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Abstract. 

The aim of this note is to summarise some of the approaches 
to extending Sobolev space theory to metric measure spaces. In 
particular, we will give a brief survey of Hajlasz-Sobolev, Newton
Sobolev, and the Korevaar-Schoen type Sobolev spaces on metric 
measure spaces. 

§1. Introduction 

Many developments in the study of quasiconformal mappings and 
quasiregular mappings between domains in manifolds were aided by 
Sobolev space theory. The groundbreaking paper [19] by Heinonen and 
Koskela already had indications that an analog of Sobolev space the
ory for metric measure spaces is desirable in the study of quasiconfor
mal mappings. Meanwhile, certain degenerate elliptic partial differential 
equations were reformulated in terms of elliptic partial differential equa
tions on Carnot groups such as the Heisenberg groups and were then 
studied using modifications of standard techniques of elliptic PDE the
ory; see for example [16], [15], [11], [7], and the references therein. It 
was therefore clear that a viable Sobolev space theory on metric measure 
spaces would aid in further development of the study of quasiconformal 
mappings between metric measure spaces and of the study of a wide 
class of partial differential equations. 
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Using a characterization of Sobolev functions on Euclidean spaces, 
Hajlasz formulated a theory of Sobolev type function spaces on metric 
measure spaces in [12]; this theory was developed further in [13] and 
[9]. Following the definition of upper gradients given by Heinonen and 
Koskela in [19], the author and Cheeger independently proposed a the
ory of Sobolev type spaces on metric measure spaces; see [37] and [8]. 
Concurrently, using the theory of strongly local Dirichlet forms as a 
model, Korevaar and Schoen developed a theory of Sobolev mappings 
from Riemannian domains into metric space targets in [29], and they 
used this theory to study harmonic mappings in [30]. Their approach 
was modified by Koskela and MacManus in [33] to obtain another version 
of Sobolev type space of functions on metric measure spaces; see also 
[34] for a discussion connecting this Korevaar-Schoen type Sobolev space 
theory with the theory of Dirichlet forms on metric measure spaces. 

In this note we will describe the above-mentioned function spaces 
and the connections between them without proofs. This note is arranged 
as follows. The next section will summarise the notations used through
out this paper. The third and fourth sections will discuss the Hajlasz 
and Newtonian approaches to defining Sobolev type spaces on metric 
measure spaces. The final section will describe a Korevaar-Schoen ap
proach to constructing Sobolev type spaces on metric measure spaces 
and discuss the relationships between the three Sobolev type spaces 
under certain conditions. While no proofs are provided in this note, 
references to articles where the proofs can be found are given. However, 
the references given are not exhaustive, and many good references are 
left out for brevity of exposition. 

§2. Notations 

In this note X = (X, d, p,) denotes a metric measure space with 
metric d and measure p,. Given r > 0 and x E X, the (open) metric 
ball centered at x with radius r is denoted B(x, r). We will assume 
throughout that J-l is a Borel regular measure such that bounded sets 
have finite measure and non-empty open sets have positive measure. 
The Lebesgue measure of sets A C lRn is denoted IAI. 

We fix an index 1 :::; p < oo. Measurable functions f : X --+ lR are 
said to be in the class LP(X) if the integral llflli,P(X) := fx IJIP dp, is 

finite. We say that f E Lfoc(X) iff E LP(Y) for every bounded subset 
Y C X. The integral average of a function f E Lfoc(X) on a measurable 
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set A c X with J.L(A) > 0 is denoted fA: 

fA:= J.L(~) i f(y) dJ.L(y). 

Given functions f E Lf0 c(X), we define the Hardy-Littlewood maximal 
function M f on X by 

Mf(x) =sup IJIB(x,r)· 
r>O 

The measure J.L is said to be doubling if there is a constant C ~ 1 such 
that for every x EX and r > 0 we have J.L(B(x, 2r)) :=:; C J.L(B(x, r)). The 
standard Lebesgue measure on JR_n for example is a doubling measure. 
It is known that if J.L is a doubling measure, then the Hardy-Littlewood 
maximal function operator M: LP(X)-+ LP(X) is a bounded sublinear 
operator for all p > 1; see for example [17]. Furthermore, M: L 1 (X)-+ 
wk-L1(X) boundedly. Here wk-L1(X) is the collection of all functions 
f on X for which there is a constant C f > 0 such that for all t > 0, 

J.L({x EX : lf(x)l ~ t}) :=:; ~~. 

