On ideal boundaries of some Coxeter groups

Saeko Yamagata

Abstract

. If a group acts geometrically (i.e., properly discontinuously, cocompactly and isometrically) on two geodesic spaces X and X^{\prime}, then an automorphism of the group induces a quasi-isometry $X \rightarrow X^{\prime}$. We find a geometric action of a Coxeter group W on a $\operatorname{CAT}(0)$ space X and an automorphism ϕ of W such that the quasi-isometry $X \rightarrow X$ arising from ϕ can not induce a homeomorphism on the boundary of X as in the case of Gromov-hyperbolic spaces.

§1. Introduction

In the study of Gromov-hyperbolic spaces, it is well-known that for two proper Gromov-hyperbolic geodesic spaces X, X^{\prime}, if there exists a quasi-isometry $F: X \rightarrow X^{\prime}$, then it induces a homeomorphism between their ideal boundaries ([BH, III.H.3.9]). We explain the homeomorphism between their ideal boundaries. For a geodesic ray γ in X there always exists a geodesic ray γ^{\prime} such that the Hausdorff distance between $F(\gamma)$ and γ^{\prime} is finite, therefore we define a map $\bar{F}: \partial X \ni \gamma(\infty) \mapsto \gamma^{\prime}(\infty) \in$ ∂X^{\prime}. Here, we denote by $\gamma(\infty)$ the equivalence class of a geodesic ray γ. Then the map \bar{F} is a homeomorphism between the ideal boundaries.

In the case of CAT(0) spaces, Croke-Kleiner [CK] proved that there exists a group acting geometrically on two CAT(0) spaces whose ideal boundaries are not homeomorphic to each other. Bowers-Ruane [BR] found two distinct geometric actions of $F_{2} \times \mathbb{Z}$ on a CAT(0) space X and a quasi-isometry $F: X \rightarrow X$ (which is equivariant under the two actions) such that there exists a geodesic ray γ in X whose image $F(\gamma)$ does not have finite Hausdorff distance from any geodesic ray in X. Therefore, F can not induce a homeomorphism on ∂X in the same way as in the case of Gromov-hyperbolic spaces.

On the other hand, it is known that Coxeter groups act geometrically on some $\mathrm{CAT}(0)$ spaces $([\mathrm{M}])$. Let W be a Coxeter group having a

Received August 2, 2007.
presentation
$W=\left\langle t_{1}, \ldots, t_{5} \mid t_{i}^{2}=e(i=1, \ldots, 5), t_{j} t_{k}=t_{k} t_{j} \quad(j=1,2,3, k=4,5)\right\rangle$,
and let (X, d) be the $\operatorname{CAT}(0)$ space defined in [M] on which W acts geometrically. Let ϕ be an automorphism on W defined by

$$
t_{i} \mapsto t_{i} \quad(i \neq 3), \quad t_{3} \mapsto t_{1} t_{3} t_{1}
$$

We give W a word metric d_{S} associated to the generating set $S=$ $\left\{t_{1}, t_{2}, \ldots, t_{5}\right\}$. Then for any choice of a basepoint $x_{0} \in X$, there exists a quasi-isometry $f:\left(W, d_{S}\right) \ni w \mapsto w \cdot x_{0} \in(X, d)([\mathrm{BH}, \mathrm{I} .8 .19])$, and the automorphism $\phi: W \rightarrow W$ is in fact a quasi-isometry $\left(W, d_{S}\right) \rightarrow$ $\left(W, d_{S}\right)$. Therefore, $F=f \circ \phi \circ f^{-1}:(X, d) \rightarrow(X, d)$ is also a quasiisometry. In this paper, we will prove the following theorem.

Theorem 1.1. We have a geodesic ray γ in X such that there exist no geodesic rays in X whose Hausdorff distance from $F(\gamma)$ is finite.

By Theorem 1.1 we know that the quasi-isometry $F: X \rightarrow X$ can not induce a homeomorphism $\partial X \rightarrow \partial X$ in the same way as in the case of Gromov-hyperbolic spaces.

§2. CAT(0) spaces and Coxeter groups

We shall recall terminologies about CAT(0) spaces and Coxeter groups. We refer to $[\mathrm{BH}]$ about $\mathrm{CAT}(0)$ spaces.

