Advanced Studies in Pure Mathematics 44, 2006 Potential Theory in Matsue pp. 203–210

A subharmonic Hardy class and Bloch pullback operator norms

Ern Gun Kwon

Abstract.

We estimate the operator norm of the composition operators mapping Bloch space boundedly into Hardy spaces, BMOA space, Lipschitz spaces and mean Lipschitz spaces respectively.

§1. Introduction

This is to give a brief survey of a resent result on Bloch pullback operators, whose detailed proof will appear at [5]. Our purpose here is two-fold. One is to obtain hyperbolic version of Littlewood-Paley g-function equivalence, the other is to estimate the operator norm of Bloch-pullback operators. At first glance these two topics seem to be quite apart, but they are very closely related.

Let D be the unit disc of the complex plane and $S = \partial D$. Let H^p , 0 , denote the classical Hardy space defined to consist of f holomorphic in D for which

$$\|f\|_{H^p} = \lim_{r \to 1} \left(\int_S |f(r\zeta)|^p \, d\sigma(\zeta) \right)^{1/p} < \infty,$$

where $d\sigma$ is the rotation invariant Lebesgue probability measure (Haar measure) on S.

For a holomorphic function f in D, the g-function of Littlewood-Paley defined as

$$g_f(\zeta) = \left(\int_0^1 (1-r) |f'(r\zeta)|^2 \, dr\right)^{1/2}, \quad \zeta \in S,$$

Received November 1, 2004.

2000 *Mathematics Subject Classification.* 30D05, 30D45, 30D50, 30D55. Supported by KRF(R05-2004-000-10990-0).

satisfies the following beautiful and powerful relation

(1.1)
$$\|g_f\|_{L^p} \approx \|f - f(0)\|_{H^p}$$

(see [1] or [8], also see [16] for $1). Here and throughout, <math>L^p = L^p(S)$.

In parallel with H^p , there defined is ρH^p consisting of holomorphic self map ϕ of D for which

$$\|\phi\|_{\varrho H^p} = \lim_{r \to 1} \left(\int_S \varrho \left(\phi(r\zeta), 0\right)^p \, d\sigma(\zeta) \right)^{1/p} < \infty,$$

where ρ is the hyperbolic distance on D:

$$arrho(z,w)=rac{1}{2}\lograc{1+|arphi_z(w)|}{1-|arphi_z(w)|},\quad arphi_z(w)=rac{z-w}{1-ar{z}w}.$$

We set $\lambda(z) = \log \frac{1}{1-|z|}, z \in D$. Note that if ϕ is a holomorphic self map of D, then $\lambda \circ \phi$ is subharmonic in D and radial limit $\phi^*(\zeta) = \lim_{r \to 1} \phi(r\zeta)$ exists almost every $\zeta \in S$, so $\phi \in \rho H^p$ if and only if $\lambda \circ \phi^* \in L^p(S)$. Throughout, dA(z) denotes the Lebesgue area measure of D normalized to be A(D) = 1.

Along with [6, 10] for previous results on pullback theory, we refer to [3, 16] for Hardy space theory and [2, 15] for composition operator theory.

§2. Hyperbolic g-function

Our first subject is the Littlewood-Paley type g-function that characterizes the membership of ρH^p . See [4] and [6] for related previous works. We define, as in [4],

$$arrho g_{\phi}(\zeta) = \int_0^1 (1-r) \left(rac{|\phi'(r\zeta)|}{1-|\phi(r\zeta)|^2}
ight)^2 dr, \quad \zeta \in S.$$

As our first result, we have the following hyperbolic analogue of (1.1).

Theorem 2.1. Let 0 . Then

(2.1)
$$\|\varrho g_{\phi}\|_{L^{p}} \approx \|\lambda \circ \phi^{*}\|_{L^{p}}$$

for all holomorphic self map ϕ of D with $\phi(0) = 0$.

When p = 1, (2.1) follows immediately from the following.

204

A subharmonic Hardy class and Bloch pullback operator norms 205

Lemma 2.2. Let ϕ be a holomorphic self map of D and 0 .Then

$$\int_D \log rac{1}{|z|} \Delta (\lambda \circ \phi)^p(z) \, dA(z) \, pprox \, \|\lambda \circ \phi^*\|_{L^p}^p - \left(\lambda \circ \phi(0)
ight)^p.$$

For the proof of Theorem 2.1, we need several more techniques. We skip them and refer to [5].

