Advanced Studies in Pure Mathematics 44, 2006 Potential Theory in Matsue pp. 319–325

Vanishing theorem on the pointwise defect of a rational iteration sequence for moving targets

Yûsuke Okuyama

§1. Introduction

Let f be a rational map, i.e., a holomorphic endomorphism of the Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, of degree d > 1. The k times iteration of f is denoted by f^k for $k \in \mathbb{N}$.

The Nevanlinna theory for sequences was first studied in [19], [2], [8] and [10], and recently, motivated by complex dynamics, studied in [18], [16] and [15], where the sequence of rational maps correspond to a transcendental meromorphic function. Hence the following definition is natural:

Definition 1.1 (Picard exceptional value). The point $a \in \hat{\mathbb{C}}$ is called a *Picard exceptional value* of $\{f^k\}$ if

$$\# \bigcup_{k \in \mathbb{N}} f^{-k}(a) < \infty.$$

The point $a \in \hat{\mathbb{C}}$ is a Picard exceptional value if and only if it is periodic of period at most two and a and f(a) are critical of order d-1. In particular, there exist at most two such values (cf. [9]), which is an analogue of the Picard theorem for transcendental meromorphic functions.

Received March 30, 2005.

Revised October 21, 2005.

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 30D05; Secondary 39B32, 37F10.

Key words and phrases. pointwise proximity function, Valiron defect, moving target, complex dynamics.

Partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 15740085, 2004.

Notation 1.1. The spherical area measure on $\hat{\mathbb{C}}$, which is normalized as $\sigma(\hat{\mathbb{C}}) = 1$, is denoted by σ , and the chordal distance between $z, w \in \hat{\mathbb{C}}$, which is normalized as $[0, \infty] = 1$, by [z, w]. Put $\mathbb{D}(x, r) := \{z \in \hat{\mathbb{C}}; [z, x] < r\}$ for $x \in \hat{\mathbb{C}}$ and r > 0.

One of the main aims of the Nevanlinna theory is to generalize the Picard theorem quantitatively by the *defects*, which are defined not only for each constant values but also for moving targets. See [14], Chapter 4 and also the recent significant result by Yamanoi [20].

Clearly, the degree $d = \int_{\hat{\mathbb{C}}} f^*(d\sigma)$ of f is an analogue of the order (or characteristic) function of a transcendental meromorphic function.

Definition 1.2 (proximities and defects). For a rational map g, the pointwise proximity function of f is defined as

$$w(g, f) := \log \frac{1}{[g(\cdot), f(\cdot)]} : \hat{\mathbb{C}} \to [0, +\infty],$$

the mean proximity of f as

$$m(g,f) := \int_{\hat{\mathbb{C}}} w(g,f) d\sigma,$$

and the Valiron defect of $\{f^k\}$ as

$$\delta_V(g; \{f^k\}) := \limsup_{k \to \infty} \frac{m(g, f^k)}{d^k}.$$

Convention 1.1. Each point $a \in \hat{\mathbb{C}}$ is identified with the constant map $g \equiv a$.

A point $a \in \hat{\mathbb{C}}$ is called a *Valiron exceptional value* of $\{f^k\}$ if $\delta_V(a; \{f^k\}) > 0$. It is easy to see that every Picard exceptional value of $\{f^k\}$ is a Valiron one. It seems surprising that the converse is true:

Theorem 1.1 (Valiron agrees with Picard, [12] and [13]). Let f be a rational map of degree > 1. For a point $a \in \hat{\mathbb{C}}$,

$$\delta_V(a; \{f^k\}) = 0$$

if and only if a is not a Picard exceptional value of $\{f^k\}$.

In [11], the following generalization of Theorem 1.1 below was shown and crucially used to obtain a new Diophantine condition for the non-linearizability of f at its irrationally indifferent cycle.

Definition 1.3. The *Fatou set* F(f) is the set of all the points in $\hat{\mathbb{C}}$ where $\{f^k\}$ is normal, and the *Julia set* J(f) is $\hat{\mathbb{C}} - F(f)$.

Theorem 1.2 (vanishing theorem on the Valiron defects for moving targets). Let f be a rational map of degree > 1 such that $F(f) \neq \emptyset$. Then for every non-constant rational map g,

(1)
$$\delta_V(g; \{f^k\}) = 0.$$

In [11] we asked whether it is possible to remove the assumption $F(f) \neq \emptyset$. In the rest of this notes, we will answer affirmatively the following *pointwise* version of this problem:

Theorem 1 (vanishing theorem on the pointwise defect). Let f be a rational map of degree d > 1. Then for every rational map g,

(2)
$$\lim_{k \to \infty} \frac{w(g, f^k)}{d^k} = 0$$

 μ_f -almost everywhere on $\hat{\mathbb{C}}$. Here the measure μ_f appears in Theorem 2.1 in §2.