Definition 2.1. For a metric space (X, d), a geodesic from $x \in X$ to $y \in X$ is a map $\gamma:[0, l] \rightarrow X$ such that

$$
\begin{gathered}
l=d(x, y), \gamma(0)=x, \gamma(l)=y \\
d\left(\gamma(t), \gamma\left(t^{\prime}\right)\right)=\left|t-t^{\prime}\right| \quad\left(\forall t, t^{\prime} \in[0, l]\right)
\end{gathered}
$$

We denote the image in X of a geodesic from x to y by $[x, y]$ if we do not specify a choice of such geodesics joining x and y, and call it a geodesic segment. We call (X, d) a geodesic space if every two points in X can be joined by a (not necessarily unique) geodesic.

Definition 2.2. Given a geodesic space (X, d) and $a, b, c \in X$, we denote by $\triangle(a, b, c)$ a geodesic triangle whose vertexes are a, b, c, and sides are geodesic segments $[a, b],[b, c],[c, a]$.

For any geodesic triangle $\triangle(a, b, c)$ in X, we can construct a geodesic triangle $\bar{\triangle}(\bar{a}, \bar{b}, \bar{c})$ in the 2-dimensional Euclidean spase \mathbb{E}^{2} such that $d_{\mathbb{E}^{2}}(\bar{a}, \bar{b})=d(a, b), d_{\mathbb{E}^{2}}(\bar{b}, \bar{c})=d(b, c)$ and $d_{\mathbb{E}^{2}}(\bar{c}, \bar{a})=d(c, a)$. Here, $d_{\mathbb{E}^{2}}$
is a standard metric on \mathbb{E}^{2}. We call $\bar{\triangle}(\bar{a}, \bar{b}, \bar{c})$ a comparison triangle of $\triangle(a, b, c)$.

Let x be a point in $[a, b]$. A point \bar{x} in $[\bar{a}, \bar{b}]$ is called a comparison point of x if $d_{\mathbb{E}^{2}}(\bar{a}, \bar{x})=d(a, x)$. In the case of $x \in[b, c]$ or $x \in[c, a]$, we define a comparison point of x in the same way.

Fig. 1. A geodesic triangle and its comparison triangle

Definition 2.3. Let \triangle be a geodesic triangle in a geodesic space (X, d), and $\bar{\triangle}$ a comparison triangle of \triangle. If for any $x, y \in \triangle$ and their comparison points $\bar{x}, \bar{y} \in \bar{\triangle}$, the inequality

$$
d(x, y) \leq d_{\mathbb{E}^{2}}(\bar{x}, \bar{y})
$$

holds, then we call (X, d) a $C A T(0)$ space.
It is easy to see that for any points x, y in a $\operatorname{CAT}(0)$ space, there exists a unique geodesic joining x and y.

Definition 2.4. For a metric space (X, d), we call (X, d) a proper metric space if for every $x \in X$ and every $r>0$, the closed ball $\bar{B}(x, r)$ is compact.

Let (X, d) be a proper $\operatorname{CAT}(0)$ space. If a map $\gamma:[0, \infty) \rightarrow X$ satisfies

$$
d\left(\gamma(t), \gamma\left(t^{\prime}\right)\right)=\left|t-t^{\prime}\right| \quad\left(\forall t, t^{\prime} \in[0, \infty)\right), \quad \gamma(0)=x_{0}
$$

then γ is called a geodesic ray from x_{0}.
Two geodesic rays $\gamma, \gamma^{\prime}:[0, \infty) \rightarrow X$ are said to be asymptotic if there exists a constant K such that $d\left(\gamma(t), \gamma^{\prime}(t)\right) \leq K$ for all $t \geq 0$. We give an equivalence relation on the set of geodesic rays in X such that
two geodesic rays are equivalent if and only if they are asymptotic. We denote by ∂X the set of equivalence classes of geodesic rays in X, and give the cone topology on ∂X (see [$\mathrm{BH}, I I .8 .6$] for the definition of the topology).

Definition 2.5. Let $\left(X_{1}, d_{1}\right)$ and (X_{2}, d_{2}) be complete $\operatorname{CAT}(0)$ spaces, X the product $X_{1} \times X_{2}$, and define a metric d on X by $d=$ $\sqrt{d_{1}^{2}+d_{2}^{2}}$. Let $\gamma_{1}(\infty)$ (resp. $\gamma_{2}(\infty)$) be the equivalence class of a geodesic ray γ_{1} in X_{1} (resp. γ_{2} in X_{2}).

