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Stably hyperbolic polynomials 

Vladimir Petrov Kostov 

Abstract. 

A real polynomial in one real variable is hyperbolic if all its roots 
are real. Denote the set of monic hyperbolic polynomials of degree 
n by IIn. Suppose that for a real polynomial P(x) of degree n there 
exists kEN and a polynomial Q(x) of degree::; k-1 such that xk P+ 
Q E IIn+k. Denote the set of such polynomials P by IIn ( k). Call the 
set IIn ( oo) = Uk'=oiin (k) the domain of stably hyperbolic polynomials 
of degree n. In the present paper we explore the geometric properties 
of the set Il4(oo). 

§1. Introduction 

Consider the family of polynomials P(x, a) = xn +a1xn-l +···+an, 
ai, x ER. 

Definition 1. Call a polynomial from the family P hyperbolic 
(resp. strictly hyperbolic) if it has only real (resp. real and distinct) roots. 
Denote by IIn the hyperbolicity domain of the family P, i.e. the subset 
of Rn consisting of the values of then-tuple of coefficients (a1, ... , an) 
for which P is hyperbolic. Geometric properties of the hyperbolicity 
domain are given in papers [Kol], [Ko2], [Mel] and [Me2]. In the proofs 
in the first two of them the results of the papers [Ar] and [Gi] are used. 

Notice that IIn n {a1 = 0, a2 > 0} = 0 and IIn n {a1 = 0, a2 = 
0} = 0 E Rn. Indeed, if a polynomial is hyperbolic, then such are its 
nonconstant derivatives as well. For a1 = 0 one has p(n-2) = (n!/2)x2 + 
(n- 2)!a2 which is hyperbolic only if a2 :::; 0. If one has a1 = a2 = 0, 
then one has p(n-3) = (n!/6)x3 + (n- 3)!a3 which is hyperbolic only if 
a3 = 0, and in a similar way one must have a4 = · · · =an = 0. Therefore 
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in what follows we set orice for all a 1 = 0 (this can be achieved by the 
shift x r--> x- atfn) and a 2 = -1 (recall that IIn is invariant for the 
one-parameter group of stretchings aj r--> eitaj)· 

Notation 2. Set IIn(O) = IIn. Denote fork EN by IIn(k) the set 
of polynomials P for which there exist polynomials Q of degree :<:; k - 1 
such that R(x) := xk P + Q E IIn+k· Hence, one has IIn(k + 1) ::) IIn(k) 

because if P E IIn+k, then xP E IIn+k+l· Set IIn(oo) = U~0IIn(k). 
Notice that for a polynomial from BIIn(oo), the boundary of IIn(oo), 
one cannot find k and Q as above. 

Definition 3. We call the set IIn ( oo) the domain of stably hyper­
bolic polynomials of degree n. 

Proposition 4. For any n E N, n > 2, the set IIn ( oo) (with 
a1 = 0, a2 = -1) is bounded. 

Proof. Denote by x1 ;::: · · · ;::: Xn+k the roots of the polynomial R, 

see the above notation. One has x1 +· · ·+xn+k = 0, Ll:Si<j:Sn+k XiXj = 

-1, hence, L~~1k xr = 2. This means that one can have lxil ;::: 1 only 
for one value of i, say, fori= n + k. 

Hence, for each n E N*, n ;::: 2, and for k ;::: 0 one has I L~~1k xf' I :<:; 
2m/2 + 2. Indeed, one has lxn+k I :<:; v'2 and lx~+k I :<:; 2m/2 . For i =/= n + k 

h I m 1 < 1 21 2 h I "n+k-1 m I < "n+k-1 2 < 2 one as xi _ xi = xi, ence, L...i=l xi _ L...i=l xi _ . 
The Vieta symmetric functions a1 of Xt, ... , Xn+k (where a1 = 

Ll<i1 <···<it<n+k Xi1 • • • Xi 1 ) can be expressed as polynomials of the New­

ton ~ymmetrlc functions 'Pl = L~~lk x~. Recall that there exist polyno­
mials Mv, M; such that 

(1) 
'Pl = ( -1)1- 1la! + M1(a1, ... , a1-d, 

( -1)1- 1la! = 'Pl + Mt('Pt, ... , 'PI-I) 

i.e. the passage from the Newton to the Vieta functions and its inverse 
are described by "triangular" formulas. 

Hence, the first n Vieta functions, i.e. the first n coefficients am up 
to a sign of the polynomial R, are bounded by constants not depending 
on k (but only on n). Q.E.D. 

