Quasiconformal mappings and minimal Martin boundary of p-sheeted unlimited covering surfaces of the once punctered Riemann sphere $\hat{\mathbb{C}} \backslash\{0\}$ of Heins type

Hiroaki Masaoka
Dedicated to Professor Masakazu Shiba on his sixtieth birthday

Abstract

. Let R and R^{\prime} be p-sheeted unlimited covering surfaces of the once punctured Riemann sphere $\hat{\mathbb{C}} \backslash\{0\}$ of Heins type which are quasiconformal equivalent to each other. Then the cardinal numbers of minimal Martin boundaries of R and R^{\prime} are same.

Let R be a 2 -sheeted unlimited covering surface of the once punctured Riemann sphere $\widehat{\mathbb{C}} \backslash\{0\}$ of Heins type and R^{\prime} be an open Riemann surface. If R and R^{\prime} are quasiconformal equivalent to each other and the set of branch points of R satisfies a condition, then the cardinal numbers of minimal Martin boundaries of R and R^{\prime} are same.

§1. Introduction.

Let W be an open Riemann surface. We denote by Δ_{1}^{W} the minimal Martin boundary of W. In [8], it was showed that there exist open Riemann surfaces F and F^{\prime} quasiconformally equivalent to each other such that F^{\prime} possesses nonconstant positive harmonic functions although F does not possess nonconstant positive harmonic functions. This means that $\sharp \Delta_{1}^{F^{\prime}} \geq 2$ although $\sharp \Delta_{1}^{F}=1$, where $\sharp A$ stands for the cardinal

[^0]number of a set A. Needless to say, the above F and F^{\prime} are of positive boundary, i.e. F and F^{\prime} admit the Green function (cf. e.g. [16]). However, in case open Riemann surfaces F and F^{\prime} are of null boundary (i.e. not positive boundary), it does not seem to be known whether $\sharp \Delta_{1}^{F}=\sharp \Delta_{1}^{F^{\prime}}$ or not if F and F^{\prime} are quasiconformally equivalent to each other.

Consider two positive decreasing sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfying $b_{n+1}<a_{n}<b_{n}<1$ and $\lim _{n \rightarrow \infty} a_{n}=0$. Set $G=\hat{\mathbb{C}} \backslash(\{0\} \cup I)$, where $\widehat{\mathbb{C}}$ is the extended complex plane, $I=\cup_{n=1}^{\infty} I_{n}$ and $I_{n}=\left[a_{n}, b_{n}\right]$. We take p copies G_{1}, \cdots, G_{p} of G and join the upper edge of I_{n} on G_{j} with the lower edge of I_{n} on $G_{j+1}(j \bmod p)$ for every n. Then we obtain a p-sheeted covering surface R of the once punctured Riemann sphere $\hat{\mathbb{C}} \backslash\{0\}$ and say that R is of Heins type(cf. [4]).

In this paper, we are concerned with p-sheeted unlimited covering surfaces of the once punctured Riemann sphere $\widehat{\mathbb{C}} \backslash\{0\}$ of Heins type. Consider p-sheeted unlimited covering surfaces R and R^{\prime} of $\hat{\mathbb{C}} \backslash\{0\}$ of Heins type which are quasiconformally equivalent to each other. Then it seems to be valid that $\sharp \Delta_{1}^{R}=\sharp \Delta_{1}^{R^{\prime}}$ (cf. [12], [10], [18]). The first purpose of this paper is to give an answer to this conjecture. Namely,

Theorem 1. Let R and R^{\prime} be p-sheeted unlimited covering surfaces of the once punctured Riemann sphere $\hat{\mathbb{C}} \backslash\{0\}$ of Heins type which are quasiconformally equivalent to each other. Then it holds that $\sharp \Delta_{1}^{R}=$ $\sharp \Delta_{1}^{R^{\prime}}$.

Let R be a 2 -sheeted unlimited covering surface of $\hat{\mathbb{C}} \backslash\{0\}$ of Heins type with the projection π from R onto $\hat{\mathbb{C}} \backslash\{0\}$. We have the following.

Theorem 2. Suppose that $b_{n}-b_{n+1} \approx 2^{-n}$, that is, there exists a constant $\alpha(>1)$ with $\alpha^{-1} 2^{-n}<b_{n}-b_{n+1}<\alpha 2^{-n}(n \in \mathbb{N})$. Let R^{\prime} be an open Riemann surface and f a quasiconformal mapping with $R^{\prime}=f(R)$. Then it holds that $\sharp \Delta_{1}^{R}=\sharp \Delta_{1}^{R^{\prime}}$.

The author would like to express his sincere thanks to the referee for his valuable comments.

§2. Preliminaries.

In this section we consider as R a general p-sheeted unlimited covering surfaces of the once punctured Riemann sphere $\hat{\mathbb{C}} \backslash\{0\}$. Let Δ^{R} and Δ_{1}^{R} be as in $\S 1$, and π the projection map from R onto $\hat{\mathbb{C}} \backslash\{0\}$. Set $\mathbb{D}=\{x \in \mathbb{C}| | x \mid<1\}, \mathbb{D}_{0}=\mathbb{D} \backslash\{0\}$ and $R_{0}=\pi^{-1}\left(\mathbb{D}_{0}\right)$. It is well-known that $\Delta^{R_{0}}$ and $\Delta_{1}^{R_{0}}$ are identified with $\Delta^{R} \cup \pi^{-1}(\partial \mathbb{D})$ and $\Delta_{1}^{R} \cup \pi^{-1}(\partial \mathbb{D})$,
respectively, where $\partial \mathbb{D}=\{x \in \mathbb{C}| | x \mid=1\}$. From now on we consider \mathbb{D}_{0} (resp. R_{0}) in place of $\hat{\mathbb{C}} \backslash\{0\}$ (resp. R) since $\hat{\mathbb{C}} \backslash\{0\}$ (resp. R) does not admit the Green function. Let g_{0} be the Green function on \mathbb{D} with pole at 0 .

Definition 2.1 (cf. [2]). We say that a subset E of \mathbb{D}_{0} is thin at 0 if ${ }^{\mathbb{D}} \widehat{\mathrm{R}}_{g_{0}}^{E} \neq g_{0}$, where ${ }^{\mathbb{D}} \widehat{\mathrm{R}}_{g_{0}}^{E}$ is the balayage of g_{0} relative to E on \mathbb{D}.

If E is a closed subset of \mathbb{D}, it is well-known that E is thin at 0 if and only if 0 is an irregular boundary point of $\mathbb{D} \backslash E$ in the sense of the Dirichlet problem.

The following lemma gives the quasiconformal invariance for thinness.

Lemma 2.1 (cf. [10],[18]). Let M be a subdomain of \mathbb{C} and φ a quasiconformal mapping from \mathbb{C} onto \mathbb{C}. If ζ is an irregular boundary point of M in the sense of Dirichlet problem, $\varphi(\zeta)$ is an irregular boundary point of $\varphi(M)$ in the sense of Dirichlet problem.

Definition 2.2. A subset U in \mathbb{D} which contains 0 is said to be a fine neighborhood of 0 if $\mathbb{D} \backslash U$ is thin at 0 .

Let k_{ζ} be the Martin function on R_{0} with pole at $\zeta \in \Delta^{R}$. If we take a sequence $\left\{x_{n}\right\}$ in R_{0} such that $\lim _{n \rightarrow \infty} x_{n}=\zeta$, we can give a definition of k_{ζ} by the following.

$$
k_{\zeta}(z)=\lim _{n \rightarrow \infty} \frac{g_{x_{n}}(x)}{g_{x_{n}}\left(x_{0}\right)}
$$

where x_{0} is a fixed point in R_{0}. For details we refer to [3] and [5].
Definition 2.3. Let ζ be a point in Δ_{1}^{R} and E a subset of R_{0}. We say that E is minimally thin at ζ if ${ }^{R_{0}} \widehat{\mathrm{R}}_{k_{\zeta}}^{E} \neq k_{\zeta}$.

Definition 2.4. Let ζ be a point in Δ_{1}^{R} and U a subset of R_{0}. We say that $U \cup\{\zeta\}$ is a minimal fine neighborhood of ζ if $R_{0} \backslash U$ is minimally thin at ζ.

The following proposition gives the characterization of $\sharp \Delta_{1}^{R}$ in terms of minimal fine topology.