If $\theta \in[0, \pi / 2]$, we denote by $(\cos \theta) \gamma_{1}(\infty)+(\sin \theta) \gamma_{2}(\infty)$ the point of ∂X represented by the geodesic ray $\gamma(t)=\left(\gamma_{1}(t \cos \theta), \gamma_{2}(t \sin \theta)\right)$ in X. The spherical join $\partial X_{1} * \partial X_{2}$ is the quotient of the product $\partial X_{1} \times$ $[0, \pi / 2] \times \partial X_{2}$ by the equivalence relation identifying $\left(\gamma_{1}(\infty), \theta, \gamma_{2}(\infty)\right)$ with $\left(\gamma_{1}^{\prime}(\infty), \theta^{\prime}, \gamma_{2}^{\prime}(\infty)\right)$ if and only if either of the following conditions are satisfied:
(1) $\gamma_{1}(\infty)=\gamma_{1}^{\prime}(\infty), \theta=\theta^{\prime}$ and $\gamma_{2}(\infty)=\gamma_{2}^{\prime}(\infty)$;
(2) $\quad \theta=\theta^{\prime}=0$ and $\gamma_{1}(\infty)=\gamma_{1}^{\prime}(\infty)$;
(3) $\theta=\theta^{\prime}=\pi / 2$ and $\gamma_{2}(\infty)=\gamma_{2}^{\prime}(\infty)$.

It is easy to see that the boundary ∂X is homeomorphic to the spherical join $\partial X_{1} * \partial X_{2}$.

Definition 2.6. Let (X, d) be a metric space. For a subset $A \subset X$ and a positive number k, we denote the k-neighbourhood of A by

$$
\mathcal{N}_{k}(A)=\{x \in X \mid \exists a \in A \quad \text { s.t. } d(x, a) \leq k\}
$$

For subsets $A, B \subset X$, the Hausdorff distance between A and B is defined by

$$
d_{H}(A, B)=\inf \left\{k \mid A \subseteq \mathcal{N}_{k}(B), B \subseteq \mathcal{N}_{k}(A)\right\}
$$

Definition 2.7. Let (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ be metric spaces. If a map $f: X \rightarrow X^{\prime}$ satisfies that there exist $\varepsilon, k \geq 0, \lambda \geq 1$ such that

$$
\begin{gathered}
\frac{1}{\lambda} d(x, y)-\varepsilon \leq d^{\prime}(f(x), f(y)) \leq \lambda d(x, y)+\varepsilon \quad(\forall x, y \in X) \\
\mathcal{N}_{k}(\operatorname{Im} f)=X^{\prime}
\end{gathered}
$$

then f is called a (λ, ε)-quasi-isometry. If we do not specify the values λ, ε, then we call f a quasi-isometry simply.

We note that if there exists a (λ, ε)-quasi-isometry $f: X \rightarrow X^{\prime}$, then there exists a $\left(\lambda^{\prime}, \varepsilon^{\prime}\right)$-quasi-isometry $f^{-1}: X^{\prime} \rightarrow X$ (for some $\lambda^{\prime}, \varepsilon^{\prime}$) and a constant $k^{\prime} \geq 0$ such that $d\left(f \circ f^{-1}\left(x^{\prime}\right), x^{\prime}\right) \leq k^{\prime}$ and $d\left(f^{-1} \circ f(x), x\right) \leq$ k^{\prime} for all $x^{\prime} \in X^{\prime}$ and all $x \in X$. We call f^{-1} a quasi-inverse for f.

Finally, we recall the definition of Coxeter groups.

Definition 2.8. A Coxeter group W is a finitely presented group having the following presentation:

$$
\left.W=\langle S|\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=e \text { for } \forall s, s^{\prime} \in S\right\rangle
$$

where S is a non-empty finite set and $m: S \times S \rightarrow \mathbb{N} \cup\{\infty\}$ is a function satisfying the following conditions:
(1) $m(s, s)=1$ for $\forall s \in S$;
(2) $m\left(s, s^{\prime}\right)=m\left(s^{\prime}, s\right)$ for $\forall s, s^{\prime} \in S$;
(3) $m\left(s, s^{\prime}\right) \geq 2$ for $\forall s \neq s^{\prime} \in S$.

Here, for $s, s^{\prime} \in S, m\left(s, s^{\prime}\right)=\infty$ means that there exists no relation between s and s^{\prime}.