Notation 5. In what follows we set a3 =a, a4 = b, and we denote 
by II~ the projections of the sets IIn on the space of the variables (a, b). 
Notice that one has II~= II4(n- 4) n {a1 = 0, a2 = -1}. 
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Remarks 6. 1) Proposition 4 and Theorem 14 can be given 
shorter proofs if one uses the results of papers [Ko3] and [Ko4] con­
cerning the so-called very hyperbolic1 polynomials. We prefer to make 
the present text self-contained, therefore we do not use these results and 
we give direct proofs instead. Moreover, the proofs contain an explicit 
parametrization of the set 8II~, the boundary of II~. 

2) It is shown in [Ko3] that the mapping 

r:a1 f---+(31a1 where (31 =(n(n-1))112 jn(n-1)···(n-j+1) 

defines a diffeomorphism between the set IIn ( oo) and the set VIIn of 
very hyperbolic polynomials. Set (31 = ((n(n-1))nl 2 fn!)((n- j)!/(n(n-
1))(n-j)/2. This allows one to view the mapping T as a superposition 
of the mappings <I>: a1 f---+ ((n(n- 1))n12 jn!)a1 (multiplication with a 
non-zero constant), \11: a1 f---+ a1j(n(n- 1))(n-j)/2 (change of the scale 
of the x-axis) and 3: a1 f---+ (n- j)!a1. 

The latter mapping is related to the Laplace transform which trans­
forms the monomial xk into J0

00 tke-f;tdt = k!j~k+l (the formula is mean­
ingful for Re ~ > 0). Therefore the mapping 3 is the Laplace transform 
followed by~ f---+ 1/x and by a division by x. 

The mapping 3- 1 results from the Borel transform which maps the 
formal power series 'L akxk into the series 'L akxk / k! (this accelerates 
the convergence). We call its inverse the anti-Bore[ transform. Thus 
the Borel (the anti-Borel) transform maps stably hyperbolic (very hy­
perbolic) polynomials into very hyperbolic (into stably hyperbolic) ones. 

Comments 7. The following lines were communicated to the au­
thor by B.Z. Shapiro and J. Borcea. Stably hyperbolic polynomials are 
interesting to study for the following reasons. Consider a linear opera­
tor T acting on the space of polynomials of degree ~ n which does not 
increase the degree of the polynomials. More exactly, suppose that it 
is "triangular": T(xk) = xk + Rk where Rk is a polynomial of degree 
~ k- 1, k = 0, 1, ... , n. A theorem of Carnicer, Peiia and Pinkus (see 
[CaPePi]) states that if the operator T preserves hyperbolicity, then it 
is a differential one, i.e. of the form 1 + c1D + · · · + cnDn ( * ), c1 E C, 
D := djdx. This result has been recently generalized in [BoSh]. It is 
shown in [Bo] (see also [BoSh]) that an operator of the form ( *) (with 
ci E R) preserves hyperbolicity if and only if the polynomial T(xn) is 
hyperbolic. In this case a partially proved conjecture due to J. Borcea 
and B.Z. Shapiro claims that the polynomial1 +c1x+ · · · +cnxn is stably 
hyperbolic. 

1i.e. hyperbolic and having hyperbolic primitives of all orders. 
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§2. Properties of the set of stably hyperbolic polynomials 

Definition 8. We stratify the sets IIn and II~ the strata being 
defined by the multiplicity vectors (MVs) of the polynomials. A MV is 
a vector whose components are the multiplicities of the distinct roots of 
the polynomial given in decreasing order. Example: if n = 4 and if one 
has x 1 = x 2 > x 3 > x4, then the MV of the polynomial is (2, 1, 1). We 
identify the strata with their MVs. 

Comments 9. Recall that (see [Ko2]) the sets II~ look as shown 
on Fig. 1. The picture is symmetric w.r.t. Ob, the tangent lines and 
their limits at the strata of the form (k, n- k) are nowhere vertical. 

0 

(l.n-1) (n-1.1) 

Fig. 1. 

Hence, the sets II~ and II~_ 1 together look as shown on Fig. 1. 
First of all, it is clear that II~ ::) II~_ 1 because if P E IIn-l, then 
xP E IIn. The set an~ consists of the closures of all strata with MVs 
of the form (l, 1, n -l- 1) and (1, n- 2, 1). No point X of a stratum 
S = (l, 1, n -l- 2) c II~_ 1 lies on the boundary an~ of II~. Indeed, if 
the middle root (which is a simple one) of a polynomial P E Sis not 0, 
then the MV of the polynomial xP would be of the form (l, 1, 1, n-l-2) 
(the left or the right root of P is not 0 because one has a 1 = 0). This is 
not the MV of a stratum of an~. If the middle root of Pis 0, then the 
MV of xP must be (l, 2, n -l- 2) which is not the MV of a stratum of 
an~ either. 

