Advanced Studies in Pure Mathematics 44, 2006 Potential Theory in Matsue pp. 211-226

Quasiconformal mappings and minimal Martin boundary of *p*-sheeted unlimited covering surfaces of the once punctered Riemann sphere $\hat{\mathbb{C}} \setminus \{0\}$ of Heins type

Hiroaki Masaoka

Dedicated to Professor Masakazu Shiba on his sixtieth birthday

Abstract.

Let R and R' be *p*-sheeted unlimited covering surfaces of the once punctured Riemann sphere $\hat{\mathbb{C}} \setminus \{0\}$ of Heins type which are quasiconformal equivalent to each other. Then the cardinal numbers of minimal Martin boundaries of R and R' are same.

Let R be a 2-sheeted unlimited covering surface of the once punctured Riemann sphere $\hat{\mathbb{C}} \setminus \{0\}$ of Heins type and R' be an open Riemann surface. If R and R' are quasiconformal equivalent to each other and the set of branch points of R satisfies a condition, then the cardinal numbers of minimal Martin boundaries of R and R' are same.

§1. Introduction.

Let W be an open Riemann surface. We denote by Δ_1^W the minimal Martin boundary of W. In [8], it was showed that there exist open Riemann surfaces F and F' quasiconformally equivalent to each other such that F' possesses nonconstant positive harmonic functions although F does not possess nonconstant positive harmonic functions. This means that $\sharp \Delta_1^{F'} \geq 2$ although $\sharp \Delta_1^F = 1$, where $\sharp A$ stands for the cardinal

Received April 30, 2005.

Revised November 7, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 31C35; Secondary 30F25.

Key words and phrases. Martin boundary, covering surface, quasiconformal mappings.

number of a set A. Needless to say, the above F and F' are of positive boundary, i.e. F and F' admit the Green function (cf. e.g. [16]). However, in case open Riemann surfaces F and F' are of null boundary (i.e. not positive boundary), it does not seem to be known whether $\sharp \Delta_1^F = \sharp \Delta_1^{F'}$ or not if F and F' are quasiconformally equivalent to each other.

Consider two positive decreasing sequences $\{a_n\}$ and $\{b_n\}$ satisfying $b_{n+1} < a_n < b_n < 1$ and $\lim_{n\to\infty} a_n = 0$. Set $G = \hat{\mathbb{C}} \setminus (\{0\} \cup I)$, where $\hat{\mathbb{C}}$ is the extended complex plane, $I = \bigcup_{n=1}^{\infty} I_n$ and $I_n = [a_n, b_n]$. We take p copies G_1, \dots, G_p of G and join the upper edge of I_n on G_j with the lower edge of I_n on G_{j+1} ($j \mod p$) for every n. Then we obtain a p-sheeted covering surface R of the once punctured Riemann sphere $\hat{\mathbb{C}} \setminus \{0\}$ and say that R is of Heins type(cf. [4]).

In this paper, we are concerned with *p*-sheeted unlimited covering surfaces of the once punctured Riemann sphere $\hat{\mathbb{C}} \setminus \{0\}$ of Heins type. Consider *p*-sheeted unlimited covering surfaces R and R' of $\hat{\mathbb{C}} \setminus \{0\}$ of Heins type which are quasiconformally equivalent to each other. Then it seems to be valid that $\sharp \Delta_1^R = \sharp \Delta_1^{R'}$ (cf. [12], [10], [18]). The first purpose of this paper is to give an answer to this conjecture. Namely,

Theorem 1. Let R and R' be p-sheeted unlimited covering surfaces of the once punctured Riemann sphere $\hat{\mathbb{C}} \setminus \{0\}$ of Heins type which are quasiconformally equivalent to each other. Then it holds that $\sharp \Delta_1^R =$ $\sharp \Delta_1^{R'}$.

Let R be a 2-sheeted unlimited covering surface of $\hat{\mathbb{C}} \setminus \{0\}$ of Heins type with the projection π from R onto $\hat{\mathbb{C}} \setminus \{0\}$. We have the following.

Theorem 2. Suppose that $b_n - b_{n+1} \approx 2^{-n}$, that is, there exists a constant $\alpha(>1)$ with $\alpha^{-1}2^{-n} < b_n - b_{n+1} < \alpha 2^{-n}$ $(n \in \mathbb{N})$. Let R' be an open Riemann surface and f a quasiconformal mapping with R' = f(R). Then it holds that $\sharp \Delta_1^R = \sharp \Delta_1^{R'}$.

The author would like to express his sincere thanks to the referee for his valuable comments.

$\S 2.$ Preliminaries.

In this section we consider as R a general p-sheeted unlimited covering surfaces of the once punctured Riemann sphere $\hat{\mathbb{C}} \setminus \{0\}$. Let Δ^R and Δ_1^R be as in §1, and π the projection map from R onto $\hat{\mathbb{C}} \setminus \{0\}$. Set $\mathbb{D} = \{x \in \mathbb{C} \mid |x| < 1\}, \mathbb{D}_0 = \mathbb{D} \setminus \{0\}$ and $R_0 = \pi^{-1}(\mathbb{D}_0)$. It is well-known that Δ^{R_0} and $\Delta_1^{R_0}$ are identified with $\Delta^R \cup \pi^{-1}(\partial \mathbb{D})$ and $\Delta_1^R \cup \pi^{-1}(\partial \mathbb{D})$, respectively, where $\partial \mathbb{D} = \{x \in \mathbb{C} \mid |x| = 1\}$. From now on we consider \mathbb{D}_0 (resp. R_0) in place of $\hat{\mathbb{C}} \setminus \{0\}$ (resp. R) since $\hat{\mathbb{C}} \setminus \{0\}$ (resp. R) does not admit the Green function. Let g_0 be the Green function on \mathbb{D} with pole at 0.

Definition 2.1 (cf. [2]). We say that a subset E of \mathbb{D}_0 is thin at 0 if ${}^{\mathbb{D}}\widehat{\mathbf{R}}_{q_0}^E \neq g_0$, where ${}^{\mathbb{D}}\widehat{\mathbf{R}}_{q_0}^E$ is the balayage of g_0 relative to E on \mathbb{D} .

If E is a closed subset of \mathbb{D} , it is well-known that E is thin at 0 if and only if 0 is an irregular boundary point of $\mathbb{D} \setminus E$ in the sense of the Dirichlet problem.

The following lemma gives the quasiconformal invariance for thinness.

Lemma 2.1 (cf. [10],[18]). Let M be a subdomain of \mathbb{C} and φ a quasiconformal mapping from \mathbb{C} onto \mathbb{C} . If ζ is an irregular boundary point of M in the sense of Dirichlet problem, $\varphi(\zeta)$ is an irregular boundary point of $\varphi(M)$ in the sense of Dirichlet problem.

Definition 2.2. A subset U in \mathbb{D} which contains 0 is said to be a *fine neighborhood* of 0 if $\mathbb{D} \setminus U$ is thin at 0.

Let k_{ζ} be the Martin function on R_0 with pole at $\zeta \in \Delta^R$. If we take a sequence $\{x_n\}$ in R_0 such that $\lim_{n\to\infty} x_n = \zeta$, we can give a definition of k_{ζ} by the following.

$$k_\zeta(z) = \lim_{n \to \infty} rac{g_{x_n}(x)}{g_{x_n}(x_0)},$$

where x_0 is a fixed point in R_0 . For details we refer to [3] and [5].