Proposition 2.1 ([11]). Let \mathcal{M} be the class of subdomains M of \mathbb{D}_{0} such that $M \cup\{0\}$ is a fine neighborhood of $x=0$. Then it holds that

$$
\sharp \Delta_{1}^{R}=\max _{M \in \mathcal{M}} n_{R}(M),
$$

where $n_{R}(M)$ is the number of connected components of $\pi^{-1}(M)$ and π is the projection map from R onto $\hat{\mathbb{C}} \backslash\{0\}$.

§3. Proof of Theorem 1.

In this section we first consider as R a general p-sheeted unlimited covering surfaces of the once punctured Riemann sphere $\hat{\mathbb{C}} \backslash\{0\}$. Let Δ^{R} and Δ_{1}^{R} be as in $\S 1$, and π the projection map from R onto $\hat{\mathbb{C}} \backslash\{0\}$. Let $\mathbb{D}, \mathbb{D}_{0}$, and R_{0} be as in $\S 2$. The next proposition will play an important role for the proof of Theorem 1 .

Proposition 3.1. Let R^{\prime} be an open Riemann surface and f a quasiconformal mapping with $R^{\prime}=f(R)$. If $\sharp \Delta_{1}^{R}=p$, then $\sharp \Delta_{1}^{R}=\sharp \Delta_{1}^{R^{\prime}}$.

Proof. By Proposition 2.1 we find a subdomain M of \mathbb{D}_{0} such that $\mathbb{D}_{0} \backslash M$ is thin at $0, \partial M \backslash\{0\}$ may consist of infinitely many Jordan curves and

$$
\sharp \Delta_{1}^{R}=n_{R}(M),
$$

where $n_{R}(M)$ is the number of connected components of $\pi^{-1}(M)$. By the assumption of this proposition $n_{R}(M)=p$. Let $M_{j}(j=1,2, \ldots, p)$ be components of $\pi^{-1}(M)$. Since each M_{j} is a 1 -sheeted unlimited covering surface of M, it is easily seen that each M_{j} is considered as a replica of M. Let $g_{x}^{f\left(M_{j}\right)}(j=1,2 \ldots, p)$ be the Green function on $f\left(M_{j}\right)$ with pole at x and ψ_{j} the inverse of $\left.\pi\right|_{M}$ from $M \rightarrow M_{j}$. Denote by $\mu_{f \circ \psi_{j}}$ the complex dilatation of $f \circ \psi_{j}$ on M. Set

$$
\mu_{j}= \begin{cases}\mu_{f \circ \psi_{j}} & \text { on } M \\ 0 & \text { on } \mathbb{C} \backslash M\end{cases}
$$

It is well-known that there exists a quasiconformal mapping f_{j} from \mathbb{C} onto \mathbb{C} with the complex dilatation μ_{j} (cf. e.g. [6]). Set $V_{j}=f_{j}(M)$. By Lemma 2.1 we find that $f_{j}(0)$ is an irregular boundary point of V_{j} in the sense of the usual Dirichlet problem since 0 is an irregular boundary point of M in the sense of the usual Dirichlet problem. On the other hand, the function $x^{\prime} \mapsto g_{f \circ \psi_{j} \circ f_{j}^{-1}\left(x^{\prime}\right)}^{f\left(M_{j}\right)} \circ f \circ \psi_{j} \circ f_{j}^{-1}\left(y^{\prime}\right)\left(y^{\prime} \in\right.$ V_{j}) is a positive harmonic function on $V_{j} \backslash\left\{y^{\prime}\right\}$ since $f \circ \psi_{j} \circ f_{j}^{-1}$ is conformal. Hence, by [5, Theorem 10.16], there exists a positive fine limit $\mathcal{F}-\lim _{x^{\prime} \rightarrow f_{j}(0)} g_{f \circ \psi_{j} \circ f_{j}^{-1}\left(x^{\prime}\right)}^{f\left(M_{j^{\prime}}\right)} \circ f \circ \psi_{j} \circ f_{j}^{-1}$. Denote by $g_{0}^{V_{j}}$ this limit function on V_{j} and set $g_{0}^{f\left(M_{j}\right)}=g_{0}^{V_{j}} \circ f_{j} \circ \psi_{j}^{-1} \circ f^{-1}$. We see that each $g_{0}^{f\left(M_{j}\right)}$ is a positive harmonic function on $f\left(M_{j}\right)$ since each $g_{0}^{V_{j}}$ is a positive harmonic function on V_{j} and $f_{j} \circ \psi_{j}^{-1} \circ f^{-1}$ is conformal. For $j=1,2, \ldots, p$ set

$$
S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right)\left(x^{\prime}\right)=\inf _{s} s\left(x^{\prime}\right)
$$

where s runs over the space of positive superharmonic functions s on $f\left(R_{0}\right)$ satisfying $s \geq g_{0}^{f\left(M_{j}\right)}$ on $f\left(M_{j}\right)$. By Perron-Wiener-Brelot method we find that each $S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right)$ is a positive harmonic function on $f\left(R_{0}\right)$. Then the following inequality

$$
\begin{equation*}
S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right)-f\left(R_{0}\right) \widehat{\mathrm{R}}_{S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right)}^{f\left(R_{0}\right) \backslash f\left(M_{j}\right)} \geq g_{0}^{f\left(M_{j}\right)} \tag{*}
\end{equation*}
$$

holds on $f\left(M_{j}\right)$. In fact, to prove the inequality $(*)$ note that

$$
\underset{S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right)}{f\left(R_{0}\right)} \widehat{\mathrm{R}}^{f\left(R_{0}\right) \backslash f\left(M_{j}\right)}=H_{S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right)}^{f\left(M_{j}\right)}
$$

on $f\left(M_{j}\right)$, where $H_{S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right)}^{f\left(M_{j}\right)}$ is the Dirichlet solution for $S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right)$ on $f\left(M_{j}\right)$ (cf. e.g. [3], [5]). By definition $S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right) \geq g_{0}^{f\left(M_{j}\right)}$ on $f\left(M_{j}\right)$. Hence, by the definition of the Dirichlet solution in the sense of Perron-Wiener-Brelot,

$$
S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right)-g_{0}^{f\left(M_{j}\right)} \geq H_{S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right)}^{f\left(M_{j}\right)}
$$

on $f\left(M_{j}\right)$. Thus (*) is proved.
We shall proceed the proof of this proposition. By [17, Theorem 3] it is known that $1 \leq \sharp \Delta_{1}^{R^{\prime}} \leq p$. By the Martin representation theorem, there exist at most p minimal functions $h_{j, 1}, h_{j, 2}, \ldots, h_{j, p}$ on $f\left(R_{0}\right)$ with
$S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right)=h_{j, 1}+h_{j, 2}+\ldots+h_{j, p}$ on $f\left(R_{0}\right)$. Hence, by the above inequality $(*)$, we have

$$
\begin{aligned}
& h_{j, 1}+h_{j, 2}+\ldots+h_{j, p} \\
= & S_{j}\left(g_{0}^{f\left(M_{j}\right)}\right) \\
\geq & f\left(R_{0}\right) \widehat{\mathrm{R}}_{h_{j, 1}+h_{j, 2}+\ldots+h_{j, p}}^{f\left(R_{0}\right) \backslash f\left(M_{j}\right)}+g_{0}^{f\left(M_{j}\right)} \\
> & f\left(R_{0}\right) \widehat{\mathrm{R}}_{h_{j, 1}}^{f\left(R_{0}\right) \backslash f\left(M_{j}\right)}+{ }^{f\left(R_{0}\right)} \widehat{\mathrm{R}}_{h_{j, 2}}^{f\left(R_{0}\right) \backslash f\left(M_{j}\right)}+\ldots+{ }^{f\left(R_{0}\right)} \widehat{\mathrm{R}}_{h_{j, p}}^{f\left(R_{0}\right) \backslash f\left(M_{j}\right)}
\end{aligned}
$$

on $f\left(M_{j}\right)$. Therefore we find that there exists a minimal function h_{j} on $f\left(R_{0}\right)$ such that $h_{j} \neq f\left(R_{0}\right) \widehat{\mathrm{R}}_{h_{j}}^{f\left(R_{0}\right) \backslash f\left(M_{j}\right)}$. Hence, by the definition of minimal thinness, $f\left(R_{0}\right) \backslash f\left(M_{j}\right)$ is minimally thin at the minimal boundary point corresponding to h_{j}. Since $f\left(M_{i}\right) \cap f\left(M_{j}\right)=\emptyset \quad(i \neq j)$, we find that $\sharp \Delta_{1}^{R^{\prime}}=p$.