$\S 3.$ Norm of the Bloch-pullback operators

We next pass to our second subject, the Bloch pullback. It is known that there is a Bloch function having radial limits at no points of S, while functions of H^p should have radial limits almost everywhere on S. This observation give rise to the problem of characterizing holomorphic self maps ϕ of D for which $f \circ \phi \in H^p$ for every Bloch function f. It is so called "Bloch - H^p pullback problem" and the Bloch-pullback operator (induced by a holomorphic self map ϕ of D) means the composition operator C_{ϕ} defined on the Bloch space \mathcal{B} by $C_{\phi}f = f \circ \phi$. H^p is a Banach space with norm $\|f\|_{H^p}$ when $1 \leq p < \infty$, while it is a Frechet space with the compatible metric $\|f\|_{H^p}^p$ when 0 . The following $characterization of the Bloch-<math>H^p$ pullback operator shows a connection between Hardy space and hyperbolic Hardy class.

Theorem A [4, 6]. Let $0 and <math>\phi$ be a holomorphic self map of D. Then C_{ϕ} maps \mathcal{B} boundedly into H^p if and only if $\phi \in \varrho H^{p/2}$.

As an application of Theorem 2.1, we moreover have the following theorem. Here, \mathcal{B}^0 denotes the subspace of \mathcal{B} consisting of $f \in \mathcal{B}$ with f(0) = 0.

Theorem 3.1. Let $0 and <math>\phi$ be a holomorphic self map of D with $\phi(0) = 0$. If we set $\|C_{\phi}\| = \sup \{\|C_{\phi}f\|_{H^p} : f \in \mathcal{B}^0, \|f\|_{\mathcal{B}} \leq 1\}$ then it satisfies

$$\|\mathcal{C}_{\phi}\| \approx \|\lambda \circ \phi^*\|_{L^{p/2}}^{1/2}.$$

The assumption that $\phi(0) = 0$ is not essential restriction in the sense that if \mathcal{C}_{ϕ} is bounded (or compact) then so is \mathcal{C}_{ψ} with $\psi = \varphi_{\phi(0)} \circ \phi$. Note also that $\mathcal{C}_{\phi} : \mathcal{B} \to Y$ is bounded if and only if $\mathcal{C}_{\phi} : \mathcal{B}^0 \to Y$ is bounded.

As a limiting space of H^p , a similar problem might be asked for *BMOA*. *BMOA*, the space of holomorphic functions of bounded mean

oscillation, consists of holomorphic f in D for which

$$\|f\|_{BMOA} = \sup_{a \in D} \left\{ \lim_{r \to 1} \int_{S} |f \circ \varphi_a(r\zeta) - f(a)|^2 \, d\sigma(\zeta) \right\}^{1/2} < \infty.$$

In parallel with BMOA, there defined is $\rho BMOA$ consisting of holomorphic self map ϕ of D for which

$$\|\phi\|_{\varrho BMOA} = \sup_{a \in D} \lim_{r \to 1} \int_{S} \varrho \left(\phi \circ \varphi_{a}(r\zeta), \phi(a)\right) \, d\sigma(\zeta) \, < \, \infty.$$

The classes $\rho BMOA$ as well as ρH^p were defined and studied mainly as a hyperbolic counterpart of the corresponding Euclidean classes by S. Yamashita [11, 12, 13], and later studied by several authors in connection with the composition operators.

Theorem B [7]. Let ϕ be a holomorphic self map of D. Then C_{ϕ} maps \mathcal{B} boundedly into BMOA if and only if $\phi \in \rho BMOA$.

Noting that the Möbius invariance of ρ implies $\rho(\phi \circ \varphi_a(z), \phi(a)) = \rho(\varphi_{\phi(a)} \circ \phi \circ \varphi_a(z), 0)$, it follows that $\phi \in \rho BMOA$ if and only if

$$\sup_{a\in D} \|\lambda\circ(\varphi_{\phi(a)}\circ\phi\circ\varphi_a)^*\|_{L^1}<\infty.$$

Since $\log |1 - \bar{\phi}(a)\phi \circ \varphi_a|$ is harmonic in D,

$$\|\lambda \circ (\varphi_{\phi(a)} \circ \phi \circ \varphi_a)^*\|_{L^1} = \|\lambda \circ (\phi \circ \varphi_a)^* - \lambda \circ \phi(a)\|_{L^1}$$

[7, (3.7)], so that the next theorem gives Theorem B. Here, as the norm of BMOA we take $|f(0)| + ||f||_{BMOA}$, which makes BMOA a Banach space.