Definition 2.3. Let ζ be a point in Δ_1^R and E a subset of R_0 . We say that E is minimally thin at ζ if $R_0 \widehat{\mathbf{R}}_{k_c}^E \neq k_{\zeta}$.

Definition 2.4. Let ζ be a point in Δ_1^R and U a subset of R_0 . We say that $U \cup \{\zeta\}$ is a *minimal fine neighborhood* of ζ if $R_0 \setminus U$ is minimally thin at ζ .

The following proposition gives the characterization of $\sharp \Delta_1^R$ in terms of minimal fine topology.

Proposition 2.1 ([11]). Let \mathcal{M} be the class of subdomains M of \mathbb{D}_0 such that $\mathcal{M} \cup \{0\}$ is a fine neighborhood of x = 0. Then it holds that

$$\sharp \Delta_1^R = \max_{M \in \mathcal{M}} n_R(M),$$

where $n_R(M)$ is the number of connected components of $\pi^{-1}(M)$ and π is the projection map from R onto $\hat{\mathbb{C}} \setminus \{0\}$.

$\S 3.$ Proof of Theorem 1.

In this section we first consider as R a general p-sheeted unlimited covering surfaces of the once punctured Riemann sphere $\hat{\mathbb{C}} \setminus \{0\}$. Let Δ^R and Δ_1^R be as in §1, and π the projection map from R onto $\hat{\mathbb{C}} \setminus \{0\}$. Let \mathbb{D}, \mathbb{D}_0 , and R_0 be as in §2. The next proposition will play an important role for the proof of Theorem 1.

Proposition 3.1. Let R' be an open Riemann surface and f a quasiconformal mapping with R' = f(R). If $\sharp \Delta_1^R = p$, then $\sharp \Delta_1^R = \sharp \Delta_1^{R'}$.

Proof. By Proposition 2.1 we find a subdomain M of \mathbb{D}_0 such that $\mathbb{D}_0 \setminus M$ is thin at $0, \partial M \setminus \{0\}$ may consist of infinitely many Jordan curves and

$$\sharp \Delta_1^R = n_R(M),$$

where $n_R(M)$ is the number of connected components of $\pi^{-1}(M)$. By the assumption of this proposition $n_R(M) = p$. Let M_j (j = 1, 2, ..., p) be components of $\pi^{-1}(M)$. Since each M_j is a 1-sheeted unlimited covering surface of M, it is easily seen that each M_j is considered as a replica of M. Let $g_x^{f(M_j)}$ (j = 1, 2..., p) be the Green function on $f(M_j)$ with pole at x and ψ_j the inverse of $\pi|_M$ from $M \to M_j$. Denote by $\mu_{f \circ \psi_j}$ the complex dilatation of $f \circ \psi_j$ on M. Set

$$\mu_j = \left\{ egin{array}{cc} \mu_{f \circ \psi_j} & ext{ on } M \ 0 & ext{ on } \mathbb{C} \setminus M. \end{array}
ight.$$

It is well-known that there exists a quasiconformal mapping f_j from \mathbb{C} onto \mathbb{C} with the complex dilatation μ_j (cf. e.g. [6]). Set $V_j = f_j(M)$. By Lemma 2.1 we find that $f_j(0)$ is an irregular boundary point of V_j in the sense of the usual Dirichlet problem since 0 is an irregular boundary point of M in the sense of the usual Dirichlet problem. On the other hand, the function $x' \mapsto g_{f \circ \psi_j \circ f_j^{-1}(x')}^{f(M_j)} \circ f \circ \psi_j \circ f_j^{-1}(y')$ ($y' \in$ V_j) is a positive harmonic function on $V_j \setminus \{y'\}$ since $f \circ \psi_j \circ f_j^{-1}$ is conformal. Hence, by [5, Theorem 10.16], there exists a positive fine limit $\mathcal{F} - \lim_{x' \to f_j(0)} g_{f \circ \psi_j \circ f_j^{-1}(x')}^{f(M_j)} \circ f \circ \psi_j \circ f_j^{-1}$. Denote by $g_0^{V_j}$ this limit function on V_j and set $g_0^{f(M_j)} = g_0^{V_j} \circ f_j \circ \psi_j^{-1} \circ f^{-1}$. We see that each $g_0^{f(M_j)}$ is a positive harmonic function on $f(M_j)$ since each $g_0^{V_j}$ is a positive harmonic function on V_j and $f_j \circ \psi_j^{-1} \circ f^{-1}$ is conformal. For $j = 1, 2, \ldots, p$ set

$$S_j(g_0^{f(M_j)})(x') = \inf_s s(x'),$$

214

where s runs over the space of positive superharmonic functions s on $f(R_0)$ satisfying $s \ge g_0^{f(M_j)}$ on $f(M_j)$. By Perron-Wiener-Brelot method we find that each $S_j(g_0^{f(M_j)})$ is a positive harmonic function on $f(R_0)$. Then the following inequality

$$(*) \qquad S_{j}(g_{0}^{f(M_{j})}) - \frac{f(R_{0})}{R} \widehat{R}_{S_{j}(g_{0}^{f(M_{j})})}^{f(R_{0}) \setminus f(M_{j})} \ge g_{0}^{f(M_{j})}$$

holds on $f(M_i)$. In fact, to prove the inequality (*) note that

$${}^{f(R_0)}\widehat{\mathrm{R}}_{S_j(g_0^{f(M_j)})}^{f(R_0)\setminus f(M_j)} = H_{S_j(g_0^{f(M_j)})}^{f(M_j)}$$

on $f(M_j)$, where $H_{S_j(g_0^{f(M_j)})}^{f(M_j)}$ is the Dirichlet solution for $S_j(g_0^{f(M_j)})$ on $f(M_j)$ (cf. e.g. [3] [5]). By definition $S_j(g_0^{f(M_j)}) \ge g_2^{f(M_j)}$ on $f(M_j)$.

 $f(M_j)$ (cf. e.g. [3], [5]). By definition $S_j(g_0^{f(M_j)}) \ge g_0^{f(M_j)}$ on $f(M_j)$. Hence, by the definition of the Dirichlet solution in the sense of Perron-Wiener-Brelot,

$$S_j(g_0^{f(M_j)}) - g_0^{f(M_j)} \ge H_{S_j(g_0^{f(M_j)})}^{f(M_j)}$$

on $f(M_j)$. Thus (*) is proved.