Now we give the following result which Proposition 2.1 yields.
Theorem 3.1 (cf. [11]). Let R be a p-sheeted unlimited covering surfaces of the once punctured Riemann sphere $\hat{\mathbb{C}} \backslash\{0\}$ of Heins type. Then $\sharp \Delta_{1}^{R}=1$ or p.

Proof of Theorem 1. By Theorem 3.1 we have only to prove that $\sharp \Delta_{1}^{R^{\prime}}=p$ if and only if $\sharp \Delta_{1}^{R}=p$. Since f^{-1} is a quasiconformal mapping from R^{\prime} onto R, it is sufficient to prove that if $\sharp \Delta_{1}^{R}=p$, then $\sharp \Delta_{1}^{R^{\prime}}=p$. Suppose that $\sharp \Delta_{1}^{R}=p$. By Proposition $3.1 \sharp \Delta_{1}^{R^{\prime}}=p$. We have the desired result.

§4. Proof of Theorem 2.

By Proposition 3.1 we find that if $\sharp \Delta_{1}^{R}=2, \sharp \Delta_{1}^{R^{\prime}}=2$. By [17, Theorem 3] it is known that $\sharp \Delta_{1}^{R^{\prime}}=1$ or 2 . Hence, by Theorem 3.1, it is sufficient to prove that if $\sharp \Delta_{1}^{R^{\prime}}=2, \sharp \Delta_{1}^{R}=2$. Suppose that $\sharp \Delta_{1}^{R^{\prime}}=2$. Set $\Delta_{1}^{R^{\prime}}=\left\{\zeta_{1}^{\prime}, \zeta_{2}^{\prime}\right\}$. Let $g_{\xi^{\prime}}^{f\left(R_{0}\right)}$ be the Green function with pole at ξ^{\prime} on $f\left(R_{0}\right)$. It is known that there exists $\lim _{y^{\prime} \rightarrow \zeta_{j}^{\prime}} g_{y^{\prime}}^{f\left(R_{0}\right)}\left(x^{\prime}\right)\left(=: g_{\zeta_{j}^{\prime}}^{\prime}\left(x^{\prime}\right)\right)(j=$ $1,2)$ and $g_{\zeta_{j}^{\prime}}^{\prime}(j=1,2)$ is the minimal harmonic function with pole at $\zeta_{j}^{\prime}(j=1,2)$.

For $x \in R_{0}$ set

$$
L=L_{f}=L_{x, f}=\left\{\begin{array}{r}
\sum_{i, k=1}^{2} \partial_{k}\left(J_{f}(x)\left(f^{\prime}(x)^{-1} f^{\prime}(x)^{-1 *}\right)_{k, i} \partial_{i}\right) \\
\left(\text { if there exist } f^{\prime}(x) \text { and } f^{\prime}(x)^{-1}\right) \\
\sum_{i=1}^{2} \partial_{i}^{2} \\
(\text { elsewise })
\end{array}\right.
$$

where $J_{f}(x)$ (resp. $\left.f^{\prime}(x)\right)$ is the Jacobian (resp. Jacobi matrix) of the mapping $(u(x), v(x))(f=u+i v), f^{\prime}(x)^{-1}$ is the inverse of $f^{\prime}(x)$ and $f^{\prime}(x)^{-1 *}$ is the transpose of $f^{\prime}(x)^{-1} . L$ is a elliptic second order partial differential operator of divergence type on R. Set $g_{j}^{L}(x):=g_{\zeta_{j}^{\prime}}^{\prime} \circ f(x)(x \in$ $\left.R_{0}\right)$. We see that $g_{j}^{L}(j=1,2)$ is a positive harmonic function on R_{0} with respect to L. We recall the assumption that $b_{n}-b_{n+1} \approx 2^{-n}$, that is, there exists a constant $\alpha(>1)$ with

$$
\alpha^{-1} 2^{-n}<b_{n}-b_{n+1}<\alpha 2^{-n} \quad(n \in \mathbb{N})
$$

For $r(>0)$, set $C_{r}=\{|x|=r\}, B_{r}=\{|x|<r\}, \mathcal{C}_{r}=\pi^{-1}\left(C_{r}\right)$, and $\mathcal{B}_{r}=\pi^{-1}\left(B_{r} \backslash\{0\}\right)$.

Suppose that there exist a constant $\alpha^{\prime}(>1)$ and a subsequence $\left\{n_{l}\right\}$ of $\mathbb{N}=\{n\}$ with $b_{n_{l}}-a_{n_{l}}>\left(\alpha^{\prime}\right)^{-1} 2^{-n_{l}}$. Set $\mathcal{R}_{l}=\mathcal{B}_{\left(a_{n_{l}}+3 b_{n_{l}}\right) / 4} \backslash$ $C l\left(\mathcal{B}_{\left(3 a_{n_{l}}+b_{n_{l}}\right) / 4}\right)$, where, for a set $E \subset R_{0}, C l(E)$ stands for the closure of E with respect to the usual topology on R_{0}. By the assumption that $b_{n_{l}}-a_{n_{l}}>\left(\alpha^{\prime}\right)^{-1} 2^{-n_{l}}, \operatorname{Mod}\left(\mathcal{R}_{l}\right) \approx 1$, where $\operatorname{Mod}\left(\mathcal{R}_{l}\right)$ stands for the logarithmic module of \mathcal{R}_{l} (cf. [1]), and hence, by the quasiconformal
invariance of logarithmic module (cf. [6], [15]), $\operatorname{Mod}\left(f\left(\mathcal{R}_{l}\right)\right) \approx 1$. Since the cardinal number of connected components of \mathcal{R}_{l} is equal to 1 , that of $f\left(\mathcal{R}_{l}\right)$ is so. By [17, Theorem 3], we find that $\sharp \Delta_{1}^{R^{\prime}}=1$. This is a contradiction. Hence we may suppose that there exists a constant $\alpha^{\prime \prime}(>$ 1), for every integer l, $a_{l}-b_{l+1}>\left(\alpha^{\prime \prime}\right)^{-1} 2^{-l}$. Set $\mathcal{A}=\cup_{l=1}^{\infty} \mathcal{A}_{l}\left(\mathcal{A}_{l}=\right.$ $\mathcal{B}_{\left(3 a_{l}+b_{l+1}\right) / 4} \backslash \operatorname{Cl}\left(\mathcal{B}_{\left(a_{l}+3 b_{l+1}\right) / 4}\right)$), where $\operatorname{Cl}\left(\mathcal{B}_{\left(a_{l}+3 b_{l+1}\right) / 4}\right)$ is the closure of $\mathcal{B}_{\left(a_{l}+3 b_{l+1}\right) / 4}$ with respect to the usual topology on R.

Lemma 4.1. On \mathcal{A},

$$
g_{j}^{L}(x)+g_{j}^{L}(\iota(x)) \approx \log \frac{1}{|\pi(x)|}(j=1,2)
$$

where ι is the sheet exchange on R.
Proof. Let $A_{l, k}(k=1,2)$ be connected components of \mathcal{A}_{l}. Then we have
$(\sharp) \quad{ }^{f\left(R_{0}\right)} \widehat{\mathrm{R}}_{1}^{f\left(\mathcal{A}_{l}\right)} \leq{ }^{f\left(R_{0}\right)} \widehat{\mathrm{R}}_{1}^{f\left(A_{l, 1}\right)}+{ }^{f\left(R_{0}\right)} \widehat{\mathrm{R}}_{1}^{f\left(A_{l, 2}\right)} \leq 2^{f\left(R_{0}\right)} \widehat{\mathrm{R}}_{1}^{f\left(\mathcal{A}_{l}\right)}$.
Since ${ }^{f\left(R_{0}\right)} \widehat{\mathrm{R}}_{1}^{f\left(\mathcal{A}_{l}\right)}$ is a Green potential on $f\left(R_{0}\right)$ (cf. [3]), we can find the Radon measure $\mu_{l, j}(j=1,2)$ with