§3. Proof of the main theorem

In the following context, let W be the Coxeter group whose presentation is given by

$$
W=\left\langle t_{1}, \ldots, t_{5} \mid t_{i}^{2}=e(i=1, \ldots, 5), t_{j} t_{k}=t_{k} t_{j} \quad(j=1,2,3, k=4,5)\right\rangle
$$

Let H be the subgroup of W generated by t_{1}, t_{2} and t_{3}, and let H^{\prime} be the subgroup of W generated by t_{4}, t_{5}.

By the presentation of W, we know that

$$
\begin{aligned}
W & =H \times H^{\prime} \\
& \cong\left(\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}\right) \times\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)
\end{aligned}
$$

Define an automorphism ϕ of W by

$$
t_{i} \mapsto t_{i} \quad(i \neq 3), \quad t_{3} \mapsto t_{1} t_{3} t_{1}
$$

(Especially, ϕ is an isomorphism of the Coxeter system.)
Let T be the Cayley graph of the group H with respect to the generating set $\left\{t_{1}, t_{2}, t_{3}\right\}$, which is a regular tree of valence 3 . The Cayley graph of the group H^{\prime} with respect to a generating set $\left\{t_{4}, t_{5}\right\}$ is isometric to \mathbb{R} where the vertex set of this graph corresponds to \mathbb{Z}. Therefore, we call this graph \mathbb{R}.

Let X be the product $T \times \mathbb{R}$. Let d_{T} (resp. $d_{\mathbb{R}}$) be a metric on the Cayley graph T (resp. \mathbb{R}). A metric d on X is defined by

$$
d\left((t, r),\left(t^{\prime}, r^{\prime}\right)\right)=\sqrt{d_{T}\left(t, t^{\prime}\right)^{2}+d_{\mathbb{R}}\left(r, r^{\prime}\right)^{2}} \quad\left(\forall t, t^{\prime} \in T, \forall r, r^{\prime} \in \mathbb{R}\right)
$$

Then X is a proper CAT(0) space and is called the Davis-Vinberg complex of W. The Coxeter group W acts geometrically (i.e., properly discontinuously, cocompactly and isometrically) on X ([M]).

Fig. 2. $T \times \mathbb{R}$

We give W a word metric d_{S} with respect to the generating set $S=\left\{t_{1}, t_{2}, \ldots, t_{5}\right\}$. Let $e \in X$ be the vertex corresponding to the unit element. Then there exists a quasi-isometry $f:\left(W, d_{S}\right) \ni w \mapsto w \cdot e \in X$ ([BH, I.8.19]). We can take a quasi-inverse $f^{-1}: X \rightarrow W$ satisfying that for any $w \in W, f^{-1}(w \cdot e)=w$.

The ideal boundary of T is a Cantor set and the ideal boundary of \mathbb{R} consists of two points. Therefore, the ideal boundary of X is the spherical join of the Cantor set and the set of two points. Since the automorphism ϕ on W is in fact a quasi-isometry $\left(W, d_{S}\right) \rightarrow\left(W, d_{S}\right)$, and $f:\left(W, d_{S}\right) \rightarrow(X, d)$ is also a quasi-isometry, so is $F=f \circ \phi \circ f^{-1}$: $X \rightarrow X$.

Theorem 3.1. We have a geodesic ray γ in X such that there exist no geodesic rays in X whose Hausdorff distance from $F(\gamma)$ is finite.

Proof. Put $a=t_{1} t_{2}, b=t_{3} t_{2}, c=t_{4} t_{5}$ and $b^{\prime}=t_{1} t_{3} t_{1} t_{2}$. We note that c commutes with a, b and b^{\prime}. Then

$$
\begin{aligned}
& F(a)=f \circ \phi \circ f^{-1}(a \cdot e)=f \circ \phi(a)=f(a)=a \cdot e=a \\
& F(b)=f \circ \phi \circ f^{-1}(b \cdot e)=f \circ \phi(b)=f\left(b^{\prime}\right)=b^{\prime} \cdot e=b^{\prime} \\
& F(c)=f \circ \phi \circ f^{-1}(c \cdot e)=f \circ \phi(c)=f(c)=c \cdot e=c
\end{aligned}
$$