We shall proceed the proof of this proposition. By [17, Theorem 3] it is known that $1 \leq \sharp \Delta_1^{R'} \leq p$. By the Martin representation theorem, there exist at most p minimal functions $h_{j,1}, h_{j,2}, \ldots, h_{j,p}$ on $f(R_0)$ with

 $S_j(g_0^{f(M_j)}) = h_{j,1} + h_{j,2} + \ldots + h_{j,p}$ on $f(R_0)$. Hence, by the above inequality (*), we have

$$\begin{split} & h_{j,1} + h_{j,2} + \ldots + h_{j,p} \\ &= S_j(g_0^{f(M_j)}) \\ &\geq f^{(R_0)} \widehat{\mathrm{R}}_{h_{j,1} + h_{j,2} + \ldots + h_{j,p}}^{f(M_j)} + g_0^{f(M_j)} \\ &> f^{(R_0)} \widehat{\mathrm{R}}_{h_{j,1}}^{f(R_0) \setminus f(M_j)} + f^{(R_0)} \widehat{\mathrm{R}}_{h_{j,2}}^{f(R_0) \setminus f(M_j)} + \ldots + f^{(R_0)} \widehat{\mathrm{R}}_{h_{j,p}}^{f(R_0) \setminus f(M_j)} \end{split}$$

on $f(M_j)$. Therefore we find that there exists a minimal function h_j on $f(R_0)$ such that $h_j \neq f(R_0) \widehat{R}_{h_j}^{f(R_0) \setminus f(M_j)}$. Hence, by the definition of minimal thinness, $f(R_0) \setminus f(M_j)$ is minimally thin at the minimal boundary point corresponding to h_j . Since $f(M_i) \cap f(M_j) = \emptyset$ $(i \neq j)$, we find that $\sharp \Delta_1^{R'} = p$.

Now we give the following result which Proposition 2.1 yields.

Theorem 3.1 (cf. [11]). Let R be a p-sheeted unlimited covering surfaces of the once punctured Riemann sphere $\hat{\mathbb{C}} \setminus \{0\}$ of Heins type. Then $\sharp \Delta_1^R = 1$ or p.

Proof of Theorem 1. By Theorem 3.1 we have only to prove that $\sharp \Delta_1^{R'} = p$ if and only if $\sharp \Delta_1^R = p$. Since f^{-1} is a quasiconformal mapping from R' onto R, it is sufficient to prove that if $\sharp \Delta_1^R = p$, then $\sharp \Delta_1^{R'} = p$. Suppose that $\sharp \Delta_1^R = p$. By Proposition 3.1 $\sharp \Delta_1^{R'} = p$. We have the desired result.

$\S4.$ Proof of Theorem 2.

By Proposition 3.1 we find that if $\sharp \Delta_1^R = 2$, $\sharp \Delta_1^{R'} = 2$. By [17, Theorem 3] it is known that $\sharp \Delta_1^{R'} = 1$ or 2. Hence, by Theorem 3.1, it is sufficient to prove that if $\sharp \Delta_1^{R'} = 2$, $\sharp \Delta_1^R = 2$. Suppose that $\sharp \Delta_1^{R'} = 2$. Set $\Delta_1^{R'} = \{\zeta_1', \zeta_2'\}$. Let $g_{\xi'}^{f(R_0)}$ be the Green function with pole at ξ' on $f(R_0)$. It is known that there exists $\lim_{y'\to\zeta_j'} g_{y'}^{f(R_0)}(x')(=:g_{\zeta_j'}'(x'))$ (j = 1, 2) and $g_{\zeta_j'}'(j = 1, 2)$ is the minimal harmonic function with pole at $\zeta_j'(j = 1, 2)$.

For $x \in R_0$ set

$$L = L_f = L_{x,f} = \begin{cases} \sum_{i,k=1}^{2} \partial_k (J_f(x)(f'(x)^{-1}f'(x)^{-1*})_{k,i}\partial_i), \\ \text{(if there exist } f'(x) \text{ and } f'(x)^{-1}), \\ \\ \sum_{i=1}^{2} \partial_i^2, \\ \text{(elsewise)}, \end{cases}$$

where $J_f(x)$ (resp. f'(x)) is the Jacobian (resp. Jacobi matrix) of the mapping (u(x), v(x)) (f = u + iv), $f'(x)^{-1}$ is the inverse of f'(x) and $f'(x)^{-1*}$ is the transpose of $f'(x)^{-1}$. L is a elliptic second order partial differential operator of divergence type on R. Set $g_j^L(x) := g'_{\zeta'_j} \circ f(x)$ $(x \in R_0)$. We see that g_j^L (j = 1, 2) is a positive harmonic function on R_0 with respect to L. We recall the assumption that $b_n - b_{n+1} \approx 2^{-n}$, that is, there exists a constant $\alpha(>1)$ with

$$\alpha^{-1}2^{-n} < b_n - b_{n+1} < \alpha 2^{-n} \quad (n \in \mathbb{N}).$$

For r(>0), set $C_r = \{|x| = r\}$, $B_r = \{|x| < r\}$, $C_r = \pi^{-1}(C_r)$, and $\mathcal{B}_r = \pi^{-1}(B_r \setminus \{0\})$.

Suppose that there exist a constant $\alpha'(>1)$ and a subsequence $\{n_l\}$ of $\mathbb{N} = \{n\}$ with $b_{n_l} - a_{n_l} > (\alpha')^{-1}2^{-n_l}$. Set $\mathcal{R}_l = \mathcal{B}_{(a_{n_l}+3b_{n_l})/4} \setminus Cl(\mathcal{B}_{(3a_{n_l}+b_{n_l})/4})$, where, for a set $E \subset R_0$, Cl(E) stands for the closure of E with respect to the usual topology on R_0 . By the assumption that $b_{n_l} - a_{n_l} > (\alpha')^{-1}2^{-n_l}$, $Mod(\mathcal{R}_l) \approx 1$, where $Mod(\mathcal{R}_l)$ stands for the logarithmic module of \mathcal{R}_l (cf. [1]), and hence, by the quasiconformal invariance of logarithmic module (cf. [6], [15]), $Mod(f(\mathcal{R}_l)) \approx 1$. Since the cardinal number of connected components of \mathcal{R}_l is equal to 1, that of $f(\mathcal{R}_l)$ is so. By [17, Theorem 3], we find that $\sharp \Delta_1^{R'} = 1$. This is a contradiction. Hence we may suppose that there exists a constant $\alpha''(>$ 1), for every integer l, $a_l - b_{l+1} > (\alpha'')^{-1}2^{-l}$. Set $\mathcal{A} = \bigcup_{l=1}^{\infty} \mathcal{A}_l (\mathcal{A}_l = \mathcal{B}_{(3a_l+b_{l+1})/4} \setminus Cl(\mathcal{B}_{(a_l+3b_{l+1})/4}))$, where $Cl(\mathcal{B}_{(a_l+3b_{l+1})/4})$ is the closure of $\mathcal{B}_{(a_l+3b_{l+1})/4}$ with respect to the usual topology on \mathcal{R} .

Lemma 4.1. $On \mathcal{A}$,

$$g_j^L(x) + g_j^L(\iota(x)) \approx \log \frac{1}{|\pi(x)|} \ (j = 1, 2),$$

where ι is the sheet exchange on R.