§2. The maximal entropy measures of rational maps

In this section, we gather some useful ergodic properties of rational maps which will be used in §3.

Let f be a rational map of degree d > 1.

Theorem 2.1 ([6] and [5]). There exists the unique maximal entropy measure μ_f for f, and $h_{\mu_f}(f) = \log d$, which is the topological entropy of f.

Moreover, the probability measure μ_f is exponentially mixing. More quantitatively, the following holds:

Theorem 2.2 (exponential decay of correlation [3]. See also [4]). For every $\epsilon_0 > 0$, there exists $C = C(\epsilon_0) > 0$ such that for every $\psi \in L^{\infty}(\mu_f)$, every Lipschitz function ϕ on $\hat{\mathbb{C}}$, for which $\|\phi\|_{\text{Lip}} := \sup_{z,w \in \hat{\mathbb{C}}, z \neq w} |\phi(z) - \phi(w)|/[z,w]$, and every $k \in \mathbb{N}$, (3)

$$\left| \int (\psi \circ f^k) \cdot \phi d\mu_f - \int \psi d\mu_f \int \phi d\mu_f \right| \le C \|\psi\|_{\infty} \|\phi\|_{\text{Lip}} \left(\frac{1 + \epsilon_0}{d} \right)^{\frac{k}{2}}.$$

Let us also recall several properties of μ_f proved by Mañé:

Theorem 2.3 (Mañé [7], Theorem A). Let μ be an f-ergodic probability measure on $\hat{\mathbb{C}}$ with the entropy $h_{\mu}(f) > 0$, then

$$\int \log|f'| \mathrm{d}\mu > 0,$$

and for μ -a.e. $x \in \hat{\mathbb{C}}$,

(5)
$$\lim_{r \to 0} \frac{\log \mu(\mathbb{D}(x,r))}{\log r} = \frac{h_{\mu}(f)}{\int \log |f'| \mathrm{d}\mu} =: D(\mu).$$

Since $h_{\mu_f}(f) = \log d > 0$, Theorem 2.3 can be applied to μ_f .

Remark 2.1. The quantity in (4) is called the Lyapunov exponent of f, which is independent of an f-ergodic probability measure μ on $\hat{\mathbb{C}}$. The left hand side of (5) is called the pointwise Hausdorff dimension of μ at x. By the observation of Young [21], it holds that

$$D(\mu) = \inf \{ \mathrm{HD}(X); X \subset \hat{\mathbb{C}}, \mu(X) = 1 \},$$

where HD(X) is the Hausdorff dimension of X.

Theorem 2.4 (cf. Mañé [7], Lemma II.1). There exist $\rho \in (0,1]$ and $\gamma > 0$ such that for every $r \in (0,\rho)$ and every $x \in \hat{\mathbb{C}}$,

(6)
$$\mu_f(\mathbb{D}(x,r)) \le r^{\gamma}.$$

§3. The long fly property of a rational map

Let f be a rational map of degree d > 1. The following is a refinement of Saussol's long fly property ([17]) of $(\hat{\mathbb{C}}, f, \mu_f)$ and proves Theorem 1:

Theorem 2. For every rational map g, the following holds: for μ_f -almost every $z \in \hat{\mathbb{C}}$,

(7)
$$\log \frac{1}{[f^k(z), g(z)]} = O(\log k)$$

as $k \to \infty$.

Proof. We extend the argument in the proof of [17], Lemma 9.

Let $\epsilon_0 \in (0, d-1)$, $C = C(\epsilon_0)$, $D(\mu_f)$, ρ, γ be the constants in Theorems 2.2, 2.3 and 2.4. Fix $\delta \in (0, \gamma/2)$, $\epsilon_1 > 0$ and $\epsilon_2 \in (0, \gamma - 2\delta)$. For each $r_0 \in (0, \rho)$, let $G(r_0)$ be the set of all such $x \in \hat{\mathbb{C}}$ that for every $r \in (0, r_0)$,

(8)
$$\frac{\log \mu_f(\mathbb{D}(x,r))}{\log r} \le D(\mu_f) + \epsilon_1, \text{ and }$$

