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Quasisymmetric extension, smoothing and 
applications 

Jang-Mei Wu 

Abstract. 

We discuss quasisymmetric extension of embeddings that are 
close to similarities, due to Tukia and Viiisiilii, and smooth quasi­
conformal approximation of such extensions. The smoothing is done 
by convolution with a variable kernel in conjunction with the Tukia­
Viiisiilii extension procedure. We can apply these to the study of 
branch sets of smooth quasiregular maps, and quasiconformal dimen­
sion of self-similar fractals. 

§1. Branch sets of smooth quasiregular maps 

A continuous mapping f : D ---> R n in the Sobolev space W1~';' ( D, R n) 
is K -quasiregular, K 2: 1, if 

a.e. xED. 

Here n 2: 2, D c Rn is a domain, lf'(x)l is the operator norm of the 
differential off, and J1(x) = det f'(x) is the Jacobian determinant. In 
the plane, 1-quasiregular maps are precisely analytic functions of a single 
complex variable. Quasiregular mappings were introduced by Yu. G. 
Reshetnyak [25] under the name "mappings of bounded distortion". A 
deep theorem of Reshetnyak states that nonconstant quasiregular maps 
are discrete and open. See [26] for historical accounts. 

The branch set B f of a continuous, discrete, and open mapping 
f : D ---> R n is the closed set of points in D where f does not define 
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a local homeomorphism. Cernavskil [9], [10] proved that the topological 
dimensions of the branch set and its image satisfy 

dimBt = dimf(Bt) ~ n- 2. 

The possible values of the topological dimension of branch sets of quasi reg­
ular maps are unknown. 

On the other hand, if Bt is not empty, then An-2 (f(Bt)) > 0 by 
a theorem of Martio, Rickman and Viiisiilii [23], and An-2(Bt) > 0 
when n = 3 by a result of Martio and Rickman [22]. Here Ar is the 
r-dimensional Hausdorff measure. 

Branch sets of quasiregular mappings may exhibit complicated topo­
logical structure and may contain, for example, many wild Cantor sets 
of classical geometric topology. For recent developments and many in­
teresting open questions, see [14], [15], [16], [27]. 

Quasiregular mappings of R 2 can be smooth without being locally 
homeomorphic, for example, f(z) = z2• When n ~ 3, sufficiently smooth 
nonconstant quasiregular mappings are locally homeomorphic. 

Theorem 1.1. Every nonconstant cn/(n-2l-smooth quasiregular 
mapping must be locally homeomorphic when n ~ 3. 

Theorem 1.1 is due to Martio, Rickman and Viiisiilii [26, p. 12]; the 
exponent n/(n-2) is derived from Morse-Sard Theorem and the theorem 
on An-2 (f(Bt)) mentioned earlier. Church [11] has proved Theorem 1.1 
for en mappings. 

In [34], Viiisiilii asked whether C 1-smoothness implies local homeo­
morphism in Theorem 1.1. Work of Bonk and Heinonen [6] showed that 
the exponent nj(n- 2) in Theorem 1.1 is sharp when n = 3. 

Theorem 1.2. For every E > 0, there exists a c 3-•-smooth quasireg­
ular mapping F : R 3 ---. R 3 whose branch set B F is homeomorphic to 
R 1 and has Hausdorff dimension 3- <I"( E) with <I"( E)---. 0 as E---. 0. 

It is proved in [19] that the exponent nj(n- 2) in Theorem 1.1 is 
sharp when n = 4; and the authors answered Viiisiilii's question in the 
negative for all dimensions. 

Theorem 1.3. For every E > 0, there exists a c 2-•-smooth quasireg­
ular mapping F : R 4 ---. R 4 whose branch set Bp is homeomorphic to 
R 2 and has Hausdorff dimension 4- 2E. For any n ~ 5, there exists 
E(n) > 0 and a cl+<(n)_smooth quasiregular map F: Rn ___. Rn whose 
branch set Bp is homeomorphic to Rn-2 . 

