
Advanced Studies in Pure Mathematics 44, 2006 
Potential Theory in Matsue 
pp. 319-325 

Vanishing theorem on the pointwise defect of a 
rational iteration sequence for moving targets 

Yiisuke Okuyama 

§1. Introduction 

Let f be a rational map, i.e., a holomorphic endomorphism of the 
Riemann sphere C = <C U { oo }, of degree d > 1. The k times iteration 
off is denoted by Jk fork EN. 

The Nevanlinna theory for sequences was first studied in [19], [2], 
[8] and [10], and recently, motivated by complex dynamics, studied in 
[18], [16] and [15], where the sequence of rational maps correspond to a 
transcendental meromorphic function. Hence the following definition is 
natural: 

Definition 1.1 (Picard exceptional value). The point a E C is 
called a Picard exceptional value of {fk} if 

The point a E C is a Picard exceptional value if and only if it 
is periodic of period at most two and a and f(a) are critical of order 
d- 1. In particular, there exist at most two such values (cf. [9]), which 
is an analogue of the Picard theorem for transcendental meromorphic 
functions. 
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Notation 1.1. The spherical area measure on rC, which is nor­
malized as £T(rC) = 1, is denoted by £1, and the chordal distance be­
tween z, w E rC, which is normalized as [0, oo] = 1, by [z, w]. Put 
lDl(x,r) := {z E rC; [z,x] < r} for x E rC and r > 0. 

One of the main aims of the Nevanlinna theory is to generalize the 
Picard theorem quantitatively by the defects, which are defined not only 
for each constant values but also for moving targets. See [14], Chapter 
4 and also the recent significant result by Yamanoi [20]. 

Clearly, the degree d = ft f*(d£T) off is an analogue of the order 
(or characteristic) function of a transcendental meromorphic function. 

Definition 1.2 (proximities and defects). For a rational map g, the 
pointwise proximity function of f is defined as 

1 ' 
w(g, f) :=log [g(·), f(-)] :<C----) [0, +oo], 

the mean proximity of f as 

m(g, f) := fc w(g, !)dO", 

and the Valiron defect of {fk} as 

, ( {fk}) 1. m(g, fk) uv g; := Imsup dk . 
k--->oo 

Convention 1.1. Each point a E rC is identified with the constant 
map g =a. 

A point a E rC is called a Valiron exceptional value of {fk} if 
bv (a; {fk}) > 0. It is easy to see that every Picard exceptional value of 
{fk} is a Valiron one. It seems surprising that the converse is true: 

Theorem 1.1 (Valiron agrees with Picard, [12] and [13]). Let f be 

a rational map of degree > 1. For a point a E rC, 

bv(a; {fk}) = 0 

if and only if a is not a Picard exceptional value of {fk}. 

In [11], the following generalization of Theorem 1.1 below was shown 
and crucially used to obtain a new Diophantine condition for the non­
linearizability off at its irrationally indifferent cycle. 

Definition 1.3. The Fatou set F(f) is the set of all the points in 
rC where {fk} is normal, and the Julia set J(f) is rC- F(f). 
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Theorem 1. 2 (vanishing theorem on the Valiron defects for moving 
targets). Let f be a rational map of degree> 1 such that F(f) -:/:- 0. Then 
for every non-constant rational map g, 

(1) 

In [11] we asked whether it is possible to remove the assumption 
F(f) -:/:- 0. In the rest of this notes, we will answer affirmatively the 
following pointwise version of this problem: 

Theorem 1 (vanishing theorem on the pointwise defect). Let f be 
a rational map of degree d > 1. Then for every rational map g, 

(2) lim w(g, Jk) = 0 
k-+oo dk 

J.LJ-almost everywhere on C. Here the measure J.LJ appears in Theorem 
2.1 in §2. 

§2. The maximal entropy measures of rational maps 

In this section, we gather some useful ergodic properties of rational 
maps which will be used in §3. 

Let f be a rational map of degree d > 1. 

Theorem 2.1 ([6] and [5]). There exists the unique maximal en­
tropy measure J.LJ for J, and h/1-1 (!) = logd, which is the topological 
entropy of f. 

Moreover, the probability measure J.L f is exponentially mixing. More 
quantitatively, the following holds: 

Theorem 2.2 (exponential decay of correlation [3]. See also [4]). 
For every Eo > 0, there exists C = C(Eo) > 0 such that for every 
'1/J E L 00 (J.LJ ), every Lipschitz function ¢ on C, for which II¢11Lip .­
supz,wEC,z;ofw l¢(z)- ¢(w)l/[z, w], and every kEN, 
(3) 

k If ('1/J 0 fk) · ¢dJ.LJ- f '1/JdJ.LJ J ¢dJ.LJ' ::; Cll'l/JIIooii¢11Lip ( 1 : Eo) 2 

Let us also recall several properties of J.L f proved by Mane: 

Theorem 2.3 (Mane [7], Theorem A). Let J.L be an !-ergodic prob­
ability measure on C with the entropy h/1-(f) > 0, then 

(4) j log lf'ldJ.L > 0, 
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and for p,-a. e. x E C, 

(5) lim logp,(liJJ(x, r)) = h'"(f) =: D(p,). 
r--->0 log r J log lf'ldp, 

Since h/1-J(f) = logd > 0, Theorem 2.3 can be applied to /--lf· 

Remark 2.1. The quantity in ( 4) is called the Lyapunov exponent 
off, which is independent of an !-ergodic probability measure p, on C. 
The left hand side of (5) is called the pointwise Hausdorff dimension of 
p, at x. By the observation of Young [21], it holds that 

D(p,) = inf{HD(X);X c C,p,(X) = 1}, 

where HD(X) is the Hausdorff dimension of X. 

