Advanced Studies in Pure Mathematics 55, 2009 Noncommutativity and Singularities pp. 345–352

On ideal boundaries of some Coxeter groups

Saeko Yamagata

Abstract.

If a group acts geometrically (i.e., properly discontinuously, cocompactly and isometrically) on two geodesic spaces X and X', then an automorphism of the group induces a quasi-isometry $X \to X'$. We find a geometric action of a Coxeter group W on a CAT(0) space X and an automorphism ϕ of W such that the quasi-isometry $X \to X$ arising from ϕ can not induce a homeomorphism on the boundary of X as in the case of Gromov-hyperbolic spaces.

§1. Introduction

In the study of Gromov-hyperbolic spaces, it is well-known that for two proper Gromov-hyperbolic geodesic spaces X, X', if there exists a quasi-isometry $F: X \to X'$, then it induces a homeomorphism between their ideal boundaries ([BH, III.H.3.9]). We explain the homeomorphism between their ideal boundaries. For a geodesic ray γ in X there always exists a geodesic ray γ' such that the Hausdorff distance between $F(\gamma)$ and γ' is finite, therefore we define a map $\overline{F}: \partial X \ni \gamma(\infty) \mapsto \gamma'(\infty) \in$ $\partial X'$. Here, we denote by $\gamma(\infty)$ the equivalence class of a geodesic ray γ . Then the map \overline{F} is a homeomorphism between the ideal boundaries.

In the case of CAT(0) spaces, Croke–Kleiner [CK] proved that there exists a group acting geometrically on two CAT(0) spaces whose ideal boundaries are not homeomorphic to each other. Bowers–Ruane [BR] found two distinct geometric actions of $F_2 \times \mathbb{Z}$ on a CAT(0) space X and a quasi-isometry $F: X \to X$ (which is equivariant under the two actions) such that there exists a geodesic ray γ in X whose image $F(\gamma)$ does not have finite Hausdorff distance from any geodesic ray in X. Therefore, F can not induce a homeomorphism on ∂X in the same way as in the case of Gromov-hyperbolic spaces.

On the other hand, it is known that Coxeter groups act geometrically on some CAT(0) spaces ([M]). Let W be a Coxeter group having a

Received August 2, 2007.

S. Yamagata

presentation

 $W = \langle t_1, \dots, t_5 | t_i^2 = e \ (i = 1, \dots, 5), t_j t_k = t_k t_j \ (j = 1, 2, 3, k = 4, 5) \rangle,$

and let (X, d) be the CAT(0) space defined in [M] on which W acts geometrically. Let ϕ be an automorphism on W defined by

$$t_i \mapsto t_i \quad (i \neq 3), \quad t_3 \mapsto t_1 t_3 t_1.$$

We give W a word metric d_S associated to the generating set $S = \{t_1, t_2, \ldots, t_5\}$. Then for any choice of a basepoint $x_0 \in X$, there exists a quasi-isometry $f : (W, d_S) \ni w \mapsto w \cdot x_0 \in (X, d)$ ([BH, I.8.19]), and the automorphism $\phi : W \to W$ is in fact a quasi-isometry $(W, d_S) \to (W, d_S)$. Therefore, $F = f \circ \phi \circ f^{-1} : (X, d) \to (X, d)$ is also a quasi-isometry. In this paper, we will prove the following theorem.

Theorem 1.1. We have a geodesic ray γ in X such that there exist no geodesic rays in X whose Hausdorff distance from $F(\gamma)$ is finite.

By Theorem 1.1 we know that the quasi-isometry $F: X \to X$ can not induce a homeomorphism $\partial X \to \partial X$ in the same way as in the case of Gromov-hyperbolic spaces.

$\S2.$ CAT(0) spaces and Coxeter groups

We shall recall terminologies about CAT(0) spaces and Coxeter groups. We refer to [BH] about CAT(0) spaces.