On the other hand, there exists a single point from the stratum 
(s, 1, n- s- 1) c an~ or (1, n- 2, 1) c an~ for which the middle 
root equals 0 (we leave the proof for the reader). Hence, this point is 
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the stratum (s, n- s- 1) c an~-1 (resp. a point from the stratum 
(1, n- 3, 1) C 811~_ 1 ; clearly, this must be the point (0, 0) E Oab). 

Using the above comments one can draw the sets 11~ for n = 4, 5, ... 
together, see Fig. 2. · 

D 

Fig. 2. 

Proposition 10. The limits of the strata (n - s - 1, 1, s) and 
( s, 1, n - s - 1) of 811~ exist (for s fixed and n --> oo) as well as the 
limit for n--> oo of the stratum (1, n- 2, 1). These limits are algebraic 
arcs (denoted by A 8 , Bs and C, see Fig. 2). 

Proof. The closure of the stratum ( n - s - 1, 1, s) can be parame­
trized by the three roots~ ;::: 'TJ ;::: ( for which one has 

(2) (n- s- 1)~ +"' + s( = 0, (n- s- 1)e + ry2 + s(2 = 2 
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These two equations define an ellipse in R 3 . Adding the inequalities 
.; ?: ry?: (means cutting off an arc of the ellipse. Hence, Vieta's formulas 
imply 

(3) 

-a= c~-s-le + c~-s-Ie'Tl + c~-s- 1 sec + (n- s -l)s.;ry( 
+ (n- s- l)c;.;c2 + c;ry(2 + c:c 

b = c~-s-1.;4+··· 

Set.;= c.pjn. Hence, for n--+ oo equations (2) look like this: 

c.p + ry + s( = 0, ry2 + s(2 = 2 

Indeed, the second of equations (2) implies that the quantities ry and ( 
are uniformly bounded in n E N. The first of these equations implies 
that then c.p is uniformly bounded as well. Hence, the term (n-s-1).;2 = 
(n- s -l)c.p2 jn2 in the second of equations (2) tends to 0 when n--+ oo. 

Equations (3) are again a couple of equations defining an ellipse in 
R 3 . If ry > 0, then for n --+ oo the inequality c.p ?: nry implies that c.p 
cannot be chosen such that ( c.p, ry, () belong to the ellipse. Hence, one 
must have 0 ?: ry ?: ( (and there is no restriction upon c.p other than the 
first of equations (3)). For n--+ oo one has 

-a= ~3 + c.p~ry + s~2( +sc.pry(+C?c.p(2+C?ry(2+c:C+o(~), 

i.e. for n --+ oo the limit of the quantity a is a homogeneous polynomial of 
degree 3 in c.p, ry and ( which satisfy conditions (3) and the inequalities 
0 ?: ry ?: (. In the same way one shows that the limit of b is such a 
polynomial of degree 4. This proves the proposition for the arcs As, 
for the arcs Bs and C the proof is analogous. The reader can find the 
parametrization of the arc C in 7° of the proof of Theorem 14. Q.E.D. 

Remark 11. One checks directly that neither of the arcs As, Bs 
and Cis a line segment. As each stratum (n- s- 1, 1, s), (1, n- 2, 1) 
and (s, 1, n- s- 1) of 8II~ has a curvature of constant sign (see [Mel] 
or [Ko2]) such that the concavity is towards the interior of II~, this is 
also the case of the arcs As, Bs and C w.r.t. II4(oo). 

Notation 12. Denote by D the point from II4 (oo) lying on the 
b-axis and with greatest b-coordinate. 

Remark 13. The point D is the common limit of the right end­
points of the arcs As or of the left endpoints of the arcs Bs when s --+ oo. 
It can be computed also as the limit of the strata (k, k) C IT~k for 
k--+ oo. The computation gives D = (0, 1/2). 



Stably hyperbolic polynomials 101 

Theorem 14. 1) The tangent lines to the arcs As, Bs and C 
are never vertical. Their limits at the endpoints of these arcs exist and 
are not vertical either. 

2) The slopes of these tangent lines (together with their limits at 
the endpoints) are uniformly bounded. These slopes (and their limits at 
the endpoints) are positive for the arcs As and negative for the arcs Bs. 

3) At the common endpoint of two arcs As, As+l orBs, Bs+l the 
slopes of the two limits of tangent lines (from left and right) are different. 