Bonk and Heinonen first constructed a quasiconformal mapping 9 
in R 3 with uniformly expanding behavior on a line L. Then 9 is ap­
proximated outside L by a C 00-smooth quasiconformal mapping G by 
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applying a theorem of Kiikka on smoothing [21]. The map a-1 has the 
correct order of smoothness on R 3 ; postcomposing a-1 with a winding 
map produces the desired quasiregular map F. As explained in [6], it 
is unclear how to construct a quasiconformal mapping g in R n, n ~ 4, 
which is uniformly expanding on co dimension two subspaces. Moreover, 
the smoothing procedure of Kiikka works in dimensions 2 and 3 only. 

We discuss these issues and related topics on quasisymmetric exten­
sion, smooth approximation, existence of snowflake surfaces and quasi­
conformal deformation of self-similar fractals in the following sections. 

§2. Quasiconformal extensions 

One of the most important results on quasiconformal mappings is 
the Extension Theorem. 

Theorem 2.1. Every quasiconformal mapping f : Rn-1 --+ Rn- 1 

( quasisymmetric if n = 2) has a quasiconformal extension in R+. = 
Rn- 1 X [0, oo). 

This was proved by Beurling and Ahlfors [2] for n = 2, later by 
Ahlfors [1] for n = 3 and by Carleson [8] for n :S 4. Finally, Tukia and 
Vaisala [30] proved the Extension Theorem for all n ~ 2. 

Ahlfors showed that every planar quasiconformal map is a com­
position of mappings with dilatation arbitrarily close to 1, and that 
mappings in the plane with small dilatation can be extended to quasi­
conformal homeomorphisms of R 3 . Whether any quasiconformal map 
in dimension 3 or higher can be decomposed into mappings of dilatation 
arbitrarily close to 1 remains unanswered. Carleson constructed a piece­
wise linear approximation g of f, extended g to R+. , and performed a 
limiting process. The approximation of Moise used is valid for dimen­
sions 2 and 3 only. Tukia and Vaisala extended the given map on R n-1 

to a homeomorphism in R+., then applied an approximation procedure 
of D. Sullivan to obtain the quasiconformality. 

Extending .a quasisymmetric homeomorphism defined on a subset of 
R n to a quasiconformal homeomorphism of R n can be difficult and is not 
always possible. For example, a smooth homeomorphism from a circle 
onto a knotted curve in R 3 can not be extended to a homeomorphism of 
R 3 for a topological reason; certain smooth homeomorphisms between a 
Jordan curve with two inward spikes and a Jordan curve with one inward 
spike and one outward spike can not be extended to be quasiconformal 
on R 2 for an analytical reason. 

To study extension of quasisymmetric maps on subsets of R n, Tukia 
and Vaisiilii [31], [35], introduced the notion of s-quasisymmetric maps, a 
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restricted class of quasisymmetric maps which are locally uniformly close 
to similarities, and the notion of quasisymmetric extension property . 

An embedding f : X ~ Y of metric spaces is called s-quasisymmetric 
(s-QS), iff is quasisymmetric and satisfies 

If( a)- f(x)l :S (t + s)if(b)- f(x)l 

whenever a, b, x E X with Ia - xi ::::; tjb- xi and t ::::; 1/ s for some 
s > 0. When X is a connected compact subset of RP and Y = Rn 
with 1 ::::; p ::::; n, the above definition is equivalent to the existence of 
a small x > 0 so that for every bounded S C X, there is a similarity 
h: RP ~ Rn so that 

(2.2) llh- fils :S xL(h) diamS, 

where L(h) is the similarity ratio. 
A subset A ofRn has the quasisymmetric extension property (QSEP) 

in Rn if every s-QS f: A~ Rn has an s1-QS extension g: Rn ~ Rn 
whenever 0 < s ::::; s0 (n, A), where s1 = s1 (s, n, A) ~ 0 as s ~ 0. See 
[35, p. 239]. Since the extended map is quasisymmetric, it is necessarily 
quasi conformal. 

It is not easy to determine whether a given set possesses the exten­
sion property. Thkia and Vaisala proved the following. 

Theorem 2.3. Let A be a subset of Rn, n ~ 2, belonging to one 
the following classes: 

(a) RP or SP, with 1 ::::; p ::::; n - 1, 
(b) A a closed thick set in RP,1 ::::; p ::::; n such that either A or 

RP \ A is bounded, 
(c) a compact ( n - 1) -dimensional C 1 -manifold with or without 

boundary, 
(d) a finite union of simplices of dimensions n and n- 1. 