Definition 2.1. For a metric space (X, d), a geodesic from $x \in X$ to $y \in X$ is a map $\gamma : [0, l] \to X$ such that

$$egin{aligned} &l=d(x,y),\,\gamma(0)=x,\,\gamma(l)=y,\ &d(\gamma(t),\gamma(t'))=|\,t-t'\,|\quad(orall t,\,t'\in[0,l]). \end{aligned}$$

We denote the image in X of a geodesic from x to y by [x, y] if we do not specify a choice of such geodesics joining x and y, and call it a *geodesic* segment. We call (X, d) a geodesic space if every two points in X can be joined by a (not necessarily unique) geodesic.

Definition 2.2. Given a geodesic space (X, d) and $a, b, c \in X$, we denote by $\triangle(a, b, c)$ a geodesic triangle whose vertexes are a, b, c, and sides are geodesic segments [a, b], [b, c], [c, a].

For any geodesic triangle $\triangle(a, b, c)$ in X, we can construct a geodesic triangle $\overline{\triangle}(\overline{a}, \overline{b}, \overline{c})$ in the 2-dimensional Euclidean space \mathbb{E}^2 such that $d_{\mathbb{E}^2}(\overline{a}, \overline{b}) = d(a, b), \ d_{\mathbb{E}^2}(\overline{b}, \overline{c}) = d(b, c)$ and $d_{\mathbb{E}^2}(\overline{c}, \overline{a}) = d(c, a)$. Here, $d_{\mathbb{E}^2}$

346

is a standard metric on \mathbb{E}^2 . We call $\overline{\bigtriangleup}(\overline{a}, \overline{b}, \overline{c})$ a comparison triangle of $\bigtriangleup(a, b, c)$.

Let x be a point in [a, b]. A point \overline{x} in $[\overline{a}, \overline{b}]$ is called a *comparison* point of x if $d_{\mathbb{E}^2}(\overline{a}, \overline{x}) = d(a, x)$. In the case of $x \in [b, c]$ or $x \in [c, a]$, we define a comparison point of x in the same way.

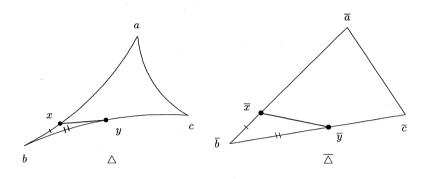


Fig. 1. A geodesic triangle and its comparison triangle

Definition 2.3. Let \triangle be a geodesic triangle in a geodesic space (X, d), and $\overline{\triangle}$ a comparison triangle of \triangle . If for any $x, y \in \triangle$ and their comparison points $\overline{x}, \overline{y} \in \overline{\triangle}$, the inequality

$$d(x,y) \le d_{\mathbb{E}^2}(\overline{x},\overline{y})$$

holds, then we call (X, d) a CAT(0) space.

It is easy to see that for any points x, y in a CAT(0) space, there exists a unique geodesic joining x and y.

Definition 2.4. For a metric space (X, d), we call (X, d) a *proper* metric space if for every $x \in X$ and every r > 0, the closed ball $\overline{B}(x, r)$ is compact.

Let (X, d) be a proper CAT(0) space. If a map $\gamma : [0, \infty) \to X$ satisfies

$$d(\gamma(t), \gamma(t')) = |t - t'| \quad (\forall t, t' \in [0, \infty)), \quad \gamma(0) = x_0,$$

then γ is called a *geodesic ray* from x_0 .

Two geodesic rays γ , $\gamma' : [0, \infty) \to X$ are said to be *asymptotic* if there exists a constant K such that $d(\gamma(t), \gamma'(t)) \leq K$ for all $t \geq 0$. We give an equivalence relation on the set of geodesic rays in X such that

S. Yamagata

two geodesic rays are equivalent if and only if they are asymptotic. We denote by ∂X the set of equivalence classes of geodesic rays in X, and give the cone topology on ∂X (see [BH, II.8.6] for the definition of the topology).

