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Representations of nonnegative solutions for 
parabolic equations 

Minoru Murata 

§1. Introduction 

This paper is an announcement of results on integral representations 
of nonnegative solutions to parabolic equations, and gives a representa
tion theorem which is general and applicable to many concrete examples 
for establishing explicit integral representations. 

We consider nonnegative solutions of a parabolic equation 

(1.1) (8t+L)u=0 in Dx(O,T), 

where Tis a positive number, Dis a non-compact domain of a Riemann
ian manifold M, 8t = 8/8t, and Lis a second order elliptic operator on 
D. We study the problem: 

Determine all nonnegative solutions of the parabolic equation (1.1). 
This problem is closely related to the Widder type uniqueness theorem 
for a parabolic equation, which asserts that any nonnegative solution 
is determined uniquely by its initial value. (For Widder type unique
ness theorems, see [1], [5], [10], [13] and references therein.) We say 
that [UP)(i.e., uniqueness for the positive Cauchy problem) holds for 
(1.1) when any nonnegative solution of (1.1) with zero initial value is 
identically zero. When [UP] holds for (1.1) the answer to our problem 
is extremely simple: for any nonnegative solution of (1.1)there exists a 
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unique Borel measure J.L on D such that 

u(x, t) = l p(x, y, t)dJ.L(y), xED, 0 < t < T, 

where pis the minimal fundamental solution for (1.1) (cf. [2], [1]). While 
[UP] does not hold, however, only few explicit integral representations of 
nonnegative solutions to parabolic equations are given (cf. [8], [4], [14]). 
On the other hand, for elliptic equations, there has been a significant 
progress in determining explicitly Martin boundaries in many important 
cases (cf. [12] and references therein). Recall that any nonnegative 
solution of an elliptic equation is represented by an integral of Martin 
kernels with respect to a Borel measure on the Martin boundary. 

The aim of this paper is to give explicit integral representations of 
nonnegative solutions to parabolic equations for which [UP] does not 
hold. We give a general and sharp condition under which any nonnega
tive solution of (1.1) with zero initial value is represented by an integral 
on the product of the Martin boundary of D for an elliptic operator 
associated with L and the time interval [0, T). 

§2. Main results 

Let M be a connected separable n-dimensional smooth manifold 
with Riemannian metric of class C 0 . Denote by v the Riemannian mea
sure on M. TxM and T M denote the tangent space to M at x E M 
and the tangent bundle, respectively. We denote by End(TxM) and 
End(T M) the set of endmorphisms in TxM and the corresponding bun
dle, respectively. The inner product on TM is denoted by (X, Y), where 
X,Y E TM; and lXI = (X,X) 112 . The divergence and gradient with 
respect to the metric on M are denoted by div and V', respectively. Let 
D be a non-compact domain of M. Let L be an elliptic differential 
operator on D of the form 

(2.1) Lu = -m-1div(mAV'u) + Vu, 

where m is a positive measurable function on D such that m and m-1 

are bounded on any compact subset of D, A is a symmetric measurable 
section on D of End(T M), and V is a real-valued measurable function 
on D such that 

V E Lf'oc(D, mdv), 
n 

for some p >max( 2, 1). 

Here Lf'oc(D, mdv) is the set of real-valued functions on D locally p-th 
integrable with respect to mdv. We assume that L is locally uniformly 
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elliptic on D, i.e., for any compact set K in D there exists a positive 
constant >. such that 

We assume that the quadratic form Q on C8"(D) defined by 

Q[u] = L ((AV'u, V'u) + Vlul 2 )mdv 

is bounded from below, and put 

>.o = inf{Q[u];u E C0 (D), . L iul 2mdv = 1}. 

Denote by Lv the selfadjoint operator in L 2 (D; mdv) associated with 
the closure of Q. We assume that >.o is an eigenvalue of Lv. Let 4>o 
be the normalized positive eigenfunction for >.o. Let p(x, y, t) be the 
minimal fundamental solution for (1.1), which is equal to the integral 
kernel of the semigroup e-tLv on L 2 (D, mdv). 

Our main assumptions are [IU] (i.e., intrinsic ultracontractivity) and 
[SSP] (i.e., semismall perturbation) as follows. 

[IU] For any t > 0, there exists Ct > 0 such that 

p(x, y, t) ~ Ct ¢o(x)¢o(y), x, y ED. 

This condition implies that Lv admits a complete orthonormal base of 
eigenfunctions { c/Jj }~0 with eigenvalues >.o < >.1 ~ >.2 ~ · · · repeated 
according to multiplicity. Furthermore, 

(2.2) 
00 

p(x, y, t) = L e->.Jtcpj(x)¢j(y) 
j=O 

(cf. [3], [12] and references therein). Recall that if (IU] holds, then (UP] 
does not hold for (1.1) and the equation admits a positive solution with 
zero initial value (cf. (9]); and for a class of parabolic equations, (IU] is 
equivalent to the existence of such a solution (cf. [10]). 