Then A has the quasisymmetric extension property in R n. 

A set A C RP is thick in RP if there are constants r0 > 0 and (3 > 0 
so that if 0 < r ::::; r0 and y E A, then there is a simplex ~ in RP with 
~0 cAn B(y, r) and AP(~) ~ (3rP. 

We outline the Thkia-Vaisala extension procedures in the case when 
A is a thick set satisfying (b) in Theorem 2.3 with p = n. Let f be an 
s-quasisymmetric map defined on A and W be a fixed Whitney triangu­
lation of R n \A. At each vertex P of a simplex in W, choose h p, a sim­
ilarity that approximates the mapping f on the ball B(P, C dist(P, A)) 
nA, for some fixed C > 1, uniformly in the sense of (2.2); then de­
fine f(P) to be hp(P). After f has been defined at all vertices in W, 
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extend f by the unique affine extension in each simplex in W. Since 
A is thick, information of f on A is abundant and is sufficient to show 
the consistency of the affine maps associated with neighboring simplices. 
Since f is locally uniformly close to similarities and A or R n \A is rela­
tively compact, degree theory can then be applied to prove f is injective, 
surjective and sense preserving when s is small. Intricate estimates cou­
pled with the thickness condition guarantee that the extension is indeed 
s1 -quasisymmetric. 

The extension procedure and the estimates are sensitive to the na­
ture of the sets; for each class of the sets in Theorem 2.3, the proof has to 
be somewhat altered. Examples of sets which do not have the extension 
property are give in [35]. 

It would be interesting to know to what extent the thickness condition 
can be weakened. And it was asked in [35], whether the manifold in (c) 
and the simplices in (d) can have dimension p :::= n - 2, and whether 
every compact polyhedron in R n has QSEP. 

Tukia-ViiisaJii extension procedure is especially useful in extending 
quasisymmetric maps on fractals, when the mappings in question are 
more likely to be compositions of close-to-similarities. We shall apply 
Theorem 2.3 to study Theorem 1.3 in section 5, and quasiconformal 
dimension of Sierpinski gaskets in section 6. 

§3. Smoothing 

Quasi conformal mappings in R 2 or R 3 can be approximated by coo­
diffeomorphisms. Kiikka [21] proved the following. 

Theorem 3.1. Let g : D ----+ D' be a K -quasiconformal mapping 
between domains in R n, n = 2 or 3. Then for any positive continuous 
function r: on D, there exists a K -quasiconformal coo -diffeomorphism g 
such that l9(x) - g(x)l < r:(x) for all x E D. The constant K depends 
only on K. 

In the proof, Kiikka used difficult work of Moise and of Munkres 
on smooth approximation of piecewise differentiable homeomorphisms, 
when dimension is 2 or 3. This kind of approximation for general qua­
siconformal maps can not exist for dimension higher than 5 [29], and is 
a long standing open question in dimension 4 [13]. 

Let A be a set in a class described in Theorem 2.3, and g be a 
s-quasisymmetric map on A with a very small s. Tukia-Viiisiilii 's con­
struction guarantees a quasi conformal extension, again called g, to R n. 

Sometimes it is desirable to have a smooth extension outside A. To 
this end, we convolve g with a variable kernel. Let /)A be a regularized 
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coo distance function to A, see for example, [28, p. 170]. Fix a coo 
function r.p on Rn which is nonnegative, radial, supported in B(O, 1), 

and satisfies JR" r.p(x) dx = 1, supR" I~ I ::::; C, supR" la:)'L I ::::; C. 
Then the map 

{
_ 1_ f g(y)rn(x-y)dy xERn\A, 

G(x) = oA(x) }Rn 't' OA(x) ' 
g(x), x E A 

is C 00-smooth outside A. 
Smoothing by convolution, in general, does not preserve injectiv­

ity or quasiconformality. To obtain injectivity, quasiconformality, and 
the correct order of smoothness, convolution must be applied in con­
junction with the Tukia-Viiisiilii construction. Closeness to similarities 
uniformly at all points on A and in all scales assures the essential in­
equalities required more or less preserved after convolution, whence the 
quasiconformality. See [19] for details. 