Definition 2.5. Let (X_1, d_1) and (X_2, d_2) be complete CAT(0) spaces, X the product $X_1 \times X_2$, and define a metric d on X by $d = \sqrt{d_1^2 + d_2^2}$. Let $\gamma_1(\infty)$ (resp. $\gamma_2(\infty)$) be the equivalence class of a geodesic ray γ_1 in X_1 (resp. γ_2 in X_2).

If $\theta \in [0, \pi/2]$, we denote by $(\cos \theta)\gamma_1(\infty) + (\sin \theta)\gamma_2(\infty)$ the point of ∂X represented by the geodesic ray $\gamma(t) = (\gamma_1(t\cos\theta), \gamma_2(t\sin\theta))$ in X. The spherical join $\partial X_1 * \partial X_2$ is the quotient of the product $\partial X_1 \times [0, \pi/2] \times \partial X_2$ by the equivalence relation identifying $(\gamma_1(\infty), \theta, \gamma_2(\infty))$ with $(\gamma'_1(\infty), \theta', \gamma'_2(\infty))$ if and only if either of the following conditions are satisfied:

(1)
$$\gamma_1(\infty) = \gamma'_1(\infty), \theta = \theta' \text{ and } \gamma_2(\infty) = \gamma'_2(\infty);$$

(2)
$$\theta = \theta' = 0$$
 and $\gamma_1(\infty) = \gamma'_1(\infty);$

(3)
$$\theta = \theta' = \pi/2 \text{ and } \gamma_2(\infty) = \gamma'_2(\infty).$$

It is easy to see that the boundary ∂X is homeomorphic to the spherical join $\partial X_1 * \partial X_2$.

Definition 2.6. Let (X, d) be a metric space. For a subset $A \subset X$ and a positive number k, we denote the k-neighbourhood of A by

$$\mathcal{N}_k(A) = \{ x \in X \mid \exists a \in A \quad \text{s.t. } d(x, a) \le k \}.$$

For subsets $A, B \subset X$, the Hausdorff distance between A and B is defined by

$$d_H(A, B) = \inf\{k \mid A \subseteq \mathcal{N}_k(B), B \subseteq \mathcal{N}_k(A)\}.$$

Definition 2.7. Let (X, d) and (X', d') be metric spaces. If a map $f: X \to X'$ satisfies that there exist $\varepsilon, k \ge 0, \lambda \ge 1$ such that

$$\frac{1}{\lambda}d(x,y) - \varepsilon \le d'(f(x), f(y)) \le \lambda d(x,y) + \varepsilon \quad (\forall x, y \in X),$$
$$\mathcal{N}_{k}(\operatorname{Im} f) = X'.$$

then f is called a (λ, ε) -quasi-isometry. If we do not specify the values λ, ε , then we call f a quasi-isometry simply.

We note that if there exists a (λ, ε) -quasi-isometry $f: X \to X'$, then there exists a (λ', ε') -quasi-isometry $f^{-1}: X' \to X$ (for some λ', ε') and a constant $k' \ge 0$ such that $d(f \circ f^{-1}(x'), x') \le k'$ and $d(f^{-1} \circ f(x), x) \le k'$ for all $x' \in X'$ and all $x \in X$. We call f^{-1} a quasi-inverse for f.

Finally, we recall the definition of Coxeter groups.

348

Definition 2.8. A *Coxeter group* W is a finitely presented group having the following presentation:

$$W = \langle S | (ss')^{m(s,s')} = e \text{ for } \forall s, s' \in S \rangle,$$

where S is a non-empty finite set and $m: S \times S \to \mathbb{N} \cup \{\infty\}$ is a function satisfying the following conditions:

(1) m(s,s) = 1 for $\forall s \in S$;

(2) m(s,s') = m(s',s) for $\forall s, s' \in S$;

(3) $m(s,s') \ge 2$ for $\forall s \neq s' \in S$.

Here, for $s, s' \in S$, $m(s, s') = \infty$ means that there exists no relation between s and s'.