Proof. Let $A_{l,k}$ (k = 1, 2) be connected components of A_l . Then we have

$$(\sharp) \quad {}^{f(R_0)}\widehat{\mathbf{R}}_1^{f(\mathcal{A}_l)} \le {}^{f(R_0)}\widehat{\mathbf{R}}_1^{f(\mathcal{A}_{l,1})} + {}^{f(R_0)}\widehat{\mathbf{R}}_1^{f(\mathcal{A}_{l,2})} \le 2{}^{f(R_0)}\widehat{\mathbf{R}}_1^{f(\mathcal{A}_l)}.$$

Since $f(R_0) \widehat{R}_1^{f(\mathcal{A}_l)}$ is a Green potential on $f(R_0)$ (cf. [3]), we can find the Radon measure $\mu_{l,j}$ (j = 1, 2) with

$$(\sharp\sharp) \quad {}^{f(R_0)}\widehat{\mathrm{R}}_1^{f(A_{l,j})}(x') = \int_{Cl(f(A_{l,j}))} g_{x'}^{f(R_0)} d\mu_{l,j}$$

By the fact that ${}^{f(R_0)}\widehat{\mathrm{R}}_1^{f(\mathcal{A}_l)}(x') = 1$ for $x' \in f(\mathcal{B}_{(3a_l+b_{l+1})/4})$, letting x' be to ζ'_j in (\sharp) , we have

$$1 \leq \int_{Cl(f(A_{l,1}))} g'_{\zeta'_j} d\mu_{l,1} + \int_{Cl(f(A_{l,2}))} g'_{\zeta'_j} d\mu_{l,2} \leq 2 \quad (j = 1, 2),$$

and hence

$$1 \leq \int_{Cl(A_{l,1})} g_j^L d(f^{-1})^*(\mu_{l,1}) + \int_{Cl(A_{l,2})} g_j^L d(f^{-1})^*(\mu_{l,2}) \leq 2 \quad (j = 1, 2),$$

where $(f^{-1})^*(\mu_{l,2})$ is the image measure of $\mu_{l,2}$ by f^{-1} . On the other hand, by the definition of capacitary potential, quasiconformal invariance of capacity(cf. [15, Theorem 10.10]), [9, Lemma 2.3], [1, Theorems 13C and 13D in Chap. IV] and [3, Satz 5.2 and Satz 7.2], we have

$$\begin{aligned} (f^{-1})^* \mu_{l,j}(Cl(A_{l,j})) &= & \mu_{l,j}(f(Cl(A_{l,j}))) = cap(f(Cl(A_{l,j})), f(R_0)) \\ &\approx & cap(Cl(A_{l,j}), R_0) \approx cap(\pi(Cl(A_l)), \mathbb{D}_0) \\ &= & cap(Cl(B_{(3a_l+b_{l+1})/4}), \mathbb{D}_0) \\ &= & 2\pi/\log[4/(3a_l+b_{l+1})] \approx 1/l, \end{aligned}$$

where, for a subset E of an open Riemann surface F of positive boundary cap(E, F) stands for the greenian capacity of E on F. Therefore, by Harnack's inequality with respect to L (cf. [13]), we have the desired result.

Set $D_I = \mathbb{D}_0 \setminus I$.

Lemma 4.2. There exist components $\mathcal{D}_{I,j}$ (j = 1,2) of $\pi^{-1}(D_I)$ such that

$$g_j^L(x) \approx \log \frac{1}{|\pi(x)|} \ (x \in \mathcal{A} \cap \mathcal{D}_{I,j}, \ j = 1, 2),$$
$$g_j^L(x) = o(\log \frac{1}{|\pi(x)|}) \ (\pi(x) \to 0, x \in \mathcal{A} \cap \mathcal{D}_{I,j+(-1)^{j-1}}, \ j = 1, 2).$$

Proof. Denote by $\mathcal{D}_{I,j}$ (j = 1, 2) components of $\pi^{-1}(D_I)$. Set $\mathcal{A}_{l,j} = \mathcal{A}_l \cap \mathcal{D}_{I,j}$. By Lemma 4.1 we may suppose that there exist subsequences $\{n_1\}$ and $\{n_2\}$ of $\mathbb{N} = \{n\}$ such that

$$\begin{array}{ll} \text{(i)} & \{n_1\} \cup \{n_2\} = \mathbb{N} \text{ and } \{n_1\} \cap \{n_2\} = \emptyset; \\ \text{(ii)} & g_1^L(x) \approx \log \frac{1}{|\pi(x)|} \ (x \in (\cup_{n_1} \mathcal{A}_{n_1,1}) \cup (\cup_{n_2} \mathcal{A}_{n_2,2}) \); \\ \text{(iii)} & g_1^L(x) = o(\log \frac{1}{|\pi(x)|}) \ (\pi(x) \to 0, x \in (\cup_{n_1} \mathcal{A}_{n_1,2}) \cup (\cup_{n_2} \mathcal{A}_{n_2,1}) \). \end{array}$$

In fact, suppose the above does not hold. Then there exists a subsequence $\{n_3\}$ of $\mathbb{N} = \{n\}$ with

$$g_1^L(x) \approx \log \frac{1}{|\pi(x)|} \ (x \in \cup_{n_3} \mathcal{A}_{n_3}).$$

On the other hand, for any $\beta(>0)$, $\{x' \in f(R_0) | g'_{\zeta'_2}(x') > \beta g'_{\zeta'_1}(x') \} \cup \{\zeta'_2\}$ is a minimal fine neighborhood of ζ'_2 , because, on $\{g'_{\zeta'_2} > \beta g'_{\zeta'_1}\}$, $f(R_0) \widehat{R}_{g'_{\zeta'}}^{\{g'_{\zeta'_2} \leq \beta g'_{\zeta'_1}\}} < g'_{\zeta'_2}$, by the fact that, on $f(R_0)$,

$${}^{f(R_0)}\widehat{\mathbf{R}}_{g_{\zeta'_2}^{\boldsymbol{\zeta}_2} \leq \beta g_{\zeta'_1}^{\boldsymbol{\zeta}_1}}^{\{g_{\zeta'_2} \leq \beta g_{\zeta'_1}^{\boldsymbol{\zeta}_1}\}} \leq {}^{f(R_0)}\widehat{\mathbf{R}}_{\beta g_{\zeta'_1}^{\boldsymbol{\zeta}_2} \leq \beta g_{\zeta'_1}^{\boldsymbol{\zeta}_1}\}} \leq \beta g_{\zeta'_1}.$$

Hence, by Lemma 4.1 and by the fact that $g_j^L = g_{\zeta'_j} \circ f$, there exists a positive β_0 with $\{x' \in f(R_0) | g_{\zeta'_2}(x') > \beta_0 g_{\zeta'_1}(x')\} \subset f(R_0) \setminus f(\cup_{n_3} \mathcal{A}_{n_3})$. It is well-known that we can take a connected component G_1 of $\{x' \in f(R_0) | g_{\zeta'_2}(x') > \beta_0 g_{\zeta'_1}(x')\}$ such that $G_1 \cup \{\zeta'_2\}$ is a minimal fine neighborhood of ζ'_2 (cf. [14, Corollaire 2 in p.206]). This is a contradiction.