Sometimes it is further necessary to know that an extension or its 
inverse is smooth in the entire R n. While this is not always possible, 
we discuss one particular situation when this can be done. Let g be 
the restriction of the quasiconformal mapping in Theorem 4.1 to the 
hyperplane Rn- 1 on which the snowflake property holds, and A be its 
image. When E is very small, g is s-QS for a very small s. We can re­
extend g to a global quasi conformal map on R n following Tukia-Viiisiilii 
method; then apply convolution to this newly extended map to obtain 
a map G : Rn __,. Rn that agrees with g on Rn- 1 and is coo outside. 
The snowflake property of g on R n-1 ensures that A is a thick set and 
that the gradient of g-1 is Holder continuous on A. The function c-1 

can then be shown to be C1+6 in the entire R n for some o > 0. Again 
see [19] for details. 

§4. Snowflake Embeddings 

Existence of quasisymmetric embedding f of Rn- 1 in Rn that has 
the snowflake property: 

c-1 lx- Yl¢(1x- yl)::::; lg(x)- g(y)l::::; Glx- Yl¢(1x- Yl), 

for some ¢(t) __,. oo as t __,. 0, was raised in [17]. Existence of snowflake 
embeddings that can be further extended to become quasiconformal on 
Rn has been proved by Bishop [5], and David and Toro [12]. A spe­
cial case of a theorem on embedding Reifenberg flat metric spaces into 
Euclidean spaces due to David and Toro can be stated as follows. 



Quasisymmetric extension, smoothing and applications 97 

Theorem 4.1. For each n :::: 2 and 0 < f < t:o{n), there exists a 
K -quasiconformal map g : R n ___. R n with 

c-1lx- Yl 1/(l+e) :S lg(x)- g(y)i :S Glx- Yl 1/(l+e) 

for all x, y E Rn-1, lx- Yl :::; 1 and some C = C(n) > 1 . Furthermore, 
K ___. 1 as f ___. 0. 

The exponent in Theorem 4.1 necessarily satisfies 1/{1 + t:) > (n- 1)/n. 
The method of David and Toro is incisive, however does not give esti­
mates of the number t:o{n). It is not clear whether the exponent can 
be made arbitrarily close to (n- 1)/n; equivalently, whether there is 
a snowflake embedding of Rn-1 to a surface in Rn having Hausdorff 
dimension arbitrarily close to n. 

It is generally believed that in order to show the order of smoothness 
is sharp in Theorem 1.1, a snowflake embedding from Rn-2 to a surface 
in Rn having Hausdorff dimension arbitrarily close ton must be found. 
In R 4 , product of two planar snowflake curves is the image of a snowflake 
embedding from R 2• The method of taking products breaks down for 
n:::: 5. 

Therefore, it is not only intrinsically interesting but also useful to 
know whether there is a nearly space filling snowflake embedding from 
RP into Rn for every p, 1 :::; p < n. Paradoxically, this might be more 
easily achieved by subspaces RP of a smaller dimension. Method of Bonk 
and Heinonen in [6] gives an affirmative answer for the case p = 1. 

§5. Theorem 1.3 

When n = 4, let r be a standard infinite snowflake curve of Haus­
dorff dimension 2 - f . The product set r X r is to be the branch set 
of a C2-'-smooth quasiregular map F. Note that there is a canonical 
map g from R 2 to r X r. This map can be written as a composition g = 
gm-1 o· · ·ogo such that each gj satisfies a snowflake property, has a prod­
uct of snowflake curves as its image, and is s-quasisymmetric for a small 
s. Construction of Tukia and Viiisiilii for part (a) and {b) of Theorem 
2.3 can be adapted to extend gj to be quasiconformal on R 4 . Smooth­
ing outside products of snowflake curves via convolution with a variable 
kernel produces new quasiconformal maps Gj. The inverses Gj1 can be 
shown to be Cl+'i for some Ej > 0, in the entire R 4 , following the reason­
ing in Section 3. Postcompose the inverse of Gm-1 o Gm-2 o · · · o Go with 
a winding map w: R 4 ___. R4 , w(x1.x2 ,r,O) = (x1 ,x2 ,rcos20,rsin20), 
yields the desired c 2-'-quasiregular map F, having r X r as its branch 
set. 
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The method of taking products does not work in R n, n "2: 5, unless 
there exists an appropriate embedding of the (n - 2)-fold product f X 