(9)
$$\mu_f(\mathbb{D}(x,4r)) \le \mu_f(\mathbb{D}(x,r))r^{-\epsilon_2}.$$

By Theorem 2.3 and the weak diametrical regularity of μ_f (cf. Barreira and Saussol [1], p452), $G(r_0)$ is increasing as $r_0 \to 0$ and

$$\mu_f(\bigcup_{r_0\in(0,\rho)}G(r_0))=1,$$

by which, it is enough to show that for every sufficiently small r_0 , (7) holds μ_f -almost everywhere on $G(r_0)$

For each $m \in \mathbb{N}$, put

$$A_{\delta}(m;g) := \{ y \in \hat{\mathbb{C}}; \inf_{k \in [e^{m\delta}, e^{(m+1)\delta}]} [f^k(y), g(y)] < e^{-m} \}.$$

Then for every $x \in \hat{\mathbb{C}}$ and every $m \in \mathbb{N}$,

$$A_{\delta}(m;g)\cap \mathbb{D}(x,e^{-m})\subset \bigcup_{k\in [e^{m\delta},e^{(m+1)\delta}]}\mathbb{D}(x,e^{-m})\cap f^{-k}(\mathbb{D}(g(x),(K+1)e^{-m})),$$

where K > 0 is a constant such that g is K-Lipschitz on $\hat{\mathbb{C}}$.

Put $\phi_{x,r}(y) := \eta_r([x,y])$, where $\eta_r : [0,\infty) \to \mathbb{R}$ is an 1/r-Lipschitz function such that $1_{[0,r]} \le \eta_r \le 1_{[0,2r]}$. Then $\phi_{x,r}$ is 1/r-Lipschitz on $\hat{\mathbb{C}}$ and $1_{\mathbb{D}(x,r)} \le \phi_{x,r} \le 1_{\mathbb{D}(x,2r)}$.

For every $r_0 \in (0, \rho)$ and every $r \in (0, r_0)$, from (3),

$$\begin{split} & \mu_f \left(\mathbb{D}(x,r) \cap f^{-k}(\mathbb{D}(g(x),(K+1)r)) \right) \\ & \leq \int \left(\mathbb{1}_{\mathbb{D}(g(x),(K+1)r))} \circ f^k \right) \cdot \phi_{x,r} \mathrm{d}\mu_f \\ & \leq C \cdot 1 \cdot \frac{1}{r} \left(\frac{1+\epsilon_0}{d} \right)^{k/2} + \mu_f(\mathbb{D}(g(x),(K+1)r)) \cdot \mu_f(\mathbb{D}(x,2r)), \end{split}$$

and by (6) and (9),

$$\mu_f(\mathbb{D}(g(x), (K+1)r)) \cdot \mu_f(\mathbb{D}(x, 2r))$$

$$\leq ((k+1)r)^{\gamma} \cdot \mu_f(\mathbb{D}(x, r/2))(r/2)^{-\epsilon_2} \leq \mu_f(\mathbb{D}(x, r/2)) \cdot 2^{\epsilon_2}(K+1)^{\gamma} \cdot r^{\gamma-\epsilon_2}$$

There exists so small $\rho' \in (0, \rho)$ that for every $r_0 \in (0, \rho')$, every $x \in G(r_0)$ and every $m > \log(1/r_0)$,

$$\mu_{f}\left(A_{\delta}(m;g) \cap \mathbb{D}(x,e^{-m})\right) \\
\leq C \cdot e^{m} \frac{\left(\frac{1+\epsilon_{0}}{d}\right)^{e^{m\delta}/2}}{1-\left(\frac{1+\epsilon_{0}}{d}\right)^{1/2}} + e^{(m+1)\delta} \cdot \mu_{f}(\mathbb{D}(x,e^{-m}/2)) \cdot 2^{\epsilon_{2}}(K+1)^{\gamma} e^{-m(\gamma-\epsilon_{2})} \\
\leq (e^{-m}/2)^{D(\mu_{f})+\epsilon_{1}} \cdot e^{-m(\gamma-\epsilon_{2}-2\delta)} + \mu_{f}(\mathbb{D}(x,e^{-m}/2)) \cdot e^{-m(\gamma-\epsilon_{2}-2\delta)} \\
\leq \mu_{f}(\mathbb{D}(x,e^{-m}/2)) \cdot 2e^{-m(\gamma-\epsilon_{2}-2\delta)} \text{ (by (8))},$$

