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Partial regularity and its application to the blow-up 
asymptotics of parabolic systems modelling 
chemotaxis with porous medium diffusion 

Yoshie Sugiyama 

§1. Introduction 

We consider the following reaction-diffusion equation: 

{ 
8tU 

(KS)rn 0 
u(x,O) 

llu=- \7 · (uq- 1\i'v), 
llv- "'fV + u, 
uo(x), 

X E ]f~N' t > 0, 
X ERN, t > 0, 
xERN. 

Throughout this article, we assume that N 2 3, and that m, q, and "Y 
are the constants satisfying 

m > 1, q 2 2, "Y > 0. 

The initial data u 0 is a non-negative function satisfying 

This equation is often called the Keller-Segel model describing the mo
tion of the chemotaxis molds, where u(x, t) and v(x, t) denote the density 
of amoebae and the concentration of the chemo-attractant, respectively. 
(we refer to Keller-Segel [6], Horstman [4], Suzuki [17].) 
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In this article, we summarize our results in [22], [23] and give the 
outline of the proof. In [25], we have already obtained an extension 
criterion such that if the solution satisfies 

(1.1) sup llu(t)IIL=(RN) < oo, 
O<t<T 

then u can be continued to the solution on 1RN x [0, T') for some T' > T. 
The aim of this article is to relax the condition (1.1) by means of the 
assumption on the local behavior of u in the space variable, i.e., that 
to establish the so-called c-regularity theorem for the weak solutions of 
(KS)m· Indeed, for the critical case of q = m +it, we show that there 
is a positive constant co = co(N, m) depending only on N and m such 
that if 

(1.2) sup r u(x, t) dx < co 
O<t<T J B(x0 ,2p) 

for some x0 E 1R N and p > 0, then it holds 

sup u(x, t) < oo, 
(x,t)EB(xo,p) x (O,T) 

where B(x, p) is the ball in 1RN centered at x with the radius p. This kind 
of result is called a partial regularity theorem, which has been studied for 
many other equations, e.g., the Navier-Stokes equations by Caffarelli
Kohn-Nirenberg [1], the harmonic maps by Schoen-Uhlenbeck [14], the 
heat flow of an H-surface by Struwe [16], and the weak flows of har
monic maps by Chen-Struwe [2]. Our result corresponds to that for the 
Keller-Segel system (KS)m in the critical case of q = m +it· 

As an application of our c-regularity theorem, we observe that the 
number of blow-up points is finite, which can be controlled in terms of 
the mass of initial data and co in (1.2). In addition, the mass concentra
tion of solution to (KS)m enables us to prove that the blow-up solution 
behaves like the delta function at the blow-up points. See Definition 3, 
below. 

In the 2-D semi-linear case i.e., m = 1, and N = 2, it was shown 
in Nagai-Senba-Suzuki [12], Senba-Suzuki [15] that the solution u(x, t) 
of (KS)r before the blow-up time Tis so regular that 

k 

u(·,t)EC2 (1R2\U{xi}), O<t<T 
i=l 
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with 

L u(x, t)cp(x)dx E W 1' 1 (0, T) 

for all cp E C0 (B) and for all balls Bin IR?, where {xi}f=1 are k-blow
up points of u. To obtain this property, they made use of the regularity 
such as OtU E C(B x (0, T)) and the fact that u satisfies (KS)I on [0, T) 
in the classical sense. On the other hand, in our quasi-linear case i.e., 
m > 1, we do not have any information on the time derivative of u in 
the classical sense. Hence we need to treat the weak solution but not the 
classical solution, which is an essential difference between the semi-linear 
and quasi-linear cases. Without the regularity on OtU in the classical 
sense, assuming some additional integrability conditions such as (2.5)
(2.7) below, we can show that our weak solution u(·, t) becomes weakly 
continuous in LfocCIRN) on [0, T], which yields the finiteness of blow-up 
points of u. Our assumptions (2.5)-(2.7) are not so restrictive because 
it is a larger class than that of solutions with the scaling invariance 
associated with (KS)m (See Remarks 1 and 2, below.). In addition, we 
can construct the blow-up solution of (KS) 711 which satisfies integrability 
condition such as (2.5). (See Sugiyama-Velazquez [26].) 