By the fact that ${ }^{f\left(R_{0}\right)} \widehat{\mathrm{R}}_{1}^{f\left(\mathcal{A}_{l}\right)}\left(x^{\prime}\right)=1$ for $x^{\prime} \in f\left(\mathcal{B}_{\left(3 a_{l}+b_{l+1}\right) / 4}\right)$, letting x^{\prime} be to ζ_{j}^{\prime} in (\sharp), we have

$$
1 \leq \int_{C l\left(f\left(A_{l, 1}\right)\right)} g_{\zeta_{j}^{\prime}}^{\prime} d \mu_{l, 1}+\int_{C l\left(f\left(A_{l, 2}\right)\right)} g_{\zeta_{j}^{\prime}}^{\prime} d \mu_{l, 2} \leq 2 \quad(j=1,2)
$$

and hence

$$
1 \leq \int_{C l\left(A_{l, 1}\right)} g_{j}^{L} d\left(f^{-1}\right)^{*}\left(\mu_{l, 1}\right)+\int_{C l\left(A_{l, 2}\right)} g_{j}^{L} d\left(f^{-1}\right)^{*}\left(\mu_{l, 2}\right) \leq 2 \quad(j=1,2)
$$

where $\left(f^{-1}\right)^{*}\left(\mu_{l, 2}\right)$ is the image measure of $\mu_{l, 2}$ by f^{-1}. On the other hand, by the definition of capacitary potential, quasiconformal invariance of capacity (cf. [15, Theorem 10.10]), [9, Lemma 2.3], [1, Theorems 13C and 13D in Chap. IV] and [3, Satz 5.2 and Satz 7.2], we have

$$
\begin{aligned}
\left(f^{-1}\right)^{*} \mu_{l, j}\left(C l\left(A_{l, j}\right)\right) & =\mu_{l, j}\left(f\left(C l\left(A_{l, j}\right)\right)\right)=\operatorname{cap}\left(f\left(C l\left(A_{l, j}\right)\right), f\left(R_{0}\right)\right) \\
& \approx \operatorname{cap}\left(C l\left(A_{l, j}\right), R_{0}\right) \approx \operatorname{cap}\left(\pi\left(C l\left(\mathcal{A}_{l}\right)\right), \mathbb{D}_{0}\right) \\
& =\operatorname{cap}\left(C l\left(B_{\left(3 a_{l}+b_{l+1}\right) / 4}\right), \mathbb{D}_{0}\right) \\
& =2 \pi / \log \left[4 /\left(3 a_{l}+b_{l+1}\right)\right] \approx 1 / l
\end{aligned}
$$

where, for a subset E of an open Riemann surface F of positive boundary $\operatorname{cap}(E, F)$ stands for the greenian capacity of E on F. Therefore, by Harnack's inequality with respect to L (cf. [13]), we have the desired result.

Set $D_{I}=\mathbb{D}_{0} \backslash I$.
Lemma 4.2. There exist components $\mathcal{D}_{I, j}(j=1,2)$ of $\pi^{-1}\left(D_{I}\right)$ such that

$$
\begin{gathered}
g_{j}^{L}(x) \approx \log \frac{1}{|\pi(x)|}\left(x \in \mathcal{A} \cap \mathcal{D}_{I, j}, j=1,2\right) \\
g_{j}^{L}(x)=o\left(\log \frac{1}{|\pi(x)|}\right)\left(\pi(x) \rightarrow 0, x \in \mathcal{A} \cap \mathcal{D}_{I, j+(-1)^{j-1}}, j=1,2\right)
\end{gathered}
$$

Proof. Denote by $\mathcal{D}_{I, j}(j=1,2)$ components of $\pi^{-1}\left(D_{I}\right)$. Set $\mathcal{A}_{l, j}=\mathcal{A}_{l} \cap \mathcal{D}_{I, j}$. By Lemma 4.1 we may suppose that there exist subsequences $\left\{n_{1}\right\}$ and $\left\{n_{2}\right\}$ of $\mathbb{N}=\{n\}$ such that
(i) $\quad\left\{n_{1}\right\} \cup\left\{n_{2}\right\}=\mathbb{N}$ and $\left\{n_{1}\right\} \cap\left\{n_{2}\right\}=\emptyset$;
(ii) $g_{1}^{L}(x) \approx \log \frac{1}{|\pi(x)|}\left(x \in\left(\cup_{n_{1}} \mathcal{A}_{n_{1}, 1}\right) \cup\left(\cup_{n_{2}} \mathcal{A}_{n_{2}, 2}\right)\right)$;
(iii) $g_{1}^{L}(x)=o\left(\log \frac{1}{|\pi(x)|}\right)\left(\pi(x) \rightarrow 0, x \in\left(\cup_{n_{1}} \mathcal{A}_{n_{1}, 2}\right) \cup\left(\cup_{n_{2}} \mathcal{A}_{n_{2}, 1}\right)\right)$.

In fact, suppose the above does not hold. Then there exists a subsequence $\left\{n_{3}\right\}$ of $\mathbb{N}=\{n\}$ with

$$
g_{1}^{L}(x) \approx \log \frac{1}{|\pi(x)|}\left(x \in \cup_{n_{3}} \mathcal{A}_{n_{3}}\right)
$$

On the other hand, for any $\beta(>0),\left\{x^{\prime} \in f\left(R_{0}\right) \mid g_{\zeta_{2}^{\prime}}^{\prime}\left(x^{\prime}\right)>\beta g_{\zeta_{1}^{\prime}}^{\prime}\left(x^{\prime}\right)\right\} \cup$ $\left\{\zeta_{2}^{\prime}\right\}$ is a minimal fine neighborhood of ζ_{2}^{\prime}, because, on $\left\{g_{\zeta_{2}^{\prime}}^{\prime}>\beta g_{\zeta_{1}^{\prime}}^{\prime}\right\}$, $f\left(R_{0}\right) \widehat{\mathrm{R}}_{g_{\zeta_{2}^{\prime}}^{\prime}}^{\left\{g_{\zeta_{2}^{\prime}}^{\prime} \leq \beta g_{\zeta_{1}^{\prime}}^{\prime}\right\}}<g_{\zeta_{2}^{\prime}}^{\prime}$, by the fact that, on $f\left(R_{0}\right)$,

$$
f\left(R_{0}\right) \widehat{\mathrm{R}}_{g_{\zeta_{2}^{\prime}}^{\prime}}^{\left\{g_{\zeta_{2}^{\prime}}^{\prime} \leq \beta g_{\zeta_{1}^{\prime}}^{\prime}\right\}} \leq f\left(R_{0}\right) \widehat{\mathrm{R}}_{\beta g_{\zeta_{1}^{\prime}}^{\prime}}^{\left\{g_{\zeta_{2}^{\prime}}^{\prime} \leq \beta g_{\zeta_{1}^{\prime}}^{\prime}\right\}} \leq \beta g_{\zeta_{1}^{\prime}}^{\prime}
$$

Hence, by Lemma 4.1 and by the fact that $g_{j}^{L}=g_{\zeta_{j}^{\prime}}^{\prime} \circ f$, there exists a positive β_{0} with $\left\{x^{\prime} \in f\left(R_{0}\right) \mid g_{\zeta_{2}^{\prime}}^{\prime}\left(x^{\prime}\right)>\beta_{0} g_{\zeta_{1}^{\prime}}^{\prime}\left(x^{\prime}\right)\right\} \subset f\left(R_{0}\right) \backslash f\left(\cup_{n_{3}} \mathcal{A}_{n_{3}}\right)$. It is well-known that we can take a connected component G_{1} of $\left\{x^{\prime} \in\right.$ $\left.f\left(R_{0}\right) \mid g_{\zeta_{2}^{\prime}}^{\prime}\left(x^{\prime}\right)>\beta_{0} g_{\zeta_{1}^{\prime}}^{\prime}\left(x^{\prime}\right)\right\}$ such that $G_{1} \cup\left\{\zeta_{2}^{\prime}\right\}$ is a minimal fine neighborhood of ζ_{2}^{\prime} (cf. [14, Corollaire 2 in p.206]). This is a contradiction.