and hence for every $m > \log(1/r_0)$,

$$\begin{split} & \mu_f \left(A_{\delta}(m;g) \cap G(r_0) \right) \leq \sum_{x \in S_m} \mu_f \left(A_{\delta}(m;g) \cap \mathbb{D}(x,e^{-m}) \right) \\ \leq & 2e^{-m(\gamma - \epsilon_2 - 2\delta)} \mu_f (\bigcup_{x \in S_m} \mathbb{D}(x,e^{-m}/2)) \leq 2e^{-m(\gamma - \epsilon_2 - 2\delta)}, \end{split}$$

where S_m is a finite and maximal e^{-m} -separated set for $G(r_0)$, i.e., $G(r_0) \subset \bigcup_{x \in S_m} \mathbb{D}(x, e^{-m})$ and $\mathbb{D}(x, e^{-m}) \cap S_m = \{x\}$ for each $x \in S_m$, and finally $\sum_{m \in \mathbb{N}} \mu_f(A_\delta(m; g) \cap G(r_0)) < \infty$.

Hence by the first Borel-Cantelli lemma, $\mu_f(\limsup_{m\to\infty} A_{\delta}(m;g) \cap G(r_0)) = 0$, that is, for μ_f -almost every $z \in G(r_0)$, there exists $m(z) \in \mathbb{N}$ such that for every m > m(z),

$$\inf_{k \in [e^{m\delta}, e^{(m+1)\delta}]} [f^k(z), g(z)] \ge e^{-m},$$

which proves (7).

References

- [1] L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys., **219** (2001), 443–463.
- [2] W. D. Brownawell and D. W. Masser, Vanishing sums in function fields, Math. Proc. Cambridge Philos. Soc., 100 (1986), 427–434.
- [3] T.-C. Dinh and N. Sibony, Equidistribution for meromorphic transforms and the dd^c -method, Sci. China Ser. A, 48 (2005), 180–194.
- [4] J. E. Fornaess and N. Sibony, Complex dynamics in higher dimension. II, Modern methods in complex analysis, Princeton, NJ, 1992, 137, Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, 1995, 135–182.
- [5] M. J. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems, 3 (1983), 351–385.
- [6] R. Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat., 14 (1983), 27–43.
- [7] R. Mañé, The Hausdorff dimension of invariant probabilities of rational maps, Dynamical systems, Valparaiso 1986, 1331, Lecture Notes in Math., Springer, Berlin, 1988, 86–117.
- [8] R. C. Mason, Norm form equations. I, J. Number Theory, 22 (1986), 190–207.
- [9] S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic dynamics, 66, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2000, translated from the 1995 Japanese original and revised by the authors.

- [10] J. Noguchi, Nevanlinna-Cartan theory over function fields and a Diophantine equation, J. Reine Angew. Math., 487 (1997), 61–83.
- [11] Y. Okuyama, Nevanlinna, Siegel, and Cremer, Indiana Univ. Math. J., 53 (2004), 755–763.
- [12] Y. Okuyama, Complex dynamics, value distributions, and potential theory, Ann. Acad. Sci. Fenn. Math., 30 (2005), 303-311.
- [13] Y. Okuyama, Valiron, Nevanlinna and Picard exceptional sets of iterations of rational functions, Proc. Japan Acad. Ser. A Math. Sci., 81 (2005), 23–26.
- [14] M. Ru, Nevanlinna theory and its relation to Diophantine approximation, World Scientific Publishing Co. Inc., River Edge, NJ, 2001.
- [15] A. Russakovskii and B. Shiffman, Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J., 46 (1997), 897–932.
- [16] A. Russakovskii and M. Sodin, Equidistribution for sequences of polynomial mappings, Indiana Univ. Math. J., 44 (1995), 851–882.
- [17] B. Saussol, Recurrence rate in rapidly mixing dynamical systems, Discrete Contin. Dyn. Syst., 15 (2006), 259–267.
- [18] M. Sodin, Value distribution of sequences of rational functions, Entire and subharmonic functions, 11, Adv. Soviet Math., Amer. Math. Soc., Providence, RI, 1992, 7–20.
- [19] J. F. Voloch, Diagonal equations over function fields, Bol. Soc. Brasil. Mat., 16 (1985), 29–39.
- [20] K. Yamanoi, The second main theorem for small functions and related problems, Acta Math., 192 (2004), 225–294.
- [21] L. S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynamical Systems, 2 (1982), 109–124.

Yûsuke Okuyama
Department of Mathematics
Faculty of Science
Kanazawa University
Kanazawa 920-1192 Japan

E-mail address: okuyama@kenroku.kanazawa-u.ac.jp