$\S 3.$ Proof of the main theorem

In the following context, let W be the Coxeter group whose presentation is given by

$$W = \langle t_1, \dots, t_5 | t_i^2 = e \ (i = 1, \dots, 5), t_j t_k = t_k t_j \ (j = 1, 2, 3, k = 4, 5) \rangle.$$

Let H be the subgroup of W generated by t_1 , t_2 and t_3 , and let H' be the subgroup of W generated by t_4 , t_5 .

By the presentation of W, we know that

$$W = H \times H'$$

$$\cong (\mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2) \times (\mathbb{Z}_2 * \mathbb{Z}_2).$$

Define an automorphism ϕ of W by

$$t_i \mapsto t_i \quad (i \neq 3), \quad t_3 \mapsto t_1 t_3 t_1.$$

(Especially, ϕ is an isomorphism of the Coxeter system.)

Let T be the Cayley graph of the group H with respect to the generating set $\{t_1, t_2, t_3\}$, which is a regular tree of valence 3. The Cayley graph of the group H' with respect to a generating set $\{t_4, t_5\}$ is isometric to \mathbb{R} where the vertex set of this graph corresponds to \mathbb{Z} . Therefore, we call this graph \mathbb{R} .

Let X be the product $T \times \mathbb{R}$. Let d_T (resp. $d_{\mathbb{R}}$) be a metric on the Cayley graph T (resp. \mathbb{R}). A metric d on X is defined by

$$d((t,r),(t',r')) = \sqrt{d_T(t,t')^2 + d_{\mathbb{R}}(r,r')^2} \quad (\forall t, t' \in T, \, \forall r, \, r' \in \mathbb{R}).$$

Then X is a proper CAT(0) space and is called the Davis–Vinberg complex of W. The Coxeter group W acts geometrically (i.e., properly discontinuously, cocompactly and isometrically) on X ([M]).

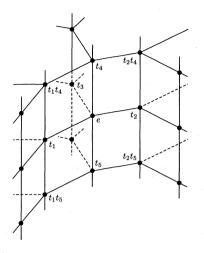


Fig. 2. $T \times \mathbb{R}$

We give W a word metric d_S with respect to the generating set $S = \{t_1, t_2, \ldots, t_5\}$. Let $e \in X$ be the vertex corresponding to the unit element. Then there exists a quasi-isometry $f: (W, d_S) \ni w \mapsto w \cdot e \in X$ ([BH, I.8.19]). We can take a quasi-inverse $f^{-1}: X \to W$ satisfying that for any $w \in W$, $f^{-1}(w \cdot e) = w$.

The ideal boundary of T is a Cantor set and the ideal boundary of \mathbb{R} consists of two points. Therefore, the ideal boundary of X is the spherical join of the Cantor set and the set of two points. Since the automorphism ϕ on W is in fact a quasi-isometry $(W, d_S) \to (W, d_S)$, and $f: (W, d_S) \to (X, d)$ is also a quasi-isometry, so is $F = f \circ \phi \circ f^{-1}$: $X \to X$.

Theorem 3.1. We have a geodesic ray γ in X such that there exist no geodesic rays in X whose Hausdorff distance from $F(\gamma)$ is finite.

Proof. Put $a = t_1t_2$, $b = t_3t_2$, $c = t_4t_5$ and $b' = t_1t_3t_1t_2$. We note that c commutes with a, b and b'. Then

$$F(a) = f \circ \phi \circ f^{-1}(a \cdot e) = f \circ \phi(a) = f(a) = a \cdot e = a,$$

$$F(b) = f \circ \phi \circ f^{-1}(b \cdot e) = f \circ \phi(b) = f(b') = b' \cdot e = b',$$

$$F(c) = f \circ \phi \circ f^{-1}(c \cdot e) = f \circ \phi(c) = f(c) = c \cdot e = c.$$

Let γ be a piecewise geodesic path in X such that

 $[e,ac] \cup [ac,abc^2] \cup [abc^2,abac^3] \cup [abac^3,ababc^4] \cup [ababc^4,abab^2c^5] \cup \ldots$