Suppose that both $\left\{n_{1}\right\}$ and $\left\{n_{2}\right\}$ are infinite sets. Let $\left\{m_{1}\right\}$ be a subsequence of $\left\{n_{1}\right\}$ with $m_{1}+1 \in\left\{n_{2}\right\}$. By (ii) we can find a positive constant $\kappa_{1}(>1)$ with

$$
\kappa_{1}^{-1} \log \frac{1}{|\pi(x)|} \leq g_{1}^{L}(x) \leq \kappa_{1} \log \frac{1}{|\pi(x)|}\left(x \in\left(\cup_{n_{1}} \mathcal{A}_{n_{1}, 1}\right) \cup\left(\cup_{n_{2}} \mathcal{A}_{n_{2}, 2}\right)\right)
$$

By Harnack's inequality with respect to L, we can find a positive constant $\kappa_{2}(>1)$ with

$$
\left(\kappa_{1} \kappa_{2}\right)^{-1} \log \frac{1}{|\pi(x)|} \leq g_{1}^{L}(x) \leq\left(\kappa_{1} \kappa_{2}\right) \log \frac{1}{|\pi(x)|}\left(x \in \cup_{m_{1}} \mathcal{A}_{m_{1}+1,1}\right)
$$

On the other hand, by (iii), there exists an integer N_{0} such that,

$$
g_{1}^{L}(x)<\left(\kappa_{1} \kappa_{2}\right)^{-1} \log \frac{1}{|\pi(x)|}\left(x \in \cup_{m_{1}>N_{0}-1} \mathcal{A}_{m_{1}+1,1}\right)
$$

This is a contradiction. Here, if necessary, by substituting $\mathcal{D}_{I, 1}$ (resp. $\left.\mathcal{D}_{I, 2}\right)$ for $\mathcal{D}_{I, 2}\left(\right.$ resp. $\left.\mathcal{D}_{I, 1}\right)$, we have

$$
\begin{gathered}
\text { (b1) } g_{1}^{L}(x) \approx \log \frac{1}{|\pi(x)|}\left(x \in \cup_{n} \mathcal{A}_{n, 1}\right) \\
\text { (b2) } g_{1}^{L}(x)=o\left(\log \frac{1}{|\pi(x)|}\right)\left(\pi(x) \rightarrow 0, x \in \cup_{n} \mathcal{A}_{n, 2}\right) .
\end{gathered}
$$

Repeating the same process for g_{1}^{L} as in obtaining (b1) and (b2), we have

$$
\begin{gathered}
\left(b^{\prime} 1\right) g_{2}^{L}(x) \approx \log \frac{1}{|\pi(x)|}\left(x \in \cup_{n} \mathcal{A}_{n, 2}\right) \\
\left(b^{\prime} 2\right) g_{2}^{L}(x)=o\left(\log \frac{1}{|\pi(x)|}\right)\left(\pi(x) \rightarrow 0, x \in \cup_{n} \mathcal{A}_{n, 1}\right)
\end{gathered}
$$

or

$$
\begin{aligned}
&(b " 1) g_{2}^{L}(x) \approx \log \frac{1}{|\pi(x)|}\left(x \in \cup_{n} \mathcal{A}_{n, 1}\right) \\
&(b " 2) g_{2}^{L}(x)=o\left(\log \frac{1}{|\pi(x)|}\right)\left(\pi(x) \rightarrow 0, x \in \cup_{n} \mathcal{A}_{n, 2}\right)
\end{aligned}
$$

Suppose that the estimates ($b " 1$) and ($b " 2$) hold. By (b1) and (b"1), we find that $f\left(\cup_{n} \mathcal{A}_{n, 1}\right)$ is minimally thin at ζ_{1}^{\prime}. In fact, there exists a positive constant β_{0} such that $\beta_{0} g_{\zeta_{1}^{\prime}}^{f\left(R_{0}\right)} \leq g_{\zeta_{2}^{\prime}}^{f\left(R_{0}\right)}$ on $f\left(\cup_{n} \mathcal{A}_{n, 1}\right)$, that is, $f\left(\cup_{n} \mathcal{A}_{n, 1}\right) \subset\left\{x^{\prime} \in f\left(R_{0}\right) \mid \beta_{0} g_{\zeta_{1}^{\prime}}^{f\left(R_{0}\right)} \leq g_{\zeta_{2}^{\prime}}^{f\left(R_{0}\right)}\right\}$. Using the same argument as that in the former part of the proof of this lemma, we find that $\left\{x^{\prime} \in\right.$
$\left.f\left(R_{0}\right) \mid \beta_{0} g_{\zeta_{1}^{\prime}}^{f\left(R_{0}\right)} \leq g_{\zeta_{2}^{\prime}}^{f\left(R_{0}\right)}\right\}$ is minimally thin at ζ_{1}^{\prime}. Hence $f\left(\cup_{n} \mathcal{A}_{n, 1}\right)$ is minimally thin at ζ_{1}^{\prime}.
By (b2) we can prove that there exists a subsequence $\left\{n_{l}\right\}$ of $\mathbb{N}=\{n\}$ such that $f\left(\cup_{l} \mathcal{A}_{n_{l}, 2}\right)$ is minimally thin at ζ_{1}^{\prime}. This fact will be proved afterwards. Hence $f\left(\cup_{l} \mathcal{A}_{n_{l}}\right)$ is minimally thin at ζ_{1}^{\prime} because $f\left(\cup_{n} \mathcal{A}_{n, 1}\right)$ is minimally thin at ζ_{1}^{\prime}. Since $\left[f\left(R_{0}\right) \backslash f\left(\cup_{l} \mathcal{A}_{n_{l}}\right)\right] \cup\left\{\zeta_{1}^{\prime}\right\}$ is a minimal fine neighborhood of ζ_{1}^{\prime}, we can take a connected component G_{2} of $\left[f\left(R_{0}\right) \backslash\right.$ $\left.f\left(\cup_{l} \mathcal{A}_{n_{l}}\right)\right] \cup\left\{\zeta_{1}^{\prime}\right\}$ such that $G_{2} \cup\left\{\zeta_{1}^{\prime}\right\}$ is a minimal fine neighborhood of ζ_{1}^{\prime} (cf. [14, Corollaire 2 in p.206]). This is a contradiction. Hence we have the estimates ($b^{\prime} 1$) and ($b^{\prime} 2$).

We still remain to prove that there exists a subsequence $\left\{n_{l}\right\}$ of $\mathbb{N}=\{n\}$ such that $f\left(\cup_{l} \mathcal{A}_{n_{l}, 2}\right)$ is minimally thin at ζ_{1}^{\prime}. By (b2) we can take a subsequence $\left\{n_{l}\right\}$ of $\mathbb{N}=\{n\}$ with

$$
g_{\zeta_{1}^{\prime}}^{f\left(R_{0}\right)}\left(x^{\prime}\right) \leq \frac{n_{l}}{l^{2}}\left(x^{\prime} \in f\left(\cup_{l} \mathcal{A}_{n_{l}, 2}\right)\right)
$$

From this estimate it follows that $f\left(\cup_{l} \mathcal{A}_{n_{l}, 2}\right)$ is minimally thin at ζ_{1}^{\prime}. In fact, we take a point x_{0}^{\prime} be a point of $f\left(R_{0}\right) \backslash C l\left(f\left(\cup_{l} \mathcal{A}_{n_{l}, 2}\right)\right)$. Then, by ($\sharp \sharp$) in Lemma 4.1, the definition of capacitary potential, and the same estimate for capacity as in the latter part of the proof of Lemma 4.1, we have

$$
\begin{aligned}
0 \leq f\left(R_{0}\right) \widehat{\mathrm{R}}_{g_{\zeta_{1}^{\prime}}^{f\left(\mathcal{R}_{0}\right)}}^{f\left(\cup_{l \geq m} \mathcal{A}_{\left.n_{l}, 2\right)}\right)}\left(x_{0}^{\prime}\right) & \leq \sum_{l=m}^{\infty} f\left(R_{0}\right) \widehat{\mathrm{R}}_{g_{\zeta_{1}^{\prime}}^{f\left(R_{0}\right)}}^{f\left(\mathcal{A}_{n_{l}, 2}\right)}\left(x_{0}^{\prime}\right) \\
& \leq \sum_{l=m}^{\infty} \frac{n_{l}}{l^{2}} f\left(R_{0}\right) \widehat{\mathrm{R}}_{1}^{f\left(\mathcal{A}_{n_{l}, 2}\right)}\left(x_{0}^{\prime}\right) \\
& \leq \sum_{l=m}^{\infty} \frac{n_{l}}{l^{2}} \int_{C l\left(f\left(\mathcal{A}_{n_{l}, 2}\right)\right)} g_{x_{0}^{\prime}}^{f\left(R_{0}\right)} d \mu_{n_{l}, 2} \\
& \leq \alpha_{0} \sum_{l=m}^{\infty} \frac{n_{l}}{l^{2}} \mu_{n_{l}, 2}\left(C l\left(f\left(\mathcal{A}_{n_{l}, 2}\right)\right)\right) \\
& \approx \sum_{l=m}^{\infty} \frac{n_{l}}{l^{2}} \operatorname{cap}\left(C l\left(f\left(\mathcal{A}_{n_{l}, 2}\right)\right), f\left(R_{0}\right)\right) \\
& \approx \sum_{l=m}^{\infty} \frac{n_{l}}{n_{l} l^{2}} \approx \sum_{l=m}^{\infty} \frac{1}{l^{2}} \rightarrow 0(m \rightarrow+\infty)
\end{aligned}
$$

where, $\alpha_{0}=\sup \left\{g_{x_{0}^{\prime}}^{f\left(R_{0}\right)}\left(x^{\prime}\right) \mid x^{\prime} \in C l\left(f\left(\cup_{l} \mathcal{A}_{n_{l}, 2}\right)\right)\right\}$. Hence we have $\lim _{m \rightarrow+\infty} f\left(R_{0}\right) \widehat{\mathrm{R}}_{g_{\zeta_{1}^{\prime}}^{f\left(R_{0}\right.}}^{f\left(\cup_{l \geq m} \mathcal{A}_{n_{l}, 2}\right)}\left(x_{0}^{\prime}\right)=0$. If m is sufficiently large,
$f\left(\cup_{l \geq m} \mathcal{A}_{n, 2}\right)$ is minimally thin at ζ_{1}^{\prime}. Since $f\left(\cup_{l \leq m} \mathcal{A}_{n, 2}\right)$ is relatively compact, it is minimally thin at ζ_{1}^{\prime}. Hence $f\left(\cup_{l} \mathcal{A}_{n_{l}, 2}\right)$ is minimally thin at ζ_{1}^{\prime}.