The norm on wk- £ 1 (X) is obtained by associating to each function f 
in this class the infimum/minimum of all such numbers Ct. 

A metric space is said to be proper if closed and bounded subsets 
of the space are compact in the metric topology. An easy topological 
argument shows that if X is a complete metric space and J.L is a doubling 
measure on X then X is proper. 

§3. The Hajlasz-Sobolev spaces 

The following theorem was proven by Hajlasz in [12]. Recall that 
a domain n is a p-extension domain if and only if there is a bounded 
linear extension operator E: W 1·P(!1) -+ W 1 ·P(JR.n) with Ef = f on n. 

Theorem 3.1 {Hajlasz). Let n c IR.n be a bounded domain or n = 
IR.n, and 1 < p < oo. Suppose in addition that n is a p-extension domain. 
Then a function f : !1 -+JR. is in the class W 1·P(O) if and only if there 
is a non-negative function g E LP(JR.n) and a set Z c n with IZI = 0 
such that whenever X, y E !1 \ Z, 

(3.1) lf(x)- f(y)l :=:; lx- Yl (g(x) + g(y)) · 
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The function g is called a Hajlasz gradient of f. For functions f E 
W 1,P(JR!.n) it can be shown via a "telescoping sequence of balls" argument 
that MIY' fl is a Hajlasz gradient of f. 

It is clear that equation (3.1) can be used to extend the notion of 
Sobolev spaces to metric measure spaces. This is done in [12] as follows. 

Definition 3.1. Given a function f : X --) IR!., we say that a non
negative function g: X --) lR!. is a Hajlasz gradient for f if there exists a 
set Z C X with J-L(Z) = 0 so that whenever x, y EX\ Z, 

(3.2) lf(x)- f(y)l :S d(x, y) (g(x) + g(y)). 

For functions f E £P(X) we define the Hajlasz-Sobolev norm off by 

IIJIIM'·P(X) := IIJIILP(X) + inf llgiiLP(X), 
g 

where the infimum is taken over all Hajlasz gradients goff. We denote 
by M 1 ,P(X) the collection of all (equivalence classes of) functions f E 

LP(X) for which the norm IIJIIMl,p(X) is finite. 

Lipschitz functions in M 1 ,P(X) form a dense subclass of M 1,P(X). 
If the measure J-L is doubling, then functions in the class M 1 ,P(X) always 
satisfy a weak (1,p)-Poincare inequality: there are constants C > 0 and 
>. ::::: 1 such that for all f E M 1,P(X) and all Hajlasz gradients g E LP(X) 
off, 

1 1 ( )
1~ 

lf-fB(xr)ldM < Cr gPdj.L 
J-L(B(x, r)) h(x,r) ' - J-L(B(x, >.r)) h(x,>-.r) 

whenever B(x, r) C X is a ball in X with radius r. Such Poincare 
inequalities play a crucial role in potential theory. For example, using 
such inequalities it can be shown that solutions to the Dirichlet problem 
with boundary data from M 1 ,P(X) always exist. Poincare inequalities 
are also useful in the study of p-extension domains; see [14] for an elegant 
discussion of extension and trace theorems. 

It should be noted however that by definition, if f E M 1 ,P(X) and 
FE LP(X) such that F = f J-L-a.e. in X, then FE M 1 ,P(X). This is one 
of the differences between the Hajlasz-Sobolev space and the Newton
Sobolev space discussed in the next section. Another crucial difference 
is as follows. If U C X is a non-empty open set and f E M 1 ,P(X) is 
constant on U, it is not clear that we can choose a Hjlasz gradient g of 
f in £P(X) so that g = 0 J-L-a.e. in U. Such a truncation property for 
gradients is crucial in the current techniques used in the study of PDEs; 
for example, the truncation property is essential in the Nash-Moser proof 



Sobolev-type spaces 81 

and in the DeGiorgi proof of Harnack inequalities for energy minimizers 
and harmonic functions, and the lack of this truncation property in the 
Hajlasz-Sobolev space makes the related potential theory difficult. 