... X r--+ Rn. For n "2: 5, Theorem 4.1 of David-Taro [12] provides a 
snowflake-type embedding g : Rn- 2 '--+ I: C Rn-l. Embed both Rn- 2 

and the image I: in R n, and extend g directly to a glo hal quasi conformal 
map on Rn by applying part (a) of Theorem 2.3. Smooth the extension 
outside Rn- 2 by a convolution, then postcompose the inverse with a 
winding map. The codimension two snowflake-type surfaces I: C Rn 
can then be realized as the branch set of a Cl+E(n)_smooth branched 
quasiregular map in Rn, n "2: 5. This answers Vaisala's question in the 
negative for all dimensions. 

See [19] for details. 

§6. Quasiconformal dimension of some self-similar sets 

Problems on raising or lowering Hausdorff dimension of sets in R n 

through quasiconformal homeomorphism of R n have been studied for 
some time. Bishop [3] showed that for sets of positive dimension there is 
never an obstruction to raising dimension by quasiconformal maps. In 
fact, for any compact set E in Rn with dim(E) > 0 and any 0 < 1 < n 
there is a quasisymmetric map h: Rn--+ Rn such that dim(h(E)) > r· 
On the other hand, examples of Bishop and Tyson [4] [32] showed that 
the corresponding statement for lowering dimension can fail. 

Given a metric space (X, d), the notion of conformal dimension was 
introduced by Pansu [24]: 

C dim X = inf{ dim Y : (Y, d) quasisymmetrically equivalent to(X, d)}. 

A variety of problems on conformal dimension has been studied; some 
have applications to geometric group theory. See, for example, work of 
Bonk-Kleiner [7] and Keith-Laakso [20] . Less studied is the quasicon­
formal dimension of a set E in R n defined as follows [33]: 

QC dimE = inf {dim f (E) : f quasiconformal homeomorphism of R n}. 

Clearly, 

topological- dimE ::; C dimE ::; QC dimE ::; Hausdorff- dimE. 

Analysis on self-similar fractals has been actively pursued in recent 
years. Sierpinski gasket due to its simplicity, and Sierpinski carpet due 
to its appearance in the boundary of Gromov hyperbolic groups [18] are 
particularly intriguing. One of the most challenging questions in this 
area is to determine the conformal dimension and the quasiconformal 
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dimension of the Sierpinski carpet in R n, for any n 2': 2. The analogous 
problem on the Sierpinski gasket sen in Rn is easier [33]. 

Theorem 6 .1. For each n 2': 2, QC dim Sen = 1. 

Recall that topological dimension of sen is 1 and Hausdorff dimen­
sion of sen is 101~~~ 1 ). Theorem 6.1 says that sen can be mapped by 
quasiconformal self-maps of Rn onto sets of Hausdorff dimension arbi­
trarily close to its topological dimension. 

The conclusion of Theorem 6.1 remains true for the invariant sets of 
a large class of postcritically finite iterated function systems satisfying 
a so-called gasket type property [33]. 

We describe the role of Thkia-Vaisala extension in studying quasi­
conformal dimension of fractals. Depending on the nature of the invari­
ant set S in R n, a quasisymmetric map f is selected to map S onto the 
invariant set of an isomorphic function system having a smaller Haus­
dorff dimension. Selection of f is largely based on intuition; this step 
gives an upper bound of the conformal dimension of S. To obtain an 
upper bound for the quasiconformal dimension, f needs to be extended 
to be quasi conformal on R n. Imagining extending a map from the Sier­
pinski gasket in R 3 to R 3 by hand, it can be quite a task; Thkia-Vaisala 
extension procedure makes this process manageable. Under some extra 
conditions, the canonical map between invariant sets of two isomorphic 
systems can be decomposed into s-quasisymmetric maps, for a very small 
s. To do this a flow of function systems has to be produced so that the 
corresponding invariant sets are isotopic. Sums of orthogonal maps are 
not orthogonal. Therefore the flow can not be expressed algebraically 
as linear combinations; it has to be built geometrically and combinato­
rially. The construction of the flow can be quite daunting even for the 
Sierpinski gasket in R 3 , or a polygasket in R 2 [33]. Finally the Thkia­
Vaisala procedure is applied to each of the maps in the decomposition, 
then the extensions are recomposed. 
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