The proof is herewith complete.
For an integer l, take the bounded simply connected domain Q_{l} whose boundary in the closed polygonal line without self-intersections and which has four vertexes $\left(\left(3 a_{l}+b_{l+1}\right) / 4,\left(3 a_{l}+b_{l+1}\right) / 32\right),\left(\left(3 a_{l}+\right.\right.$ $\left.\left.b_{l+1}\right) / 4,-\left(3 a_{l}+b_{l+1}\right) / 32\right),\left(\left(a_{l-1}+3 b_{l}\right) / 4,-\left(a_{l-1}+3 b_{l}\right) / 32\right),\left(\left(a_{l-1}+\right.\right.$ $\left.\left.3 b_{l}\right) / 4,\left(a_{l-1}+3 b_{l}\right) / 32\right)$ in positive cyclic order. Set $Q=\cup_{l=1}^{\infty} Q_{l}$ and $\mathcal{D}_{Q, j}=\mathcal{D}_{I, j} \backslash \pi^{-1}(Q)(j=1,2)$. By Lemma 4.2 and Harnack's inequality with respect to L, we find that
(1) there exists a positive constant κ_{0} such that

$$
\begin{aligned}
& \frac{1}{\kappa_{0}} \log \frac{1}{|\pi(x)|} \leq g_{j}^{L}(x) \leq \kappa_{0} \log \frac{1}{|\pi(x)|}\left(x \in \mathcal{D}_{Q, j}\right)(j=1,2) \\
& \text { (2) } g_{j}^{L}(x)=o\left(\log \frac{1}{|\pi(x)|}\right)\left(\pi(x) \rightarrow 0, x \in \mathcal{D}_{Q, j+(-1)^{j-1}}\right)(j=1,2)
\end{aligned}
$$

Set $E_{1}^{\prime}=\left\{x^{\prime} \in f\left(R_{0}\right) \mid g_{\zeta_{1}^{\prime}}^{\prime}\left(x^{\prime}\right)>g_{\zeta_{2}^{\prime}}^{\prime}\left(x^{\prime}\right)\right\}, E_{2}^{\prime}=\left\{x^{\prime} \in f\left(R_{0}\right) \mid g_{\zeta_{1}^{\prime}}^{\prime}\left(x^{\prime}\right)<\right.$ $\left.g_{\zeta_{2}^{\prime}}^{\prime}\left(x^{\prime}\right)\right\}$, and $E_{3}^{\prime}=\left\{x^{\prime} \in f\left(R_{0}\right) \mid g_{\zeta_{1}^{\prime}}^{\prime}\left(x^{\prime}\right)=g_{\zeta_{2}^{\prime}}^{\prime}\left(x^{\prime}\right)\right\}$. Set $E_{3}=f^{-1}\left(E_{3}^{\prime}\right)=$ $\left\{x \in R_{0} \mid g_{1}^{L}(x)=g_{2}^{L}(x)\right\}$ and $\gamma_{j}=\pi^{-1}(\partial Q) \cap \mathcal{D}_{I, j}$. By (1) and (2), we may suppose that there exists an integer N_{1} such that, for any integer $n\left(\geq N_{1}\right), E_{3} \cap \mathcal{B}_{\left(a_{n}+b_{n+1}\right) / 2} \subset \pi^{-1}(Q), g_{1}^{L}>g_{2}^{L}$ on $\gamma_{1} \cap \mathcal{B}_{\left(a_{n}+b_{n+1}\right) / 2}$ and $g_{1}^{L}<g_{2}^{L}$ on $\gamma_{2} \cap \mathcal{B}_{\left(a_{n}+b_{n+1}\right) / 2}$. Hence, by the implicit function theorem, $E_{3}^{\prime} \cap f\left(\mathcal{B}_{\left(a_{N_{1}}+b_{N_{1}+1}\right) / 2}\right)$ consists of infinitely many connected components $E_{3, l}^{\prime}\left(\subset f\left(\pi^{-1}\left(Q_{l}\right)\right), l \geq N_{1}+1\right)$ which are piecewise analytic closed curves because each $g_{\zeta_{j}^{\prime}}^{\prime}$ is harmonic on $f\left(R_{0}\right)$. Hence each $E_{j}^{\prime} \cap f\left(\mathcal{B}_{\left(a_{N_{1}}+b_{N_{1}+1}\right) / 2}\right)$ is a planar region, that is, each $E_{j} \cap \mathcal{B}_{\left(a_{N_{1}}+b_{N_{1}+1}\right) / 2}$ is planar region. Set $K_{j}=E_{j} \cap \mathcal{B}_{\left(a_{\left.N_{1}+b_{N_{1}+1}\right) / 2}\right.}$ and $E_{3, l}=f^{-1}\left(E_{3, l}^{\prime}\right)$. By Koebe's theorem and R. de Possel's theorem (cf. [20, Theorems IX. 32 and IX.22], [19, Theorem 9-1]) there exist plane regions $\mathcal{E}_{j}(j=1,2)$ of \mathbb{C} and conformal mappings $\phi_{j}(j=1,2)$ from K_{j} onto $\mathcal{E}_{j}(j=1,2)$ such that $\mathbb{C} \backslash \mathcal{E}_{j}(j=1,2)$ consist of infinitely many parallel segments $\ell_{j, l}$ to the real axis with

$$
\ell_{j, l}=\left\{\begin{array}{c|c}
\cap\left\{C l\left(\phi_{j}(M)\right)\right. & \begin{array}{l}
M \text { is a subdomain of } E_{j} \text { with } \\
C l(M) \supset E_{3, l} \\
\text { for } l>N_{1},
\end{array}
\end{array}\right\},
$$

Set $\ell_{j}=\cap_{n \geq N_{1}+1} C l\left(\cup_{l \geq n} \ell_{j, l}\right)(j=1,2)$.

Lemma 4.3. Each ℓ_{j} is a singleton.