§4. Newtonian spaces 

In [19], Heinonen and Koskela propose an alternative to distribu
tional derivatives in the setting of metric measure spaces. Recall that 
if f : JRn ---) lR is a C 1-function, then by the fundamental theorem of 
calculus, for every pair of points x, y E JRn and every rectifiable curve"( 
joining x and y in JRn, 

( 4.1) lf(x)- f(y)l ::=:: 11\7 !Ids. 

However, if 0 c ]Rn is a domain and f E W 1·P(O), then the collection 
of non-constant compact rectifiable curves 'Y in 0 for which ( 4.1) fails 
is a zero p-modulus collection of curves; that is, there is a non-negative 
Borel measurable function p0 E £P(O) such that for every such curve 'Y 
we have J'Y p0 ds = oo. Using this fact as a motivation, Heinonen and 
Koskela proposed the following alternative to distributional derivatives 
for functions on metric measure spaces. 

Definition 4.1. A family r of non-constant compact rectifiable 
curves in a metric measure space X is said to be a zero p-modulus family 
if there exists a non-negative Borel measurable function p0 E £P(X) such 
that for all curves"( E f the path integral f'Y Pods = oo. Given a function 
f : X ---) JR, we say that a non-negative Borel measurable function p on 
X is an upper gradient of f if for all non-constant compact rectifiable 
curves "( in X, 

(4.2) lf(x)- f(y)l ::=:: 11\7 !Ids. 

Here x and y denote the endpoints of"(. If (4.2) fails only for a zero 
p-modulus family of curves, then we say p is a p-weak upper gradient of 

f. 

It can be shown that iff is a Lipschitz function on X, then the local 
Lipschitz constant function p given by 

p(x) = limsup lf(y)- f(x)l 
y-+x d(y, x) 
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is an upper gradient of f; see [17]. On the other hand, if (Pn)n is 
a sequence of upper gradients of a function f on X such that each 
Pn E LP(X) and Pn --+ p in LP(X), then the Borel function p, though 
may not be an upper gradient off, is necessarily a p-weak upper gradient 
off; see for example the discussion in [23]. 

Using the above definition of p-weak upper gradients given in [19], 
the author proposed in [37] the following version of Sobolev spaces, called 
Newtonian spaces. 

Definition 4.2. Given a function f : X --+ lR such that f belongs 
to an equivalence class in £P(X), the Newtonian norm off is given by 

where the infimum is taken over all upper gradients (or equivalently, all 
p-weak upper gradients) of f. We say that two functions h, h on X are 
equivalent, denoted h "' h, if llh - hiiNl·P(X) = 0. It is easy to see 
that "' defines an equivalence class on the collection of all functions f 
on X for which llfiiNl,p(X) is finite. The Newton-Sobolev space N 1·P(X) 
is the collection of all such equivalence classes of functions. 

It can be shown that N 1·P(X), equipped with the above norm, is in
deed a lattice and a normed vector space that is also a Banach space; see 
[37]. It should be noted that perturbations of functions in the Hajlasz 
space M 1·P(X) on sets of 11-measure zero are again in the Hajlasz space, 
and hence it is easy to see that M 1·P(X) is a Banach space. How
ever, perturbations offunctions from N 1·P(X) on sets of 11-measure zero 
usually does not yield a function in N 1·P(X); therefore the proof that 
N 1·P(X) is a Banach space is more involved. On the other hand, if two 
functions h and h are in N 1·P(X) and h = h 11-a.e. we can see that 
h "'hand hence they belong to the same equivalence class in N 1·P(X). 

Using the techniques found in the book [36] by Ohtsuka, it can be 
shown that whenever X is a domain in JRn, equipped with the Euclidean 
metric and the standard Lebesgue measure, N 1·P(X) = W 1·P(X) both 
isometrically and isomorphically; see [37]. 