218

ļ

Suppose that both $\{n_1\}$ and $\{n_2\}$ are infinite sets. Let $\{m_1\}$ be a subsequence of $\{n_1\}$ with $m_1 + 1 \in \{n_2\}$. By (ii) we can find a positive constant $\kappa_1 \ (> 1)$ with

$$\kappa_1^{-1}\log \frac{1}{|\pi(x)|} \le g_1^L(x) \le \kappa_1\log \frac{1}{|\pi(x)|} \ (x \in (\cup_{n_1}\mathcal{A}_{n_1,1}) \cup (\cup_{n_2}\mathcal{A}_{n_2,2})).$$

By Harnack's inequality with respect to L, we can find a positive constant κ_2 (> 1) with

$$(\kappa_1\kappa_2)^{-1}\log \frac{1}{|\pi(x)|} \le g_1^L(x) \le (\kappa_1\kappa_2)\log \frac{1}{|\pi(x)|} \ (x \in \cup_{m_1}\mathcal{A}_{m_1+1,1}).$$

On the other hand, by (iii), there exists an integer N_0 such that,

$$g_1^L(x) < (\kappa_1 \kappa_2)^{-1} \log \frac{1}{|\pi(x)|} \ (x \in \bigcup_{m_1 > N_0 - 1} \mathcal{A}_{m_1 + 1, 1}).$$

This is a contradiction. Here, if necessary, by substituting $\mathcal{D}_{I,1}$ (resp. $\mathcal{D}_{I,2}$) for $\mathcal{D}_{I,2}$ (resp. $\mathcal{D}_{I,1}$), we have

(b1)
$$g_1^L(x) \approx \log \frac{1}{|\pi(x)|} \ (x \in \bigcup_n \mathcal{A}_{n,1})$$

(b2) $g_1^L(x) = o(\log \frac{1}{|\pi(x)|}) \ (\pi(x) \to 0, x \in \bigcup_n \mathcal{A}_{n,2})$

Repeating the same process for g_1^L as in obtaining (b1) and (b2), we have

$$(\flat'1) \quad g_2^L(x) \approx \log \frac{1}{|\pi(x)|} \ (x \in \bigcup_n \mathcal{A}_{n,2} \)$$

$$(\flat'2) \quad g_2^L(x) = o(\log \frac{1}{|\pi(x)|}) \ (\pi(x) \to 0, x \in \bigcup_n \mathcal{A}_{n,1} \)$$

or

$$\begin{array}{ll} (\flat"1) & g_2^L(x) \approx \log \frac{1}{|\pi(x)|} \ (x \in \bigcup_n \mathcal{A}_{n,1}) \\ (\flat"2) & g_2^L(x) = o(\log \frac{1}{|\pi(x)|}) \ (\pi(x) \to 0, x \in \bigcup_n \mathcal{A}_{n,2}) \end{array}$$

Suppose that the estimates (b^n) and (b^n) hold. By (b^n) and (b^n) , we find that $f(\bigcup_n \mathcal{A}_{n,1})$ is minimally thin at ζ'_1 . In fact, there exists a positive constant β_0 such that $\beta_0 g_{\zeta'_1}^{f(R_0)} \leq g_{\zeta'_2}^{f(R_0)}$ on $f(\bigcup_n \mathcal{A}_{n,1})$, that is, $f(\bigcup_n \mathcal{A}_{n,1}) \subset \{x' \in f(R_0) | \beta_0 g_{\zeta'_1}^{f(R_0)} \leq g_{\zeta'_2}^{f(R_0)}\}$. Using the same argument as that in the former part of the proof of this lemma, we find that $\{x' \in$

 $f(R_0)|\beta_0 g_{\zeta_1}^{f(R_0)} \leq g_{\zeta_2}^{f(R_0)}\}$ is minimally thin at ζ_1' . Hence $f(\cup_n \mathcal{A}_{n,1})$ is minimally thin at ζ_1' .

By (b2) we can prove that there exists a subsequence $\{n_l\}$ of $\mathbb{N} = \{n\}$ such that $f(\bigcup_l \mathcal{A}_{n_l,2})$ is minimally thin at ζ'_1 . This fact will be proved afterwards. Hence $f(\bigcup_l \mathcal{A}_{n_l})$ is minimally thin at ζ'_1 because $f(\bigcup_n \mathcal{A}_{n,1})$ is minimally thin at ζ'_1 . Since $[f(R_0) \setminus f(\bigcup_l \mathcal{A}_{n_l})] \cup \{\zeta'_1\}$ is a minimal fine neighborhood of ζ'_1 , we can take a connected component G_2 of $[f(R_0) \setminus f(\bigcup_l \mathcal{A}_{n_l})] \cup \{\zeta'_1\}$ such that $G_2 \cup \{\zeta'_1\}$ is a minimal fine neighborhood of ζ'_1 (cf. [14, Corollaire 2 in p.206]). This is a contradiction. Hence we have the estimates (b'1) and (b'2).

We still remain to prove that there exists a subsequence $\{n_l\}$ of $\mathbb{N} = \{n\}$ such that $f(\bigcup_l \mathcal{A}_{n_l,2})$ is minimally thin at ζ'_1 . By (b2) we can take a subsequence $\{n_l\}$ of $\mathbb{N} = \{n\}$ with

$$g_{\zeta_1'}^{f(R_0)}(x') \leq \frac{n_l}{l^2} \ (x' \in f(\cup_l \mathcal{A}_{n_l,2}) \).$$

From this estimate it follows that $f(\cup_l \mathcal{A}_{n_l,2})$ is minimally thin at ζ'_1 . In fact, we take a point x'_0 be a point of $f(R_0) \setminus Cl(f(\cup_l \mathcal{A}_{n_l,2}))$. Then, by $(\sharp\sharp)$ in Lemma 4.1, the definition of capacitary potential, and the same estimate for capacity as in the latter part of the proof of Lemma 4.1, we have

$$\begin{split} 0 &\leq {}^{f(R_0)} \widehat{\mathrm{R}}_{g_{\zeta_1'}^{f(\cup_{l \geq m} \mathcal{A}_{n_l}, 2)}}(x_0') &\leq \sum_{l=m}^{\infty} {}^{f(R_0)} \widehat{\mathrm{R}}_{g_{\zeta_1'}^{f(R_0)}}(x_0') \\ &\leq \sum_{l=m}^{\infty} {}^{\frac{n_l}{l^2}} {}^{f(R_0)} \widehat{\mathrm{R}}_{1}^{f(\mathcal{A}_{n_l}, 2)}(x_0') \\ &\leq \sum_{l=m}^{\infty} {}^{\frac{n_l}{l^2}} \int_{Cl(f(\mathcal{A}_{n_l}, 2))} {}^{g_{x_0'}^{f(R_0)}} d\mu_{n_l, 2} \\ &\leq \alpha_0 \sum_{l=m}^{\infty} {}^{\frac{n_l}{l^2}} {}^{\mu_{n_l, 2}} (Cl(f(\mathcal{A}_{n_l, 2}))) \\ &\approx \sum_{l=m}^{\infty} {}^{\frac{n_l}{l^2}} cap(Cl(f(\mathcal{A}_{n_l, 2})), f(R_0)) \\ &\approx \sum_{l=m}^{\infty} {}^{\frac{n_l}{n_l l^2}} \approx \sum_{l=m}^{\infty} {}^{\frac{1}{l^2}} \to 0 \ (m \to +\infty), \end{split}$$

where, $\alpha_0 = \sup\{g_{x'_0}^{f(R_0)}(x')|x' \in Cl(f(\cup_l \mathcal{A}_{n_l,2}))\}$. Hence we have $\lim_{m \to +\infty} \frac{f(R_0)}{R} \widehat{g}_{\zeta'_1}^{f(\cup_l \ge m \mathcal{A}_{n_l,2})}(x'_0) = 0$. If m is sufficiently large, $f(\bigcup_{l\geq m}\mathcal{A}_{n_l,2})$ is minimally thin at ζ'_1 . Since $f(\bigcup_{l\leq m}\mathcal{A}_{n_l,2})$ is relatively compact, it is minimally thin at ζ'_1 . Hence $f(\bigcup_l \mathcal{A}_{n_l,2})$ is minimally thin at ζ'_1 .