Proof. Suppose that $\sharp \ell_{j} \geq 2(j=1,2)$. We remark that each ℓ_{j} is connected. In fact, suppose that ℓ_{j} is disconnected. Let $\Lambda_{j, 1}$ be a component of ℓ_{j}. Set $\Lambda_{j, 2}=\ell_{j} \backslash \Lambda_{j, 1}$. We can take two Jordan curves $\mathcal{C}_{j, 1}$ and $\mathcal{C}_{j, 2}$ in \mathcal{E}_{j} such that, for $k=1,2$, each bounded region $G_{j, k, 1}$ determined by $\mathcal{C}_{j, k}$ in \mathbb{C} contains $\Lambda_{j, k}$, and that $C l\left(G_{j, 1,1}\right) \cap C l\left(G_{j, 2,1}\right)=\emptyset$. By the definition of $\Lambda_{j, k}$, each $G_{j, k, 1}$ contains infinitely many $\ell_{j, l}$. Since $\pi \circ \phi_{j}^{-1}$ is continuous on \mathcal{E}_{j} and $\mathcal{C}_{j, k}$ is a compact subset of $\mathcal{E}_{j}, \pi \circ \phi_{j}^{-1}\left(\mathcal{C}_{j, k}\right)$ is a compact subset of $\pi\left(K_{j}\right)$, and hence there exists uniquely a component $M_{j, k, 1}$ of $\pi\left(K_{j}\right) \backslash \pi \circ \phi_{j}^{-1}\left(\mathcal{C}_{j, k}\right)$ such that $C l\left(M_{j, k, 1}\right)$ is a neighborhood of the origin. Denote by $M_{j, k, 2}$ the union of component of $\left[\pi\left(K_{j}\right) \backslash \pi \circ \phi_{j}^{-1}\left(\mathcal{C}_{j, k}\right)\right] \cup M_{j, k, 1}$. It is easily seen that $C l\left(M_{j, k, 1}\right)$ (resp. $\left.C l\left(M_{j, k, 2}\right)\right)$ contains infinitely (resp. at most finitely) many components $\pi\left(E_{3, l}\right)$ of $\pi\left(E_{3} \cap \mathcal{B}_{\left(a_{\left.N_{1}+b_{N_{1}+1}\right) / 2}\right)}\right.$ because $\pi\left(E_{3, l}\right) \subset Q_{l}\left(l \geq N_{1}+1\right)$. Let $G_{j, k, 2}$ be unbounded regions determined by $\mathcal{C}_{j, k}$ in \mathbb{C}. We can prove that (দ) $\phi_{j}\left(\pi^{-1}\left(M_{j, k, 1}\right) \cap K_{j}\right) \subset G_{j, k, 1} \cap \mathcal{E}_{j}$ or $\left(\right.$ h $\left.^{\prime}\right) \phi_{j}\left(\pi^{-1}\left(M_{j, k, 1}\right) \cap K_{j}\right) \subset$ $G_{j, k, 2} \cap \mathcal{E}_{j}$. Suppose this fact does not hold, that is, $\phi_{j}\left(\pi^{-1}\left(M_{j, k, 1}\right) \cap\right.$ $\left.K_{j}\right) \cap G_{j, k, 1} \cap \mathcal{E}_{j} \neq \emptyset$ and $\phi_{j}\left(\pi^{-1}\left(M_{j, k, 1}\right) \cap K_{j}\right) \cap G_{j, k, 2} \cap \mathcal{E}_{j} \neq \emptyset$. Then we can find points $\xi_{j, k, i} \in \phi_{j}\left(\pi^{-1}\left(M_{j, k, 1}\right) \cap K_{j}\right) \cap G_{j, k, i} \cap \mathcal{E}_{j}(i=1,2)$. Since $\pi\left(\phi_{j}^{-1}\left(\xi_{j, k, i}\right)\right) \in M_{j, k, 1}$ and $M_{j, k, 1}$ is connected, we can find a curve C in $M_{j, k, 1}$ which joins $\pi\left(\phi_{j}^{-1}\left(\xi_{j, k, 1}\right)\right)$ to $\pi\left(\phi_{j}^{-1}\left(\xi_{j, k, 2}\right)\right)$. From the definition of component it is easily seen that the lift of C in K_{j} by π meets $\phi_{j}^{-1}\left(C_{j, k}\right)$ since $K_{j} \backslash \phi_{j}^{-1}\left(C_{j, k}\right)$ has just two components $\phi_{j}^{-1}\left(G_{j, k, 1} \cap \mathcal{E}_{j}\right)$ and $\phi_{j}^{-1}\left(G_{j, k, 2} \cap \mathcal{E}_{j}\right)$. Hence $M_{j, k, 1} \cap \pi \circ \phi_{j}^{-1}\left(\mathcal{C}_{j, k}\right) \neq \emptyset$. This is a contradiction.
We may assume that (\mathfrak{L}) holds. For, if (t^{\prime}) holds, repeating the same argument as in case that (\downarrow) holds, we arrive at a contradiction. By (h) $\phi_{j}\left(\pi^{-1}\left(M_{j, k, 2}\right) \cap K_{j}\right) \supset G_{j, k, 2} \cap \mathcal{E}_{j}$. Hence $G_{j, k, 1}$ (resp. $\left.G_{j, k, 2}\right)$ contains infinitely (resp. at most finitely) many $\ell_{j, l}$ because $C l\left(M_{j, k, 1}\right)$ (resp. $\left.C l\left(M_{j, k, 2}\right)\right)$ contains infinitely (resp. at most finitely) many components $\pi\left(E_{3, l}\right)$ of $\pi\left(E_{3} \cap \mathcal{B}_{\left(a_{N_{1}}+b_{N_{1}+1}\right) / 2}\right)$. Since $G_{j, k, 2} \supset G_{j, k+(-1)^{k-1}, 1}$, $G_{j, k+(-1)^{k-1}, 1}$ contains at most finitely many components of $\ell_{j, l}$. This is a contradiction. Thus we conclude that each ℓ_{j} is connected.

Since each ℓ_{j} is connected, by [5, Theorem 8.26], all points of $\ell_{j}(j=$ $1,2)$ are regular boundary points of $\mathcal{E}_{j}(j=1,2) . E_{j}^{\prime}(j=1,2)$ is minimally thin at $\zeta_{j+(-1)^{j-1}}^{\prime}$, and hence E_{3}^{\prime} is minimally thin at $\zeta_{j}^{\prime}(j=1,2)$. By [14, Théorème 1 and Théorème 5], it is known that there exists a

Green potential $g_{\mu_{j}}\left(x^{\prime}\right)=\int g_{x^{\prime}}^{f\left(R_{0}\right)} d \mu_{j}$ such that

$$
\begin{gathered}
g_{\mu_{j}}\left(\zeta_{j}^{\prime}\right)<+\infty \\
\lim _{x^{\prime} \rightarrow \Delta^{R^{\prime}}, x^{\prime} \in E_{3}^{\prime}} g_{\mu_{j}}\left(x^{\prime}\right)=+\infty
\end{gathered}
$$

because $\lim _{x^{\prime} \rightarrow \zeta_{j}^{\prime}} g_{x}^{f\left(R_{0}\right)}\left(x^{\prime}\right)=g_{x}^{f\left(R_{0}\right)}\left(\zeta_{j}^{\prime}\right)<+\infty$. Since there exists an integer $N_{2}\left(\geq N_{1}\right)$ such that $g_{\mu_{j}}\left(y^{\prime}\right)>2 g_{\mu_{j}}\left(\zeta_{j}^{\prime}\right)\left(y^{\prime} \in E_{3}^{\prime} \cap f\left(\mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right)\right)$, for every $x^{\prime} \in f\left(\mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right)$,

$$
f\left(\mathcal { B } _ { (a _ { N _ { 2 } } + b _ { N _ { 2 } + 1 }) / 2) } \widehat { \mathrm { R } } _ { 1 } E _ { 3 } ^ { \prime } \cap f \left(\mathcal{B}_{\left.\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2\right)}\left(x^{\prime}\right) \leq \frac{g_{\mu_{j}}\left(x^{\prime}\right)}{2 g_{\mu_{j}}\left(\zeta_{j}^{\prime}\right)} .\right.\right.
$$

Hence

$$
\begin{aligned}
& \liminf ^{x^{\prime}\left(\in E_{j}^{\prime} \cap f\left(\mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right)\right) \rightarrow \zeta_{j}^{\prime}}{ }^{f\left(\mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right)} \widehat{\mathrm{R}}_{1}^{E_{3}^{\prime} \cap f\left(\mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right)}\left(x^{\prime}\right) \\
\leq & \lim _{x^{\prime}\left(\in E_{j}^{\prime} \cap f\left(\mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right)\right) \rightarrow \zeta_{j}^{\prime}} \frac{g_{\mu_{j}}\left(x^{\prime}\right)}{2 g_{\mu_{j}}\left(\zeta_{j}^{\prime}\right)} \\
= & \liminf _{x^{\prime} \rightarrow \zeta_{j}^{\prime}} \frac{g_{\mu_{j}}\left(x^{\prime}\right)}{2 g_{\mu_{j}}\left(\zeta_{j}^{\prime}\right)}=\frac{1}{2}<1,
\end{aligned}
$$

because each $\left.E_{j}^{\prime} \cap f\left(\mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right)\right)$ is not minimally thin at ζ_{j}^{\prime}. Hence there exists a sequence $\left\{x_{l, j}^{\prime}\right\}\left(\subset E_{j}^{\prime} \cap f\left(\mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right), j=1,2\right)$ such that, for $j=1,2$,

$$
\begin{gathered}
\lim _{l \rightarrow \infty} x_{l, j}^{\prime}=\zeta_{j}^{\prime}, \\
\lim _{l \rightarrow \infty} f\left(\mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right) \widehat{\mathrm{R}}_{1}^{E_{j}^{\prime} \cap f\left(\mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right)}\left(x_{l, j}^{\prime}\right)<1 .
\end{gathered}
$$