Given f E N 1·P(X), there are infinitely many p-weak upper gradi
ents for f in £P(X). Indeed, if p is a p-weak upper gradient of f and 
g E £P(X) is a non-negative Borel measurable function, then p + g is 
also a p-weak upper gradient of f. The following lemma is very useful 
in associating to each f E N 1·P(X) a unique p-weak upper gradient. 

Lemma 4.1. Let f E N 1·P(X). Then the collection of all p-weak 
upper gradients off in LP(X) forms a convex subset of LP(X). If 1 < 
p < oo, then there is a unique p-weak upper gradient p f E £P(X) off 
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such that whenever p E LP(X) is another p-weak upper gradient off, 
we have Pi ::; p p,-a.e. 

Such a p-weak upper gradient is called the minimal p-weak upper 
gradient of f. 

The following lemma shows that the truncation property holds true 
for the class N 1·P(X). 

Lemma 4.2. If U C X is a closed or an open set and f E N 1·P(X) 
such that f is constant p,-a. e. in U, then pi = 0 p,-a. e. in U. 

On the other hand, unlike the Hajlasz-Sobolev class, functions in 
N 1 ·P(X) need not satisfy a Poincare inequality. We say that N 1·P(X) 
satisfies a weak (1,p)-Poincare inequality on X if there exist constants 
C > 0 and .A::::: 1 such that whenever f E N 1·P(X) and B(x, r) is a ball 
in X, 

1 I I 1 v ( ) 

1/p 

f-fB(xr) dp,<Cr pdp, 
p,(B(x, r)) h(x,r) ' - p,(B(x, .Ar)) hcx,>.r) i 

Clearly, if X has no non-constant compact rectifiable curve, then 0 
would be an upper gradient for every function on X; in this case, 
N 1•P(X) = LP(X), and for every f E N 1,P(X) we have Pi = 0. In 
this event the above inequality can not be satisfied. Examples of such 
metric spaces include the so-called snow-flaked Euclidean space X = JRn 
with metric d(x, y) = lx- YIE for some fixed 0 < t < 1. Other examples 
of metric spaces where Poincare inequalities do not hold for N 1·P(X) 
include certain fractal sets such as the Sierpinski gasket. However, there 
are many examples of non-Euclidean metric measure spaces supporting 
a Poincare inequality; see [35], [6], [32], [31], and the references therein. 
Given that functions from N 1·P(X) and their upper gradients satisfy 
the truncation property of Lemma 4.2, whenever the measure on X is 
doubling and X supports a weak (1,p)-Poincare inequality, many of the 
classical methods of analysing harmonic functions in Euclidean domains 
can be modified to study energy minimizers and p-harmonic functions 
on domains in X; see for example [27], [26], [25], [28], [5], [4], [38], [3], 
[21], and [22]. 

While in general the Banach space N 1·P(X) may not be reflexive, 
the following weak closure result from [23] demonstrates that one can 
almost apply Mazur's lemma to bounded sequences in N 1·P(X). 

Lemma 4.3. Let 1 < p < oo. If X is complete and (!1)1 is a 
sequence of functions in LP(X) with upper gradients (g1 )1 in LP(X), such 
that f1 weakly converges to f and g1 weakly converges to g in LP(X), 
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then g is a weak upper gradient off after modifying f on a set of measure 

zero, and there is a convex combination sequence j1 = L~~~) Ak,j !k and 

- "N(j) ' . h "N(j) ' ' 0 h f-gj = Lk=j Ak,J9k wzt Lk=j Ak,j = 1, Ak,j 2: , so t at 1 converges 
to f and gj converges tog in LP(X). 

In [8], Cheeger independently developed a theory of Sobolev type 
spaces on metric spaces using the notion of upper gradients, and he 
used this theory to prove a Rademacher-type differentiability theorem for 
Lipschitz functions on metric measure spaces whose measure is doubling 
and supports a weak (1,p)-Poincare inequality. The approach in [8] is 
as follows. 