Let γ be a piecewise geodesic path in X such that $[e, a c] \cup\left[a c, a b c^{2}\right] \cup\left[a b c^{2}, a b a c^{3}\right] \cup\left[a b a c^{3}, a b a b c^{4}\right] \cup\left[a b a b c^{4}, a b a b^{2} c^{5}\right] \cup \ldots$

$$
\cup\left[a b a b^{2} \cdots a b^{n-1} c^{\frac{n(n+3)}{2}-1}, a b a b^{2} \cdots a b^{n} c^{\frac{n(n+3)}{2}}\right] \cup \ldots
$$

The piecewise geodesic path γ is in fact a geodesic ray in X because the projection of γ onto T is a geodesic ray passing through $e, a, a b$, $a b a, a b a b, a b a b^{2}, \ldots, a b a b^{2} a b^{3} \cdots a b^{n}, \ldots$, where the distance between successive two points is equal to 2 , and the projection of γ onto \mathbb{R} is also geodesic ray passing through $e, c, c^{2}, \ldots, c^{n}, \ldots$, where the distance between successive two points is equal to 2 .

Put $A_{n}=a b^{\prime} a b^{\prime 2} a b^{\prime 3} \cdots a b^{\prime n} c^{\frac{n(n+3)}{2}}$. Then $F(\gamma)$ passes through each $A_{n}(n \in \mathbb{N})$. We will deduce a contradiction under the assumption that there exists a geodesic ray γ^{\prime} such that the Hausdorff distance between γ^{\prime} and $F(\gamma)$ is finite.

For each $n \in \mathbb{N}$, the Hausdorff distance between γ^{\prime} and a geodesic segment $\left[e, A_{n}\right]$ would be uniformly finite because $F(\gamma)$ passes through e and A_{n}.

Fig. 3. γ and $F(\gamma)$

Next, we consider the slope of the geodesic segment $\left[e, A_{n}\right]$. Note that the projections of A_{n} onto T and \mathbb{R} are equal to $a b^{\prime} a b^{2} a b^{\prime 3} \cdots a b^{\prime n}$ and $c^{\frac{n(n+3)}{2}}$, respectively. It is easy to see that

$$
\begin{gathered}
d_{T}\left(e, a b^{\prime} a b^{\prime 2} a b^{\prime 3} \cdots a b^{\prime n}\right)=2 n(n+2), \\
d_{\mathbb{R}}\left(e, c^{\frac{n(n+3)}{2}}\right)=n(n+3) .
\end{gathered}
$$

Hence the slope of the geodesic segment $\left[e, A_{n}\right]$ is $n(n+3) / 2 n(n+2)$. Then

$$
\frac{n(n+3)}{2 n(n+2)} \longrightarrow \frac{1}{2} \quad(n \rightarrow \infty)
$$

Therefore, the slope of γ^{\prime} should be $1 / 2$.
Finally, we calculate the distance between $A_{n} \in F(\gamma)$ and γ^{\prime}. We take a geodesic ξ_{n} which passes through A_{n} and is orthogonal to γ^{\prime}. The slope of ξ_{n} must be equal to -2 . Let B_{n} be the intersection point of ξ_{n} and γ^{\prime}, which is the closest point on γ^{\prime} to A_{n}. The distance between e and the projection of B_{n} onto T is equal to $2 n(5 n+11) / 5$ and the distance between e and the projection of B_{n} onto \mathbb{R} is equal to $n(5 n+11) / 5$. Therefore, the distance between A_{n} and B_{n} is equal to $2 \sqrt{5} n / 5$. Then

$$
\frac{2 \sqrt{5}}{5} n \longrightarrow \infty \quad(n \rightarrow \infty)
$$

and therefore, the Hausdorff distance between γ^{\prime} and $F(\gamma)$ must be infinite, which is a contradiction.

Consequently, we can not obtain a geodesic ray whose Hausdorff distance from $F(\gamma)$ is finite.
Q.E.D.

References

[BR] P. L. Bowers and K. Ruane, Boundaries of nonpositively curved groups of the form $G \times \mathbb{Z}^{n}$, Glasgow Math. J., 38 (1996), 177-189.
[BH] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, Heidelberg, 1999.
[CK] C. B. Croke and B. Kleiner, Spaces with nonpositive curvature and their ideal boundaries, Topology, 39 (2000), 549-556.
[M] G. Moussong, Hyperbolic Coxeter groups, Ph. D. thesis, The Ohio State Univ., 1988.

Mathematical Institute

Tohoku University
Aoba, Sendai, 980-8578
Japan
E-mail address: sa1m28@math.tohoku.ac.jp

