2 /(3m- 20)(m- 10), 
'Va2p+1• bi=O(i=1,···,p-2), 
bp-1 =(3m- 10)/2m, bp -=1- 0. 
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