The proof is herewith complete.

For an integer l, take the bounded simply connected domain Q_l whose boundary in the closed polygonal line without self-intersections and which has four vertexes $((3a_l + b_{l+1})/4, (3a_l + b_{l+1})/32), (((3a_l + b_{l+1})/4, -((3a_l + b_{l+1})/32), ((a_{l-1} + 3b_l)/4, -(a_{l-1} + 3b_l)/32), ((a_{l-1} + 3b_l)/4, (a_{l-1} + 3b_l)/32)$ in positive cyclic order. Set $Q = \bigcup_{l=1}^{\infty} Q_l$ and $\mathcal{D}_{Q,j} = \mathcal{D}_{I,j} \setminus \pi^{-1}(Q)$ (j = 1, 2). By Lemma 4.2 and Harnack's inequality with respect to L, we find that

(1) there exists a positive constant
$$\kappa_0$$
 such that
 $\frac{1}{\kappa_0} \log \frac{1}{|\pi(x)|} \le g_j^L(x) \le \kappa_0 \log \frac{1}{|\pi(x)|} \quad (x \in \mathcal{D}_{Q,j}) \quad (j = 1, 2);$
(2) $g_j^L(x) = o(\log \frac{1}{|\pi(x)|}) \quad (\pi(x) \to 0, x \in \mathcal{D}_{Q,j+(-1)^{j-1}}) \quad (j = 1, 2).$

Set $E'_1 = \{x' \in f(R_0) | g'_{\zeta'_1}(x') > g'_{\zeta'_2}(x')\}, E'_2 = \{x' \in f(R_0) | g'_{\zeta'_1}(x') < g'_{\zeta'_2}(x')\}$, and $E'_3 = \{x' \in f(R_0) | g'_{\zeta'_1}(x') = g'_{\zeta'_2}(x')\}$. Set $E_3 = f^{-1}(E'_3) = \{x \in R_0 | g_1^L(x) = g_2^L(x)\}$ and $\gamma_j = \pi^{-1}(\partial Q) \cap \mathcal{D}_{I,j}$. By (1) and (2), we may suppose that there exists an integer N_1 such that, for any integer $n(\geq N_1), E_3 \cap \mathcal{B}_{(a_n+b_{n+1})/2} \subset \pi^{-1}(Q), g_1^L > g_2^L$ on $\gamma_1 \cap \mathcal{B}_{(a_n+b_{n+1})/2}$ and $g_1^L < g_2^L$ on $\gamma_2 \cap \mathcal{B}_{(a_n+b_{n+1})/2}$. Hence, by the implicit function theorem, $E'_3 \cap f(\mathcal{B}_{(a_{N_1}+b_{N_1+1})/2})$ consists of infinitely many connected components $E'_{3,l}(\subset f(\pi^{-1}(Q_l)), l \geq N_1 + 1)$ which are piecewise analytic closed curves because each $g'_{\zeta'_j}$ is harmonic on $f(R_0)$. Hence each $E'_j \cap f(\mathcal{B}_{(a_{N_1}+b_{N_1+1})/2})$ is a planar region, that is, each $E_j \cap \mathcal{B}_{(a_{N_1}+b_{N_1+1})/2}$ is planar region. Set $K_j = E_j \cap \mathcal{B}_{(a_{N_1}+b_{N_1+1})/2}$ and $E_{3,l} = f^{-1}(E'_{3,l})$. By Koebe's theorem and R. de Possel's theorem (cf. [20, Theorems IX.32 and IX.22], [19, Theorem 9-1]) there exist plane regions \mathcal{E}_j (j = 1, 2) of \mathbb{C} and conformal mappings ϕ_j (j = 1, 2) from K_j onto \mathcal{E}_j (j = 1, 2) such that $\mathbb{C} \setminus \mathcal{E}_j$ (j = 1, 2) consist of infinitely many parallel segments $\ell_{j,l}$ to the real axis with

$$\ell_{j,l} = \left\{ \begin{array}{l} \left. \bigcap \left\{ Cl(\phi_j(M)) \right| \begin{array}{l} M \text{ is a subdomain of } E_j \text{ with } \\ Cl(M) \supset E_{3,l} \\ \text{ for } l > N_1, \end{array} \right\}, \\ \left. \bigcap \left\{ Cl(\phi_j(M)) \right| \begin{array}{l} M \text{ is a subdomain of } E_j \text{ with } \\ Cl(M) \supset \mathcal{C}_{(a_{N_1}+b_{N_1+1})/2} \cap \mathcal{D}_{I,j} \\ \text{ for } l = N_1. \end{array} \right\}.$$

Set $\ell_j = \bigcap_{n > N_1 + 1} Cl(\bigcup_{l \ge n} \ell_{j,l}) \ (j = 1, 2).$

Lemma 4.3. Each ℓ_i is a singleton.