Theorem 3.2. Let ϕ be a holomorphic self map of D with $\phi(0) = 0$. Then the operator norm of C_{ϕ} from \mathcal{B}^0 boundedly into BMOA satisfies

$$\|\mathcal{C}_{\phi}\| \approx \sup_{a \in D} \|\lambda \circ (\phi \circ \varphi_{a})^{*} - \lambda \circ \phi(a)\|_{L^{1}}^{1/2}.$$

VMOA, the space of holomorphic functions of vanishing mean oscillation, consists of holomorphic f in D for which

$$\lim_{|a|\to 1} \lim_{r\to 1} \int_S |f \circ \varphi_a(r\zeta) - f(a)|^2 \, d\sigma(\zeta) \, = \, 0.$$

206

In parallel to VMOA, $\rho VMOA$ is defined to consist of holomorphic self map ϕ of D for which

$$\lim_{|a|\to 1} \lim_{r\to 1} \int_{S} \varrho \left(\phi \circ \varphi_{a}(r\zeta), \phi(a)\right) \, d\sigma(\zeta) \, = \, 0.$$

We have

Corollary C [9]. Let ϕ be a holomorphic self map of D. Then C_{ϕ} maps \mathcal{B} boundedly into VMOA if and only if $\phi \in \rho VMOA$.

See [9] for previous study on $\rho VMOA$.

§4. More on Bloch-pullback operator norm

We give some more examples of Banach space Y and resolve Bloch-Y pullback problem by further evaluating the operator norm of $\mathcal{C}_{\phi} : \mathcal{B} \to Y$.

Let \mathcal{D} denote the space of holomorphic functions f in D satisfying

$$||f||_{\mathcal{D}} := \left(\int_{D} |f'(z)|^2 \ dA(z)\right)^{1/2} < \infty.$$

Then \mathcal{D} is a Banach space with the norm $|f(0)| + ||f||_{\mathcal{D}}$. Similarly, we let $\rho \mathcal{D}$ denote the space of holomorphic self map ϕ of D satisfying

$$\|\phi\|_{\ell\mathcal{D}} := \left(\int_D \frac{|\phi'(z)|^2}{(1-|\phi(z)|^2)^2} \ dA(z)\right)^{1/2} < \infty.$$

Then we have

Theorem 4.1. Let ϕ be a holomorphic self map of D. Then C_{ϕ} maps \mathcal{B} boundedly into \mathcal{D} if and only if $\phi \in \rho \mathcal{D}$. Moreover, if $\phi(0) = 0$ then the operator norm of C_{ϕ} from \mathcal{B}^0 boundedly into \mathcal{D} satisfies

$$\|\mathcal{C}_{\phi}\| \approx \|\phi\|_{\varrho\mathcal{D}}.$$

 H^{∞} , consisting of bounded holomorphic functions, is a Banach space with the norm $||f||_{H^{\infty}} = \sup_{z \in D} |f(z)|$, while ρH^{∞} is defined to consist of holomorphic ϕ of D for which $|\phi| < c$ for some c < 1.

Theorem 4.2. If ϕ be a holomorphic self map of D, then $C_{\phi} : \mathcal{B}^0 \to H^{\infty}$ is bounded if and only if $\phi \in \varrho H^{\infty}$. If $\phi(0) = 0$, then the operator norm of C_{ϕ} from \mathcal{B}^0 boundedly into H^{∞} satisfies

$$\|\mathcal{C}_{\phi}\| = \sup_{z \in D} \rho \circ \phi(z),$$

where ρ is defined by $\rho(w) = \rho(0, w) = \frac{1}{2} \log \frac{1+|w|}{1-|w|}, w \in D$.

E. Gun Kwon

Beyond H^{∞} , there are function spaces having smooth boundary conditions. We are going to mention about holomorphic Lipschitz spaces. For $0 < \alpha \leq 1$, we say, by definition, that $f \in Lip_{\alpha}$ if f is holomorphic in $D, f \in C(\overline{D})$, and satisfies the Lipschitz condition:

$$\|f\|_{Lip_{lpha}}:=\sup\left\{rac{|f(z)-f(w)|}{|z-w|^{lpha}}:z,w\in D,z
eq w
ight\}<\infty.$$

 Lip_{α} is a Banach space equipped with the norm $|f(0)| + ||f||_{Lip_{\alpha}}$. Several different (but essentially same) notions for Lip_{α} are used in the literature. We followed that of [2].

Corresponding to this, there is hyperbolic Lipschitz class of Yamashita [14]. We say, by definition, that $\phi \in \rho Lip_{\alpha}$ if ϕ is a holomorphic self map of $D, \phi \in C(\overline{D})$, and satisfies the hyperbolic Lipschitz condition:

$$\|\phi\|_{\varrho Lip_{lpha}} := \sup\left\{rac{arrho(\phi(z),\phi(w))}{|z-w|^{lpha}}: z,w\in D, z
eq w
ight\} < \infty.$$