On ideal boundaries of some Coxeter groups

 $\cup [abab^2 \cdots ab^{n-1}c^{\frac{n(n+3)}{2}-1}, abab^2 \cdots ab^n c^{\frac{n(n+3)}{2}}] \cup \dots$

The piecewise geodesic path γ is in fact a geodesic ray in X because the projection of γ onto T is a geodesic ray passing through e, a, ab, aba, abab, $abab^2$, \ldots , $abab^2ab^3\cdots ab^n$, \ldots , where the distance between successive two points is equal to 2, and the projection of γ onto \mathbb{R} is also geodesic ray passing through e, c, c^2 , \ldots , c^n , \ldots , where the distance between successive two points is equal to 2.

Put $A_n = ab'ab'^2ab'^3\cdots ab'^nc^{\frac{n(n+3)}{2}}$. Then $F(\gamma)$ passes through each A_n $(n \in \mathbb{N})$. We will deduce a contradiction under the assumption that there exists a geodesic ray γ' such that the Hausdorff distance between γ' and $F(\gamma)$ is finite.

For each $n \in \mathbb{N}$, the Hausdorff distance between γ' and a geodesic segment $[e, A_n]$ would be uniformly finite because $F(\gamma)$ passes through e and A_n .

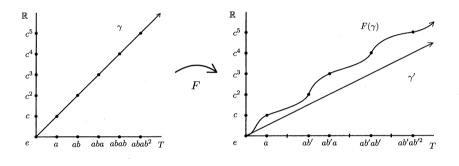


Fig. 3. γ and $F(\gamma)$

Next, we consider the slope of the geodesic segment $[e, A_n]$. Note that the projections of A_n onto T and \mathbb{R} are equal to $ab'ab'^2ab'^3\cdots ab'^n$ and $c^{\frac{n(n+3)}{2}}$, respectively. It is easy to see that

$$d_T(e, ab'ab'^2ab'^3\cdots ab'^n) = 2n(n+2),$$
$$d_{\mathbb{R}}(e, c_1^{\frac{n(n+3)}{2}}) = n(n+3).$$

Hence the slope of the geodesic segment $[e, A_n]$ is n(n+3)/2n(n+2). Then

$$\frac{n(n+3)}{2n(n+2)} \longrightarrow \frac{1}{2} \quad (n \to \infty).$$

S. Yamagata

Therefore, the slope of γ' should be 1/2.

Finally, we calculate the distance between $A_n \in F(\gamma)$ and γ' . We take a geodesic ξ_n which passes through A_n and is orthogonal to γ' . The slope of ξ_n must be equal to -2. Let B_n be the intersection point of ξ_n and γ' , which is the closest point on γ' to A_n . The distance between e and the projection of B_n onto T is equal to 2n(5n + 11)/5 and the distance between e and the projection of B_n onto R is equal to 2(5n + 11)/5. Therefore, the distance between A_n and B_n is equal to $2\sqrt{5n}/5$. Then

$$\frac{2\sqrt{5}}{5}n \longrightarrow \infty \quad (n \to \infty),$$

and therefore, the Hausdorff distance between γ' and $F(\gamma)$ must be infinite, which is a contradiction.

Consequently, we can not obtain a geodesic ray whose Hausdorff distance from $F(\gamma)$ is finite. Q.E.D.

References

- [BR] P. L. Bowers and K. Ruane, Boundaries of nonpositively curved groups of the form $G \times \mathbb{Z}^n$, Glasgow Math. J., **38** (1996), 177–189.
- [BH] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, Heidelberg, 1999.
- [CK] C. B. Croke and B. Kleiner, Spaces with nonpositive curvature and their ideal boundaries, Topology, 39 (2000), 549–556.
- [M] G. Moussong, Hyperbolic Coxeter groups, Ph. D. thesis, The Ohio State Univ., 1988.

Mathematical Institute Tohoku University Aoba, Sendai, 980-8578 Japan

E-mail address: sa1m28@math.tohoku.ac.jp

352