Definition 4.3. Given f E LP(X), we say that f E H 1 ·P(X) if the 
following norm is finite: 

where the infimum is taken over all sequences of function-upper gradient 
pairs (IJ, P1 )j with f1 --+ f in LP(X). 

Using the uniform convexity of LP(X) and Lemma 4.3, it is clear that 
whenever 1 < p < oo and X is complete we have H 1,P(X) = N 1,P(X); 
however, we can modify functions from H 1·P(X) on sets of JL-measure 
zero, whereas (as mentioned above), we cannot do so to functions from 
N 1,P(X). If X is not complete, then H 1,P(X) = N 1,P(X) where X 
is the completion of X. In general, H 1,1 (X) -/= N 1,1 (X) as Hl,l(JR.n) 
corresponds to the class of functions of bounded variation. 

As mentioned above, it is not in general true that N 1,P(X) is re
flexive. However, in the event that 1 < p < oo and the measure on 
X is doubling and supports a weak (1,p)-Poincare inequality, one of 
the results in [8] demonstrates the reflexivity of H 1,P(X) and hence of 
N 1,P(X). To prove this, a linear derivation operator on H 1·P(X) is con
structed in [8] as follows. 

Theorem 4.1 (Cheeger). Let the measure on X be doubling, 1 < 
p < oo, and assume that X admits a (1,p)-Poincare inequality. Then 
there exists a countable collection (Ua" X"') of measurable sets Ua and 
Lipschitz "coordinate" functions X"' = (Xf, ... , Xf(a)) : X --+ JR.k(a) 

such that JL(X \ Ua Ua) = 0, JL(Ua) > 0, and for all o: the following 
hold. 

The functions Xf, ... , Xf(a) are linearly independent on U"' and 

1 :":: k(o:) :":: N, where N is a constant depending only on the doubling 
constant of JL and the constant from the Poincare inequality. Iff : X --+ 
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R is Lipschitz, then there exist unique bounded measurable vector-valued 
functions da f: Ua --+ Rk(a) such that for 1-L-a.e. Xo E Ua, 

lf(x)- f(xo)- da f(xo) · (Xa(x)- xa(xo))l lim sup .:..::._'--'-_.:......:.-...: __ ..::.....::...._:...._.:__.......:......:._ __ .o.....;c.:..:..:. = 0. 
r->O+ xEB(x0 ,r) r 

Furthermore, there is a constant C > 0 such that for all Lipschitz June-
. 1 

twns f on X, C 9!::; Ida fl::; C 9! 1-L-a.e. on Ua for each a. 

Since a weak (1,p)-Poincare inequality holds on X, Lipschitz func
tions form a dense subclass of N 1·P(X) = H 1·P(X); see [8] and [37]. 
Hence the discussion by Franchi, Hajlasz, and Koskela in [9] demon
strates that the linear derivation operator da can be extended to oper
ate also on functions in N 1·P(X). Thus we have a natural embedding of 
N 1·P(X) into LP(X) x LP(X : RN) (which is a uniformly convex space 
and hence is reflexive), resulting in N 1·P(X) being reflexive itself. A 
further advantage of having this linear derivation operator for functions 
in N 1·P(X) is that associated to (Cheeger) p-harmonic functions there 
is an Euler-Lagrange equation. The Euler-Lagrange equations are quite 
useful in the study of potential theory; see for example the discussions 
in [22] and [18]. It should be noted here that the map f f--> Pi is rarely 
a linear map; also in general P!I-h =1-IP!I- Phi· 

§5. Sobolev spaces of Korevaar-Schoen, and the connection 
between the various Sobolev type spaces 

Using the notion of energy integral proposed by Korevaar and Schoen 
in [29], Koskela and MacManus studied the following version of Sobolev 
spaces on metric measure spaces in [33] (see also [20] for a more general 
discussion). 

Definition 5.1. Given f: X--+ R, we define the Korevaar-Schoen 
energy off to be the number E(f), where 

E(f) :=sup (lim sup { { if(x)- f(y)IP d!-L(Y) d!-L(x)) , 
B e->0 }BjB(x,e) !-L(B(x,E))EP 

the supremum being taken over all balls B C X. We say that f E 

KSP(X) if the norm IIJIIKsl.p(X) := IIJIILP(X) + E(f) 11P is finite. 