We have

Theorem 4.3. Let $0 < \alpha \leq 1$ and ϕ be a holomorphic self map of D. Then $C_{\phi} : \mathcal{B} \to Lip_{\alpha}$ is bounded if and only if $\phi \in \varrho Lip_{\alpha}$. Further if $\phi(0) = 0$, then the operator norm of C_{ϕ} from \mathcal{B}^{0} boundedly into Lip_{α} satisfies

$$\|\mathcal{C}_{\phi}\| = \|\phi\|_{\varrho Lip_{\alpha}}.$$

For $1 \le p < \infty$ and $0 < \alpha < 1$, we say, by definition, that $f \in Lip_{\alpha}^{p}$ if $f \in H^{p}$ and satisfies the mean Lipschitz condition:

$$\|f\|_{Lip^p_{\alpha}} := \sup\left\{\frac{1}{t^{\alpha}}\left(\int_{S} |f(\eta\zeta) - f(\zeta)|^p d\sigma(\zeta)\right)^{\frac{1}{p}} : 0 < |1 - \eta| \le t\right\} < \infty.$$

 Lip^{p}_{α} is a Banach space equipped with the norm $\|\cdot\|_{H^{p}} + \|\cdot\|_{Lip^{p}_{\alpha}}$.

Corresponding to this, there is hyperbolic mean Lipschitz class of Yamashita [14]. We say, by definition, that $\phi \in \rho Lip_{\alpha}^{p}$ if ϕ is a holomorphic self map of D, $\rho(\phi^{*}) \in L^{p}(S)$, and ϕ satisfies the hyperbolic mean Lipschitz condition:

$$\|\phi\|_{\varrho Lip_{\alpha}^{p}} := \sup\left\{\frac{1}{t^{\alpha}}\left(\int_{S} \varrho\left(\phi(\eta\zeta), \phi(\zeta)\right)^{p} d\sigma(\zeta)\right)^{\frac{1}{p}} : 0 < |1-\eta| \le t\right\} < \infty$$

We have

Theorem 4.4. Let $1 \leq p < \infty$ and $0 < \alpha < 1$. Let ϕ be a holomorphic self map of D. Then $\mathcal{C}_{\phi} : \mathcal{B} \to Lip^{p}_{\alpha}$ is bounded if and only if $\phi \in \varrho Lip^{p}_{\alpha}$. Furthermore, if $\phi(0) = 0$, then operator norm of \mathcal{C}_{ϕ} from \mathcal{B}^{0} boundedly into Lip^{p}_{α} satisfies

$$\|\mathcal{C}_{\phi}\| \approx \|\lambda \circ \phi^*\|_{L^{p/2}}^{1/2} + \|\phi\|_{\varrho Lip_{\alpha}^p}.$$

References

- P. Ahern and J. Bruna, Maximal and area integral characterization of Hardy-Sobolov spaces in the unit ball of Cⁿ, Revista Mathematica Iberoamericana, 4 (1988), 123–153.
- [2] Carl C. Cowen and Barbara D. Maccluer, Composition operators on spaces of analytic functions, CRC Press, New York, 1994.
- [3] P. L. Duren, Theory of H^p spaces, Academic Press New York, 1970.
- [4] E. G. Kwon, Composition of Blochs with bounded analytic functions, Proc. Amer. Math. Soc., 124 (1996), 1473-1480.
- [5] E. G. Kwon, Hyperbolic g-function and Bloch pullback operators, J. Math. Anal. Appl., to appear.
- [6] E. G. Kwon, Hyperbolic mean growth of bounded holomorphic functions in the ball, Trans. Amer. Math. Soc., 355 (2003), 1269–1294.
- [7] E. G. Kwon, On analytic functions of Bergman BMO in the ball, Canad. Math. Bull., 42 (1999), 97–103.
- [8] Steven G. Krantz and Song-Ying Li, Area integral characterizations of functions in Hardy spaces on domains in Cⁿ, Complex Variables, 32 (1997), 373-399.
- [9] S. Makhmutov and M. Tjani, Composition operators on some Möbius invariant Banach spaces, Bull. Austral. Math. Soc., 62 (2000), 1–9.
- [10] W. Ramey and D. Ullrich, Bounded mean oscillations of Bloch pullbacks, Math. Ann., 291 (1991), 591–606.
- [11] S. Yamashita, Functions with H^p hyperbolic derivative, Math. Scand., 13 (1983), 238–244.
- [12] S. Yamashita, Holomorphic functions of hyperbolically bounded mean oscillation, Bollettino U.M.I.(6), 15-B (1986), 983–1000.
- [13] S. Yamashita, Hyperbolic Hardy class and hyperbolically Dirichlet finite functions, Hokkaido Math. J., Special Issue 10 (1981), 709–722.
- [14] S. Yamashita, Smoothness of the boundary values of functions bounded and holomorphic in the disk, Trans. Amer. Math. Soc., 272 (1982), 539–544.
- [15] K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990.
- [16] A. Zygmund, Trigonometric series, Cambridge Univ. Press, London, 1959.

Ern Gun Kwon Department of Mathematics Andong National University Andong 760-749 S. Korea E-mail address: egkwon@andong.ac.kr