4) At the common endpoints of the arcs A1 and C and of B1 and 
C the two limits of tangent lines are the same. 

5) The limit of the slope of the tangent lines exists when the point 
from aii4(oo) tends to D; this limit equals 0. 

Remarks 15. 1) The boundary of the set Il4(oo) consists of 
countably many arcs whose endpoints accumulate towards the point 
D. These points are singular points for Il4 ( oo), see 3) of the theorem. 
Hence, the set II4 ( oo) is not semi-algebraic. 

2) It is decidable whether a point U = (a0 , b0 ) E Oab represents 
a polynomial from II4 (oo) (in particular, from 8II4 (oo)) or not. This 
follows from the fact that one knows explicit parametrizations of the 
arcs As, B s and C and the coordinates of the point D. 

Indeed, denote by (as, !3s) (resp. by (o:;, !3;)) the left (resp. the 
right) endpoint of the arc As (resp. Bs). By 2° of the proof of Theo­
rem 14, see below, one has (o:s, !3s) = (( -2/3)JiTS, 1/2-1/s). One has 
first to check whether a0 E [o:1, o:i] or not. If not, then U (j. Il4(oo). If 
yes, then one has to check whether a0 = 0 or not. If yes, then U E II4 ( oo) 
if and only if b0 E [0, 1/2]. If a0 =1- 0, then one checks for which s one has 
a0 E [o:s, O:s+I) or a0 E (o:;+l• o:;] (and which of these two conditions 
holds). After this one has to compare b0 with the b-coordinate of the 
points of the arcs As, Cor Bs, C whose a-coordinates equal a0 • 

Proof of Theorem 14. 
1°. We use the notation from the proof of Proposition 10. Our 

first aim is to give explicit parametrization of the arc As. The one of 
the arc B 8 is given by analogy and the one of the arc Cis given in 7°. 
Considerfirst the stratum (n- s -1, 1, s) c ail~. Instead of operating 
with Vieta's functions ai (in the variables ~ 2: 'f/ 2: (, of multiplicities 
n-s-1, 1 and s), we use the sums bi of the j-th powers of these variables 
(taking their multiplicities into account). Recall that (see formulas (1)) 

b3 = 3a3 + o:a1a2 + /3a~, b4 = -4a4 + 'Yai + 8a~a2 + ca~ + Ba1a3 

for some o:, /3, "(, 8, c, (} E R. As a1 = 0, a2 = -1, we have b3 = 3a3, 
b4 = -4a4 +c. By computing the values of the symmetric functions for 
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the quadruple 1/v"i, 1/v"i, -1/v"i, -1/v"i one finds that t: = 2. Thus 
the stratum (n- s -1, 1, s) is parametrized (in the variables cp, ry, () in 
the following form: 

cp + 'T/ + s( + 0(1/n) = 0 

ry2 + s(2 + 0(1/n) = 2 

a= a3 = (1/3)(ry3 + sC + 0(1/n)) 

b = a4 = ( -1/4)(ry4 + s(4 ) + 1/2 + 0(1/n) 

(see (2)) and after deleting the terms 0(1/n) one obtains a parametriza­
tion of the arc As . 

2°. Set 'T/ = y'2 cost, ( = .J2Ts sin t. Recall that 0 ;::::: 'T/ ;::::: ( (see the 
proof of Proposition 10). The endpoints of the arc As are such that either 
(ry, () = (0, -.J2/s) (and one has (a3, a4) = (( -2/3).J2/s, 1/2- 1/ s), 
this is the left endpoint of As) or 'T/ = ( = -J2/(s + 1) (and one has 
(a3, a4) = (( -2/3)..)2/(s + 1), 1/2-1/(s+1)), this is the right endpoint 
of As)· 

In the new parametrization of the arc As one has 

One has 

a= a3 = (2/3)v'2 cos3 t + (2/3) J2Ts" sin3 t, 

b = a4 = 1/2- cos4 t + (-1/s)sin4 t. 

(4) dbjda = (dbjdt)j(dajdt) = -(v"icost + J2/s"sint) = -ry- ( 

This expression depends continuously on t and is uniformly bounded 
(both in s and t). In the case of arcs As we have 0 ;::::: 'f/ ;::::: ( (and one 
cannot have both equalities at the same time), hence, dbjda > 0. This 
proves parts 1) and 2) of the theorem for the arcs As (for the arcs Bs 
the proof is analogous). 