Furthermore, for investigation of asymptotic profile at the blow-up time 
T, it is necessary to determine the regular part f(x) of u(x, t) as t---+ T. 
To this end, instead of u itself, we deal with u= and show that 

k 

Or:= B\ U B(xi, r) 
i=l 

for sufficiently large ball B, which states that u 711 (-, t) is a continuous 
function on [0, T] with values in L2 (0r ). This continuity of u711 (-, t) at 
t = T together with the £ 1-conservation law yields the limiting function 
f E L1(B) such that u(x, t) converges to f(x) for almost all x E Bas 
t ---+ T. This procedure includes an essential difference between ours 
and the 2-D semi-linear case (KS)I, because such higher regularity as 

u E C 2 ,1 (IR?\ U7=l B(xi, r) x [0, T]) can be obtained from the standard 
argument in the latter case. 

Throughout this article, we impose the following assumption: 
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Assumption. The space dimension N 2: 3 and the coefficient 'Y > 
0. Moreover, m > 1 and q 2: 2 satisfy 

2 
q = m+ N" 

The initial data uo is a non-negative function satisfying 

tio E £ 1 n L 00 (RN) with u'[{' E H 1(RN). 

Our definition of a weak solution now reads: 

Definition 1. Let the Assumption hold. A pair ( u, v) of non-negative 
functions defined in RN x [0, T) is called a weak solution of (KS)m on 
[O,T) if 

(i) u E L 00 (0, T; L1(RN)) n £ 00 (0, T'; L00 (RN)), 

(ii) '\lum E £ 2 (0, T'; L2 (RN)), 

(iii) v E £ 00 (0, T'; H 1(RN)) for all T' with 0 < T' < T; 

(iv) ( u, v) satisfies the following identities: 

{T r ('\lum. '\l<p- Uq-l'\lv · '\l<p- U · 8t<p) dxdt 
lo JRN 
= r uo(x)<p(x, 0) dx, JRN 

and { ('\lv · '\1'1/J + v · 'ljJ- u · '1/J) dx = 0 a. a. t E [0, T) JRN 
for all <p E H 1(0,T;L2 (RN)) n£2(0,T;H1(RN)) satisfying <p(·,t) = 0 
for all t E [T', T] with some 0 < T' < T, and all 'ljJ E H 1(RN). 

Concerning the time local existence of weak solutions to (KS)m, the 
following result can be shown by a slight modification of the argument 
developed by the author [19, Theorem 1.1]. 

Proposition 1.1. (Local existence of weak solution and its uni
form £ 00-bound). 
Let the Assumption hold. Then there exist To and a weak solution ( u, v) 
of (KS)m on [0, To) in Definition 1 with the following additional proper
ties: 

(1.3) liu(t)!!u(RN) lluollu(RN) for all 0:::; t <To; 

(1.4) 8t(u¥) E £ 2 (0, To; L~oc(RN)). 
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Such an interval To of local existence can be taken as 

To= (lluoiiL=(RNJ + 2) -q, 

and the weak solution u(t) above satisfies the following estimate: 

for all t E [0, To). 

§2. Main results 

Let us state the main theorem on the c:-regularity for the weak 
solutions of (KS)m· 

Theorem 2.1. ([22], c:-regularity theorem) Let the Assumption 
hold. Then there exists a positive number c:0 depending only on N and 
m with the following property: 

Suppose that ( u, v) is an arbitrary weak solution of (KS )m on [0, T) in 
Definition 1 with the additional properties (1.3}-(1.4} with T =To. If 
u satisfies 

(2.1) sup r u(x, t) dx ::; co 
O<t<T J B(xo,2po) 

for some x 0 E lR N and Po > 0, then it holds that 

sup u(x, t) < C, 
(x,t)EB(xo, !'j) x (O,T) 

where C = C(N,m,"f,lluollunL=,T,po) is a constant independent of 
xo. 