Suppose that $\sharp \ell_j \geq 2$ (j = 1, 2). We remark that each ℓ_j is Proof. connected. In fact, suppose that ℓ_j is disconnected. Let $\Lambda_{j,1}$ be a component of ℓ_j . Set $\Lambda_{j,2} = \ell_j \setminus \Lambda_{j,1}$. We can take two Jordan curves $\mathcal{C}_{j,1}$ and $\mathcal{C}_{j,2}$ in \mathcal{E}_j such that, for k = 1, 2, each bounded region $G_{j,k,1}$ determined by $\mathcal{C}_{j,k}$ in \mathbb{C} contains $\Lambda_{j,k}$, and that $Cl(G_{j,1,1}) \cap Cl(G_{j,2,1}) = \emptyset$. By the definition of $\Lambda_{j,k}$, each $G_{j,k,1}$ contains infinitely many $\ell_{j,l}$. Since $\pi \circ \phi_j^{-1}$ is continuous on \mathcal{E}_i and $\mathcal{C}_{i,k}$ is a compact subset of \mathcal{E}_i , $\pi \circ \phi_i^{-1}(\mathcal{C}_{i,k})$ is a compact subset of $\pi(K_i)$, and hence there exists uniquely a component $M_{j,k,1}$ of $\pi(K_j) \setminus \pi \circ \phi_j^{-1}(\mathcal{C}_{j,k})$ such that $Cl(M_{j,k,1})$ is a neighborhood of the origin. Denote by $M_{j,k,2}$ the union of component of $[\pi(K_i) \setminus \pi \circ \phi_i^{-1}(\mathcal{C}_{i,k})] \cup M_{i,k,1}$. It is easily seen that $Cl(M_{i,k,1})$ (resp. $Cl(M_{i,k,2})$ contains infinitely (resp. at most finitely) many components $\pi(E_{3,l})$ of $\pi(E_3 \cap \mathcal{B}_{(a_{N_1}+b_{N_1+1})/2})$ because $\pi(E_{3,l}) \subset Q_l \ (l \ge N_1+1)$. Let $G_{j,k,2}$ be unbounded regions determined by $\mathcal{C}_{j,k}$ in \mathbb{C} . We can prove that $(\natural) \ \phi_j(\pi^{-1}(M_{j,k,1}) \cap K_j) \subset G_{j,k,1} \cap \mathcal{E}_j \text{ or } (\natural') \ \phi_j(\pi^{-1}(M_{j,k,1}) \cap K_j) \subset K_j$ $G_{j,k,2} \cap \mathcal{E}_j$. Suppose this fact does not hold, that is, $\phi_j(\pi^{-1}(M_{j,k,1}) \cap$ $(K_j) \cap G_{j,k,1} \cap \mathcal{E}_j \neq \emptyset$ and $\phi_j(\pi^{-1}(M_{j,k,1}) \cap K_j) \cap G_{j,k,2} \cap \mathcal{E}_j \neq \emptyset$. Then we can find points $\xi_{j,k,i} \in \phi_j(\pi^{-1}(M_{j,k,1}) \cap K_j) \cap G_{j,k,i} \cap \mathcal{E}_j$ (i = 1, 2). Since $\pi(\phi_i^{-1}(\xi_{j,k,i})) \in M_{j,k,1}$ and $M_{j,k,1}$ is connected, we can find a curve C in $M_{j,k,1}$ which joins $\pi(\phi_j^{-1}(\xi_{j,k,1}))$ to $\pi(\phi_j^{-1}(\xi_{j,k,2}))$. From the definition of component it is easily seen that the lift of C in K_j by π meets $\phi_j^{-1}(C_{j,k})$ since $K_j \setminus \phi_j^{-1}(C_{j,k})$ has just two components $\phi_j^{-1}(G_{j,k,1} \cap \mathcal{E}_j)$ and $\phi_i^{-1}(G_{j,k,2} \cap \mathcal{E}_j)$. Hence $M_{j,k,1} \cap \pi \circ \phi_i^{-1}(\mathcal{C}_{j,k}) \neq \emptyset$. This is a contradiction.

We may assume that (\natural) holds. For, if (\natural') holds, repeating the same argument as in case that (\natural) holds, we arrive at a contradiction. By $(\natural) \phi_j(\pi^{-1}(M_{j,k,2}) \cap K_j) \supset G_{j,k,2} \cap \mathcal{E}_j$. Hence $G_{j,k,1}$ (resp. $G_{j,k,2}$) contains infinitely (resp. at most finitely) many $\ell_{j,l}$ because $Cl(M_{j,k,1})$ (resp. $Cl(M_{j,k,2})$) contains infinitely (resp. at most finitely) many components $\pi(E_{3,l})$ of $\pi(E_3 \cap \mathcal{B}_{(a_{N_1}+b_{N_1+1})/2})$. Since $G_{j,k,2} \supset G_{j,k+(-1)^{k-1},1}$, $G_{j,k+(-1)^{k-1},1}$ contains at most finitely many components of $\ell_{j,l}$. This is a contradiction. Thus we conclude that each ℓ_j is connected.

Since each ℓ_j is connected, by [5, Theorem 8.26], all points of ℓ_j (j = 1, 2) are regular boundary points of \mathcal{E}_j (j = 1, 2). E'_j (j = 1, 2) is minimally thin at $\zeta'_{j+(-1)^{j-1}}$, and hence E'_3 is minimally thin at ζ'_j (j = 1, 2). By [14, Théorème 1 and Théorème 5], it is known that there exists a Green potential $g_{\mu_j}(x') = \int g_{x'}^{f(R_0)} d\mu_j$ such that

 $g_{\mu_j}(\zeta_j') < +\infty,$

$$\lim_{x'\to\Delta^{R'},x'\in E'_3}g_{\mu_j}(x')=+\infty,$$

because $\lim_{x'\to\zeta_j'} g_x^{f(R_0)}(x') = g_x^{f(R_0)}(\zeta_j') < +\infty$. Since there exists an integer $N_2(\geq N_1)$ such that $g_{\mu_j}(y') > 2g_{\mu_j}(\zeta_j') \ (y' \in E_3' \cap f(\mathcal{B}_{(a_{N_2}+b_{N_2+1})/2}))$, for every $x' \in f(\mathcal{B}_{(a_{N_2}+b_{N_2+1})/2})$,

$${}^{f({\mathcal B}_{(a_{N_{2}}+b_{N_{2}}+1)/2})}\widehat{
m R}_{1}^{E_{3}'\cap f({\mathcal B}_{(a_{N_{2}}+b_{N_{2}}+1)/2})}(x')\leq rac{g_{\mu_{j}}(x')}{2g_{\mu_{j}}(\zeta_{j}')}.$$

Hence

 $\liminf_{x' (\in E'_j \cap f(\mathcal{B}_{(a_{N_2}+b_{N_2+1})/2})) \to \zeta'_j} f(\mathcal{B}_{(a_{N_2}+b_{N_2+1})/2}) \widehat{\mathbf{R}}_1^{E'_3 \cap f(\mathcal{B}_{(a_{N_2}+b_{N_2+1})/2})}(x')$

$$\leq \liminf_{\substack{x' \in E'_j \cap f(\mathcal{B}_{(a_{N_2}+b_{N_2+1})/2})) \to \zeta'_j}} \frac{g_{\mu_j}(x')}{2g_{\mu_j}(\zeta'_j)} \\ = \liminf_{x' \to \zeta'_j} \frac{g_{\mu_j}(x')}{2g_{\mu_j}(\zeta'_j)} = \frac{1}{2} < 1,$$

because each $E'_j \cap f(\mathcal{B}_{(a_{N_2}+b_{N_2+1})/2}))$ is not minimally thin at ζ'_j . Hence there exists a sequence $\{x'_{l,j}\}(\subset E'_j \cap f(\mathcal{B}_{(a_{N_2}+b_{N_2+1})/2}), j = 1, 2)$ such that, for j = 1, 2,

$$\begin{split} &\lim_{l\to\infty} x'_{l,j} = \zeta'_j,\\ &\lim_{l\to\infty} {}^{f(\mathcal{B}_{(a_{N_2}+b_{N_2+1})/2})} \widehat{\mathbf{R}}_1^{E'_j \cap f(\mathcal{B}_{(a_{N_2}+b_{N_2+1})/2})}(x'_{l,j}) < 1. \end{split}$$

Set

$$B_{N_2}^{(j)} = Int[Cl(\phi_j(E_j \cap \mathcal{B}_{(a_{N_2}+b_{N_2+1})/2}))] \ (j=1,2),$$

where $Int[Cl(\phi_j(E_j \cap \mathcal{B}_{(a_{N_2}+b_{N_2+1})/2}))]$ stands for the interior of the closure of $\phi_j(E_j \cap \mathcal{B}_{(a_{N_2}+b_{N_2+1})/2})$ in \mathbb{C} . For $\phi_j \circ f^{-1}$ we define $L_{\phi_j \circ f^{-1}}$ as L_f in the first part of this section. The above inequality implies that there exist points $z_j \in \ell_j$ (j = 1, 2) and sequences $\{z_{l,j}\} (\subset \mathcal{E}_j \cap \mathcal{B}_{N_2}^{(j)}, j = 1, 2)$ such that, for j = 1, 2,

$$\lim_{l \to \infty} z_{l,j} = z_j \ (j = 1, 2),$$
$$\lim_{l \to \infty} B_{N_2}^{(j)} \widehat{R}_1^{\cup_{l > N_2} \ell_{l,j}, L_{\phi_j \circ f^{-1}}}(z_{l,j}) < 0$$