Set

$$
B_{N_{2}}^{(j)}=\operatorname{Int}\left[\operatorname{Cl}\left(\phi_{j}\left(E_{j} \cap \mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right)\right)\right](j=1,2)
$$

where $\operatorname{Int}\left[C l\left(\phi_{j}\left(E_{j} \cap \mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right)\right)\right]$ stands for the interior of the closure of $\phi_{j}\left(E_{j} \cap \mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right)$ in \mathbb{C}. For $\phi_{j} \circ f^{-1}$ we define $L_{\phi_{j} \circ f-1}$ as L_{f} in the first part of this section. The above inequality implies that there exist points $z_{j} \in \ell_{j}(j=1,2)$ and sequences $\left\{z_{l, j}\right\}\left(\subset \mathcal{E}_{j} \cap B_{N_{2}}^{(j)}, j=\right.$ $1,2)$ such that, for $j=1,2$,

$$
\begin{gathered}
\lim _{l \rightarrow \infty} z_{l, j}=z_{j}(j=1,2), \\
\lim _{l \rightarrow \infty} B_{N_{2}}^{(j)} \widehat{\mathrm{R}}_{1}^{U_{l>N_{2}} \ell_{l, j}, L_{\phi_{j} \circ f-1}}\left(z_{l, j}\right)<1,
\end{gathered}
$$

where ${ }^{B_{N_{2}}^{(j)}} \widehat{\mathrm{R}}_{1}^{\cup_{l>N_{2}} \ell_{l, j}, L_{\phi_{j} \circ f-1}}$ stands for the balayage of 1 relative to $\cup_{l>N_{2}} \ell_{l, j}$ on $B_{N_{2}}^{(j)}$ with respect to $L_{\phi_{j} \circ f-1}$. Hence each z_{j} is an irregular boundary point of $\phi_{j}\left(E_{j} \cap \mathcal{B}_{\left(a_{N_{2}}+b_{N_{2}+1}\right) / 2}\right)$ with respect to $L_{\phi_{j} \circ f-1}$. By [7, Theorem 9.1] and [5, Theorem 10.3], each z_{j} is an irregular boundary points of \mathcal{E}_{j} in the usual sense. This is a contradiction. Therefore we have the desired result.

Let N_{1} be an integer as in the definition of ℓ_{j}. Let $g_{\xi}^{\mathcal{E}_{j}}$ be the Green function with pole at ξ (resp. x) on \mathcal{E}_{j}. By Lemma 4.3 , for $j=1,2$, there exists a sequence $\left\{\xi_{j, n}\right\}$ in \mathcal{E}_{j} such that $\lim _{n \rightarrow \infty} \xi_{j, n}=z_{j}$ and there exists $\lim _{n \rightarrow \infty} g_{\xi_{j, n}}^{\mathcal{E}_{j}}$ on \mathcal{E}_{j}. For $j=1,2$, set $g_{z_{j}}^{\mathcal{E}_{j}}=\lim _{n \rightarrow \infty} g_{\xi_{j, n}}^{\mathcal{E}_{j}}$ and $g_{j}=g_{z_{j}}^{\mathcal{E}_{j}} \circ \phi_{j}$. Each g_{j} is a positive harmonic function on K_{j}. For $j=1,2$, set

$$
S_{j}\left(g_{j}\right)(x)=\inf _{s} s(x)
$$

where s runs over the space of positive superharmonic functions s on R_{0} satisfying $s \geq g_{j}$ on K_{j}. By Perron-Wiener-Brelot method each $S_{j}\left(g_{j}\right)$ is a positive harmonic function on R_{0}. Using the same argument as that in the proof of Theorem 1, we find that the following inequality

$$
(* *) \quad S_{j}\left(g_{j}\right)-{ }^{R_{0}} \widehat{\mathrm{R}}_{S_{j}\left(g_{j}\right)}^{R_{0} \backslash K_{j}} \geq g_{j}
$$

holds on $K_{j}(j=1,2)$. Since $\sharp \Delta_{1}^{R}=1$ or 2 by means of [17, Theorem 3], by the Martin representation theorem, we find that there exist at most two minimal functions $h_{j, k}(k=1,2)$ on R_{0} with $S_{j}\left(g_{j}\right)=h_{j, 1}+h_{j, 2}$ on R_{0}. Hence, by the above inequality ($* *$), we have

$$
\begin{aligned}
h_{j, 1}+h_{j, 2}=S_{j}\left(g_{j}\right) & \geq{ }^{R_{0}} \widehat{\mathrm{R}}_{h_{j, 1}+h_{j, 2}}^{R_{0} \backslash K_{j}}+g_{j} \\
& >{ }^{R_{0}} \widehat{\mathrm{R}}_{h_{j, 1}}^{R_{0} \backslash K_{j}}+{ }^{R_{0}} \widehat{\mathrm{R}}_{h_{j, 2}}^{R_{0} \backslash K_{j}}
\end{aligned}
$$

on K_{j}. Therefore we find that there exists a minimal function $h_{j}(j=$ $1,2)$ on R_{0} such that $h_{j} \neq{ }^{R_{0}} \widehat{\mathrm{R}}_{h_{j}}^{R_{0} \backslash K_{j}}$. Hence, by the definition of minimal thinness, $R_{0} \backslash K_{j}$ is minimally thin at the minimal boundary point corresponding to h_{j}. Since $K_{1} \cap K_{2}=\emptyset$, we find that $\sharp \Delta_{1}^{R}=2$.

References

[1] L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Mathematical Series, 26, Princeton University Press, Princeton, 1960, MR 0114911 (22 \#5729).
[2] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Mathematics, 175, Springer-Verlag, Berlin-New York, 1971, MR 0281940 (43 \#7654).
[3] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Bd. 32, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963, MR 0159935 (28 \#3151).
[4] M. Heins, Riemann surfaces of infinite genus, Ann. of Math., 55 (1952), 296-317, MR 0045834 (13,643d).
[5] L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience, New York-London-Sydney, 1969, MR 0261018 (41 \#5638).
[6] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, Die Grundlehren der mathematischen Wissenschaften, 126, SpringerVerlag, New York-Heidelberg, 1973, MR 0344463 (49 \#9202).
[7] W. Littman, G. Stampacchia and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 43-77, MR 0161019 (28 \#4228).
[8] T. Lyons, Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains, J. Differential Geom., 26 (1987), 33-66, MR 0892030 ($88 \mathrm{k}: 31012$).
[9] H. Masaoka, Criterion of Wiener type for minimal thinness on covering surfaces, Proc. Japan Acad. Ser. A Math. Sci., 72 (1996), 154-156, MR 1420604 ($98 \mathrm{~g}: 31008$).
[10] H. Masaoka, Quasiregular mappings and d-thinness, Osaka J. Math., 34 (1997), 223-231, MR 1439008 (98a:31006).
[11] H. Masaoka and S. Segawa, Harmonic dimension of covering surfaces and minimal fine neighborhood, Osaka J. Math., 34 (1997), 659-672, MR 1613112 ($99 \mathrm{~g}: 30054$).
[12] H. Masaoka and S. Segawa, Quasiconformal mappings and minimal Martin boundary of p-sheeted unlimited covering surfaces of the complex plane, Kodai Math. J., 28 (2005), 275-279, MR 2153915 (2006d:31011).
[13] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., 14 (1961), 577-591, MR 0159138 (28 \#2356).
[14] L. Naïm, Sur le role de la frontiere de R. S. Martin dans la theorie du potentiel, Ann. Inst. Fourier, Grenoble, 7 (1957), 183-281, MR 0100174 (20 \#6608).
[15] S Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, 26, Springer-Verlag, New York-BerlinHeidelberg, 1993.
[16] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, Band 164, SpringerVerlag, New York-Berlin, 1970, MR 0264064 (41 \#8660).
[17] S. Segawa, A duality relation for harmonic dimensions and its applications, Kodai Math. J., 4 (1981), 508-514, MR 0641368 (84c:31006).
[18] H. Shiga, Quasiconformal mappings and potentials, XVIth Rolf Nevanlinna Colloquium (Joensuu, 1995) (1996), 215-222, MR 1427086 (98c:31001).
[19] G. Springer, Introduction to Riemann surfaces, Chelsea Publishing Co., New York, 1957.
[20] M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975, MR 0414898 (54 \#2990).

Hiroaki Masaoka
Department of Mathematics
Faculty of Science
Kyoto Sangyo University
Kyoto 603-8555
Japan
E-mail address: masaoka@cc.kyoto-su.ac.jp

[^0]: Received April 30, 2005.
 Revised November 7, 2005.
 2000 Mathematics Subject Classification. Primary 31C35; Secondary 30F25.

 Key words and phrases. Martin boundary, covering surface, quasiconformal mappings.