3°. Recall that one has 0 ;::::: 'T/ ;::::: -J2/(s + 1), -J2/(s + 1) ;::::: 
( ;::::: -.J2/s. Hence, for s ---> oo the sum -ry- ( (see (4)) tends to 0 
uniformly in t. This proves part 5) of the theorem for the arcs As (in 
the same way one proves it for the arcs Bs)· 

4°. To prove part 3) of the theorem it suffices to compute the two 
values of dbjda obtained for ry, (corresponding to the right endpoint of 
As and to the left endpoint of As+l, see 2°. These values are 2/JS+T 
and 2/ v'S+2. Hence, they are different. For the arcs Bs the proof is 
analogous. 

5°. Part 4) of the theorem can be proved either by direct compu­
tation or by observing that the common endpoints in question are the 
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limits of the strata (n- 1, 1) and (1, n- 1) of the sets II~ where the 
limits of the tangent lines to the strata (n- 2, 1, 1), (1, n- 2, 1) and 
(1, 1, n- 2), (1, n - 2, 1) coincide, see [Ko2]. We leave the details for 
the reader. 

6°. To extend the proof of parts 1) and 2) of the theorem to the 
arc C it suffices to observe that the slope of the tangent line to this arc 
is comprised between its limit values at the common endpoints with A1 

and B 1 due to the constant sign of the curvature, see Remark 11. 
7°. Give the parametrization of the arc C. For a point of the 

closure of the stratum (1, n-2, 1) can~ defined by the roots e;:::: TJ;:::: (, 
of multiplicities 1, n- 2, 1, one has 

e+(n-2)TJ+(=O 

e + (n- 2)TJ2 + (2 = 2 

-a= (n- 2)eTJ( + c~-2(eTJ2 + (TJ2) + c;_2,3 

b = c~-2e,.,2( + c;_2,.,a(e + () + c~-2,.,4 

Set TJ = 'ljJ j n. Hence, when n --+ oo (and the given point tends to a point 
from C) one has e ;:::: 0 ;:::: ( and 

e+'I/J+(=o 

e +(2 = 2 

-a= e'I/J( + (e'I/J2 + ('I/J2)/2 + 'I/J3 /6 

b = e'I/J2(/2 + (e + ()'I/J3 /6 + 'I/J4 /24 

These formulas provide the parametrization of the arc C. Q.E.D. 
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his most sincere gratitude. 

References 

[Ar] V.I. Arnol'd, Hyperbolic polynomials and Vandermonde mappings, 
Funct. Anal. Appl., 20 (1986), 125-127; transl. from Funktsional. 
Anal. i Prilozhen., 20 (1986), 52-53. 

[Bo] J. Borcea, Monoids of linear differential operators and the distribu-
tion of zeros of real polynomials, in preparation. 



104 V. P. Kostov 

[BoSh] J. Borcea and B. Z. Shapiro, The Weyl algebra and hyperbolicity-
preserving linear operators in finite degree, in preparation. 

[CaPePi] J. M. Carnicer, J. M. Peiia and A. Pinkus, On some zero-increasing 
operators, Acta Math. Hungar., 94 (2002), 173-190. 

[Gi] A. B. Givental, Moments of random variables and equivariant Morse 
lemma, Russian Math. Surveys, 42 (1987), 275-276; transl. from 
Uspekhi Mat. Nauk, 42 (1987), 221-222. 

[Kol] V. P. Kostov, On the geometric properties of Vandermonde's map-
ping and on the problem of moments, Proc. Roy. Soc. Edinburgh 
Sect. A 112, 3-4 (1989), 203-211. 

[Ko2] V. P. Kostov, On the hyperbolicity domain of the polynomial xn + 
a1xn-l +···+an, Serdica Math. J., 25 (1999), 47-70. 

[Ko3] V. P. Kostov, Very hyperbolic and stably hyperbolic polynomials, 
C. R. A. S. Paris, Ser. I, 339 (2004), 157-162. 

[Ko4] V. P. Kostov, Very hyperbolic polynomials, Funct. Anal. Appl., 
39 (2005), 229-232; translation from Funke. Anal. Prilozh., 39 
(2005), 80-84. 

[Mel] I. Meguerditchian, Geometrie du discriminant reel et des polynomes 
hyperboliques, These de doctorat, Univ. de Rennes I, soutenue le 
24. 01. 1991. 

[Me2] I. Meguerditchian, A theorem on the escape from the space of hy-
perbolic polynomials, Math. Z., 211 (1992), 449-460. 

Universite de Nice 
Laboratoire de Mathematiques 
Pare Valrose, 06108 Nice Cedex 2 
Prance 
tel: (0033) 4 92 07 62 67 
fax: {0033) 4 93 51 79 74 
kostov@math. unice.fr 