(SSP] For some a < >.0, 1 is a semismall perturbation of L-a on 
D, i.e., for any c: > 0 there exists a compact subset K of D such that 
for any y E D \ K 

{ G(x0 , z)G(z, y)m(z)dv(z) ~ c:G(x0 , y), 
jD\K 

where G is the Green function of L - a on D, and x 0 is a reference point 
fixed in D. 
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This condition implies that for any j = 1, 2, · · · the function ¢1/ c/Jo has 
a continuous extension [¢J/¢o] up to the Martin boundary 8MD of D 
for L-a. (For semismall perturbations, see [11], [16], [12].) The union 
DU8M Dis a compact metric space called the Martin compactification of 
D for L-a. We denote by 8mD the minimal Martin boundary of D for 
L-a. This is a Borel subset of 8MD· Here, we note that 8MD and 8mD 
are independant of a in the following sense: if [SSP] holds, then for any 
b < Ao there is a homeomorphism <I> from the Martin compactification 
of D for L-a onto that for L- b such that <I>ID =identity and <I> maps 
the Martin boundary and minimal Martin boundary of D for L - a onto 
those for L- b, respectively (cf. Theorem 1.4 of [11]). 

Now, we are ready to state our main theorem. 

Theorem 2.1. Assume [IU] and [SSP]. Then, for any nonnegative 
solution u of (1.1) there exists a unique pair of Borel measures J.L on D 
and A on aM D x [0, T) such that A is supported by the set 8mD x [0, T), 

(2.3) u(x, t) l p(x, y, t)dJ.L(Y) 

+ r q(x, ~. t- s)dA(~, s), 
laMDx[O,t) 

for any xED, 0 < t < T. Here q(x,~,T) is a continuous function on 
D X aMD X ( -oo, oo) defined by 

(2.4) q(x,~,T) 

q(x,~,T) 

DO 

L e->-.17 ¢1 (x)[¢1 /¢o](~), T > 0, 
j=O 

0, T S:: 0, 

where the series in (2.4) converges uniformly on K x 8MD x (il, oo) for 
any compact subset K of D and il > 0. Furthermore, 

(2.5) q > 0 on D X aMD X (0, oo), 

(2.6) (8t+L)q(·,~,·)=0 on Dx(-oo,oo). 

Conversely, for any Borel measures J.L on D and A on 8MD x [0, T) such 
that A is supported by 8mD x [0, T) and 

(2.7) l p(x0 , y, t)dJ.L(Y) < oo, 0 < t < T, 
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(2.8) { q(x0 ,~,t- s)d>.(~,s) < oo, 0 < t < T, 
laMDX[O,t) 

where x0 is a point fixed in D, the right hand side of (2.3) is a nonneg
ative solution of ( 1.1). 

The proof of this theorem is based upon the abstract parabolic Mar
tin representation theorem and Choquet's theorem (cf. [7], [6], [15]), and 
its key step is to identify the parabolic Martin boundary. 

§3. Examples 

In this section we give concrete examples as applications of Theorem 
2.1. 

Example 3.1. Let a E R and 

L = -.6. + (1 + lxl 2)a/2 on D = Rn. 

Then [UP] holds for ( 1.1) if and only if a ::::; 2; while [IU] (or [SSP] with 
a= -1) is satisfied if and only if a> 2 (cj. [10], [12]). 

(i) Suppose that a::::; 2. Then for any nonnegative solution u of (1.1) 
there exists a unique Borel measure J.1 on D such that 

(3.1) u(x, t) = l p(x, y, t)dJ.l(y), xED, 0 < t < T. 

Conversely, for any Borel measure J.1 on D satisfying (2. 7), the right 
hand side of (3.1) is a nonnegative solution of (1.1). 

(ii) Suppose that a > 2. Then the conclusions of Theorem 2.1 hold 
with 

(3.2) 

where oosn- 1 is the sphere at infinity ofRn, and the Martin compactifi
cation D* of D = R n with respect to L is obtained by attaching a sphere 
sn- 1 at infinity: D* = Rn u oosn- 1 . 

Note that the Martin boundary 8MD in the case -2 <a::::; 2 is also 
equal to that for a > 2. Nevertheless, when [UP] holds, the elliptic Mar
tin boundary disappears in the parabolic representation theorem; while it 
enters when [UP] does not hold. 

Example 3.2. Let L = -.6. on a bounded John domain DC Rn, 
i.e. D is a bounded domain, and there exist a point z 0 E D and a positive 
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constant CJ such that each z E D can be joined to z 0 by a rectifiable curve 
'Y(t),O:::; t:::; 1, with 'Y(O) = z, 1'(1) = z0 , 'Y CD, and 

dist('Y(t), aD) 2': CJ£'(/'[0, t]), 0 :::; t :::; 1, 

where £(1'[0, t]) is the length of the curve 'Y(s), 0 :::; s :::; t. Then the 
conditions [IU] and [SSP] with a= 0 are satisfied (cf Example 10.4 of 
[12]). Thus the conclusions of Theorem 2.1 hold. 

Note that the Martin boundary aMD of D with respect to L = -~ 
may be different from the topological boundary aD in R n, although they 
are equal if aD is not bad (for example, when D is a Lipschitz domain). 

Note added in proof. It has turned out that the condition [IU] im
plies the condition [SSP] (see Theorem 1.1 of the paper: M. Murata and 
M. Tomisaki, Integral representations of nonnegative solutions for par
abolic equations and elliptic Martin boundaries, Preprint, April 2006). 
Thus the assumption [SSP] of Theorem 2.1 in this paper is redundant. 
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