The motivation behind such an energy construction is the theory of 
Dirichlet forms. The early work of Beurling and Deny in [2] and [1], 
applied to strongly local Dirichlet forms, yields a representation of such 
Dirichlet forms associated with the above energy for p = 2. 
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In the study of the relationships between the Hajlasz-Sobolev spaces, 
the Newtonian spaces, the collection of all pairs of functions satisfying 
a weak (1,p)-Poincare inequality, and in the case of p = 2 the theory of 
Dirichlet forms, the Sobolev spaces KS1·P(X) of Korevaar-Schoen play 
an important connective role; see [20] and [34]. The paper [34] studies 
the connection between N 1·P(X) and domains of various Dirichlet forms 
on X using the space KS1·P(X); a discussion of Dirichlet forms is beyond 
the scope of this note, but an excellent discussion can be found in the 
book [10] by Fukushima, Oshima, and Takeda. 

In what follows, we say that the metric measure space X supports 
a weak (1,p)-Poincare inequality if there are constants C > 0 and A~ 1 
such that whenever f : X ---+ JR. is a measurable function with p-weak 
upper gradient p and B(x,r) is a ball in X, 

1 If-IBex r)l dJ.L < Cr 1 PP dJ.L ( )
1~ 

J.L(B(x, r)) l(x,r) ' - J.L(B(x, Ar)) l(x,>.r) f 

In what follows, P 1·P(X) consists of all functions f E LP(X) for 
which there exists a non-negative function g E £P(X) so that whenever 
B(x, r) is a ball in X, 

1 1 ( ) 
1/p 

If- fB(x rJI dJ.L < Cr gP dJ.L 
J.L(B(x, r)) l(x,r) ' - J.L(B(x, Ar)) l(x,>.r) 

Theorem 5.1. Fix 1 < p < oo. If X is complete and the measure 
on X is doubling and supports a (1,p)-Poincare inequality, then the nat
uml mapping between the following spaces are isometric isomorphisms 
as Banach spaces: 

H 1·P(X) = N 1·P(X) = M 1·P(X) = KS1·P(X) = P 1·P(X). 

lfp = 1, then M 1·P(X) cN1·P(X) C H 1·P(X). 

The fact that H 1·P(X) = N 1·P(X) holds true even without the as
sumption ofthe doubling property of the measure nor the Poincare in
equality; see for example [37]. In [37] it is also proven that even without 
the assumption of a Poincare inequality M 1·P(X) c N 1·P(X); however, 
we do need the measure J.L to be doubling here. It is also shown in 
[37] that if X supports a weak (1, q)-Poincare inequality in addition for 
some 1 :::; q < p, then M 1·P(X) = N 1·P(X). The proof of this fact 
uses a telescoping sequence of balls concentric. with points in the met
ric space, and when these points are Lebesgue points of the function 
f E N 1·P(X) the weak (1, q)-Poincare inequality is applied to these balls 
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in order to control the values off at these points in terms of the Hardy
Littlewood maximal function Mp} of PJ· If q < p and PiE LP(X), then 

(Mp}) 1 fq E LP(X). We need this better Poincare inequality q < p since 

it is not in general true that (M/j) 11P E LP(X). However, it is a deep 
result of Keith and Zhong [24] that if X is complete as a metric space and 
the measure on X is doubling and supports a weak (1,p)-Poincare in
equality, then there exists 1 ::; q < p such that X supports a weak (1, q)
Poincare inequality. Hence we have the validity in the above theorem of 
the statement that N 1·P(X) = M 1·P(X) under the assumptions that X is 
proper and supports a weak (1,p)-Poincare inequality. See Theorem 4.5 
of [33] for a proof of the equality KS1·P(X) = M 1·P(X) = P 1·P(X). 
Again, in [33] Koskela and MacManus require X to support a weak 
(1, q)-Poincare inequality in addition for some 1 ::; q < p, but because of 
the results of Keith and Zhong in [24] we have the validity of the above 
theorem. 
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