Theorem 2.4 (cf. Mane [7], Lemma II.l). There exist p E (0, 1] 
and 'Y > 0 such that for every r E (0, p) and every x E C, 

(6) P,J(llJJ(x,r))::; r'. 

§3. The long fly property of a rational map 

Let f be a rational map of degree d > 1. The following is a re­
finement of Saussol's long fly property ([17]) of (C, J, P,J) and proves 
Theorem 1: 

Theorem 2. For every rational map g, the following holds: for P,J­
almost every z E C, 

(7) 
1 

log [Jk(z), g(z)] = O(log k) 

ask----+ oo. 

Proof. We extend the argument in the proof of [17], Lemma 9. 
Let Eo E (0, d- 1), C = C(Eo), D(P,J ), p, 'Y be the constants in The­

orems 2.2, 2.3 and 2.4. Fix r5 E (0, 'Y /2), E1 > 0 and E2 E (0, 'Y- 215). For 
each r0 E (0, p), let G(ro) be the set of all such x E C that for every 
r E (0, ro), 

(8) 

(9) 

logp,J(liJJ(x,r)) D() d 
1 ::; p, f + E1, an 
ogr 

P,J(llJJ(x, 4r)) ::; P,J(liJJ(x, r))r-€2 • 
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By Theorem 2.3 and the weak diametrical regularity of J-t f ( cf. Barreira 
and Saussol [1], p452), G(r0 ) is increasing as r 0 ----> 0 and 

J-tJ( U G(ro)) = 1, 
roE(O,p) 

by which, it is enough to show that for every sufficiently small r 0 , (7) 
holds J-tralmost everywhere on G(ro) 

For each mEN, put 

A8(m; g) := {y E C; inf [fk(y), g(y)] <e-m}. 
kE [ern6 ,e(m+l)6] 

Then for every x E C and every m E N, 

u 
kE[e"'6 ,e<m+l)6] 

where K > 0 is a constant such that g is K-Lipschitz on C. 
Put ¢x,r(Y) := 1Jr([x, y]), where 1Jr : [0, oo) ----> lR is an 1/r-Lipschitz 

function such that 1[o,r] :::; 1Jr :::; 1[o,2r]· Then ¢x,r is 1/r-Lipschitz on C 
and 11Ili(x,r) :::; ¢x,r :::; 11Ili(x,2r)· 

For every r 0 E (0, p) and every r E (0, ro), from (3), 

J-tJ (IDl(x, r) n rk(IDl(g(x), (K + 1)r))) 

:::; J (11Ili(g(x),(K+l)r)) 0 Jk) · ¢x,rdJ-tj 

1 (1 + Eo)k/2 
:::;c · 1 ·;: -d- + J-tJ(IDl(g(x), (K + 1)r)). J-tJ(IDl(x, 2r)), 

and by (6) and (9), 

J-tJ(IDl(g(x), (K + 1)r)) · J-tJ(IDl(x, 2r)) 

:::; ((k + 1)r)1' · J-tJ(IDl(x,r/2))(r/2)-<2 :::; J-tJ(IDl(x,r/2)) · 2<2(K + 1)1' · r-r-<2. 

There exists so small p' E (0, p) that for every ro E (0, p'), every 
x E G(ro) and every m > log(1/ro), 

J-tJ (A8(m; g) n IDl(x, e-m)) 

( l+<o )e"'" /2 
:::;C ·em d + e(m+1)8 · J-tJ(IDl(x, e-m /2)) · 2<2(K + 1)1'e-m(1'-<2) 

1 - (1-J;i<o) 1/2 

:::;(e-m / 2)D(J-11)+<1 . e-m(-r-<2-28) + J-tJ(IDl(x, e-m / 2)). e-m(-r-<2-28) 

:::;J-tj(IDl(x, e-m /2)) · 2e-mh-<2- 28) (by (8)), 
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and hence for every m > log(l/ro), 

ILJ (A8(m; g) n G(ro)) :::; L ILJ (A8(m; g) n ][])(x, e-m)) 
xESm 

:::;2e-mh-<2-28)MJ( u ][])(x,e-m/2)):::; 2e-mh-<2-28), 

xESm 

where Sm is a finite and maximal e-m-separated set for G(ro), i.e., 
G(ro) C UxESm][))(x,e-m) and ][))(x,e-m)nSm = {x} for each x E Sm, 

and finally LmEN ILJ (A8(m; g) n G(ro)) < oo. 
Hence by the first Borel-Cantelli lemma, 11 f (lim SUPm-->00 A8 ( m; g) n 

G(r0 )) = 0, that is, for Mt-almost every z E G(r0 ), there exists m(z) EN 
such that for every m > m(z), 

which proves (7). 0 
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