1,

where $B_{N_2}^{(j)} \widehat{R}_1^{\cup_{l>N_2} \ell_{l,j}, L_{\phi_j \circ f^{-1}}}$ stands for the balayage of 1 relative to $\cup_{l>N_2} \ell_{l,j}$ on $B_{N_2}^{(j)}$ with respect to $L_{\phi_j \circ f^{-1}}$. Hence each z_j is an irregular boundary point of $\phi_j (E_j \cap \mathcal{B}_{(a_{N_2}+b_{N_2}+1)/2})$ with respect to $L_{\phi_j \circ f^{-1}}$. By [7, Theorem 9.1] and [5, Theorem 10.3], each z_j is an irregular boundary points of \mathcal{E}_j in the usual sense. This is a contradiction. Therefore we have the desired result.

Let N_1 be an integer as in the definition of ℓ_j . Let $g_{\xi}^{\mathcal{E}_j}$ be the Green function with pole at ξ (resp. x) on \mathcal{E}_j . By Lemma 4.3, for j = 1, 2, there exists a sequence $\{\xi_{j,n}\}$ in \mathcal{E}_j such that $\lim_{n\to\infty} \xi_{j,n} = z_j$ and there exists $\lim_{n\to\infty} g_{\xi_{j,n}}^{\mathcal{E}_j}$ on \mathcal{E}_j . For j = 1, 2, set $g_{z_j}^{\mathcal{E}_j} = \lim_{n\to\infty} g_{\xi_{j,n}}^{\mathcal{E}_j}$ and $g_j = g_{z_j}^{\mathcal{E}_j} \circ \phi_j$. Each g_j is a positive harmonic function on K_j . For j = 1, 2, set

$$S_j(g_j)(x) = \inf_{a} s(x),$$

where s runs over the space of positive superharmonic functions s on R_0 satisfying $s \ge g_j$ on K_j . By Perron-Wiener-Brelot method each $S_j(g_j)$ is a positive harmonic function on R_0 . Using the same argument as that in the proof of Theorem 1, we find that the following inequality

$$(**) \qquad S_j(g_j) - {}^{R_0} \widehat{\mathrm{R}}_{S_j(g_j)}^{R_0 \setminus K_j} \ge g_j$$

holds on K_j (j = 1, 2). Since $\sharp \Delta_1^R = 1$ or 2 by means of [17, Theorem 3], by the Martin representation theorem, we find that there exist at most two minimal functions $h_{j,k}$ (k = 1, 2) on R_0 with $S_j(g_j) = h_{j,1} + h_{j,2}$ on R_0 . Hence, by the above inequality (**), we have

$$\begin{array}{rcl} h_{j,1} + h_{j,2} = S_j(g_j) & \geq & {}^{R_0} \widehat{\mathrm{R}}_{h_{j,1} + h_{j,2}}^{R_0 \setminus K_j} + g_j \\ & > & {}^{R_0} \widehat{\mathrm{R}}_{h_{j,1}}^{R_0 \setminus K_j} + {}^{R_0} \widehat{\mathrm{R}}_{h_{j,2}}^{R_0 \setminus K_j} \end{array}$$

on K_j . Therefore we find that there exists a minimal function h_j (j = 1, 2) on R_0 such that $h_j \neq {}^{R_0} \widehat{\mathbf{R}}_{h_j}^{R_0 \setminus K_j}$. Hence, by the definition of minimal thinness, $R_0 \setminus K_j$ is minimally thin at the minimal boundary point corresponding to h_j . Since $K_1 \cap K_2 = \emptyset$, we find that $\sharp \Delta_1^R = 2$.

References

 L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Mathematical Series, 26, Princeton University Press, Princeton, 1960, MR 0114911 (22 #5729).

224

- M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Mathematics, 175, Springer-Verlag, Berlin-New York, 1971, MR 0281940 (43 #7654).
- [3] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Bd. 32, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963, MR 0159935 (28 #3151).
- [4] M. Heins, Riemann surfaces of infinite genus, Ann. of Math., 55 (1952), 296–317, MR 0045834 (13,643d).
- [5] L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience, New York-London-Sydney, 1969, MR 0261018 (41 #5638).
- [6] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, Die Grundlehren der mathematischen Wissenschaften, 126, Springer-Verlag, New York-Heidelberg, 1973, MR 0344463 (49 #9202).
- [7] W. Littman, G. Stampacchia and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 43–77, MR 0161019 (28 #4228).
- [8] T. Lyons, Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains, J. Differential Geom., 26 (1987), 33-66, MR 0892030 (88k:31012).
- [9] H. Masaoka, Criterion of Wiener type for minimal thinness on covering surfaces, Proc. Japan Acad. Ser. A Math. Sci., 72 (1996), 154–156, MR 1420604 (98g:31008).
- [10] H. Masaoka, Quasiregular mappings and d-thinness, Osaka J. Math., 34 (1997), 223–231, MR 1439008 (98a:31006).
- [11] H. Masaoka and S. Segawa, Harmonic dimension of covering surfaces and minimal fine neighborhood, Osaka J. Math., **34** (1997), 659–672, MR 1613112 (99g:30054).
- [12] H. Masaoka and S. Segawa, Quasiconformal mappings and minimal Martin boundary of *p*-sheeted unlimited covering surfaces of the complex plane, Kodai Math. J., **28** (2005), 275–279, MR 2153915 (2006d:31011).
- J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., 14 (1961), 577–591, MR 0159138 (28 #2356).
- [14] L. Naïm, Sur le role de la frontiere de R. S. Martin dans la theorie du potentiel, Ann. Inst. Fourier, Grenoble, 7 (1957), 183–281, MR 0100174 (20 #6608).
- [15] S Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, 26, Springer-Verlag, New York-Berlin-Heidelberg, 1993.
- [16] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, Band 164, Springer-Verlag, New York-Berlin, 1970, MR 0264064 (41 #8660).
- [17] S. Segawa, A duality relation for harmonic dimensions and its applications, Kodai Math. J., 4 (1981), 508-514, MR 0641368 (84c:31006).

- [18] H. Shiga, Quasiconformal mappings and potentials, XVIth Rolf Nevanlinna Colloquium (Joensuu, 1995) (1996), 215–222, MR 1427086 (98c:31001).
- [19] G. Springer, Introduction to Riemann surfaces, Chelsea Publishing Co., New York, 1957.
- [20] M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975, MR 0414898 (54 #2990).

Hiroaki Masaoka Department of Mathematics Faculty of Science Kyoto Sangyo University Kyoto 603-8555 Japan E-mail address: masaoka@cc.kyoto-su.ac.jp