Remark 1. It should be noted that the quantity 

sup llu(t) II N(q-m) 
O<t<= L 2 (RNJ 

is invariant under the change of scaling associated with (KS)m with 
'"Y = 0. In fact, if (u,v) solves (KS)m with '"Y = 0, then (u.>-,V.>-) is also a 
solution for all A > 0, where 

(2.2) { 
U.>-(X, t) 

V.>-(X, t) 

:= A2U ( Aq-mx, A2(q-1Jt), 

:= A2(m-q+l)v( Aq-mx, A2(q-l)t). 

The scaling invariance in L N(q.;:=> (JRN) means that, for all A> 0, 

(2.3) sup llu.>-(t)ll N(q-m) = sup llu(t)ll N(q-m) . 
O<t<CXJ L 2 (RN) O<t<= L 2 (RN) 
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In particular, for q = m + iJ, the above (2.3) is equivalent to 

sup llu.>-(t)llu(RN) = sup llu(t)llu(RN) 
O<t<oo O<t<oo 

for all.>..> 0 

since N(q:;m) = 1. Therefore, we may say that (2.1) is a reasonable 
condition concerning the theorem on the c-regularity of weak solutions 
to (KS)m· 

As an application of the c-regularity theorem as Theorem 2.1, we 
characterize the asymptotic behavior of blow-up solutions to (KS)m· For 
that purpose, let us introduce definitions for the blow-up time and the 
blow-up point. 

Definition 2. Let ( u, v) be the weak solution of (KS )m on [0, T) in 
Definition 1. 

(i) {blow-up time) We say that u blows up at the time T < oo if 

lim sup llu(t)IIL=(RN) = oo. 
t->T-0 

Such a T is called a blow-up time of u. 

(ii) {blow-up point) LetT be a blow-up time of u. We call x0 E JRN a 
blow-up point of u at the timeT if there exists {(xn, tn)};:o=l C JRN x 
(0, T) such that 

Xn----+ Xo, tn ----+ T, and u(xn, tn)----+ oo as n----+ oo. 

We denote by Su the set of all blow-up points of u at the timeT. 

An immediate consequence of Theorem 2.1 is the following charac
terization of both the blow-up point x0 and the time T. 

Corollary 2.2. ([22]) Let the Assumption hold. Suppose that ( u, v) 
is the weak solution of (KS)m on [0, T) with the additional properties 
(1.3)-(1.4) with T =To. LetT be the blow-up time of the weak solution 
u of (KS)m· Then, for any xo E Su, it holds that 

sup r u(x, t) dx > co 
O<t<T j B(xo,p) 

for all p > 0, 

where Eo is the same constant given by Theorem 2.1. 
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Furthermore, under some additional assumptions on u, we can show 
the finiteness of the blow-up points of u. To this end, we introduce the 
Lyapunov function W(t) of u as 

W(t) = m r u(t)m-q+2 dx 
(m- q + 1)(m- q + 2) }RN 

- r u(x, t)v(x, t) dx 
JRN 

+~ (11Vv(t)lli2(RN) + llv(t)lli2(RN)) · 

By Corollary 2.2, we establish the finiteness of the number of blow
up points. Indeed, it holds 

Theorem 2.3. ([23], Finiteness of the blow-up points) Let the 
Assumption hold. Suppose that ( u, v) is the weak solution of (KS )m on 
[0, T) with the additional properties {1.3}-(1.4) with T =To. LetT be 
the blow-up time of the weak solution u of {KS)m· Suppose that Su is 
the set of blow-up points of u at the time T in Definition 2. 

We define the positive integer ko by 

(2.4) ko := [11::111] +1, 

where [·] denotes the Gauss symbol and where co is the same constant 
as in (2.1}. 

{1) We have the following alternative (i) or (ii): 

(i) ~Su ::; ko- 1; 

{ii) ~ Su = oo and Su does not have more than ko - 1 isolated points, 
or generally Su does not have more than ko - 1 isolated cluster points. 

{2) We consider the following three conditions (i}, (ii} and (iii) on q 
andu: 

(i) q = m + -ft = 2 and u has the property that 

(2.5) 

(ii} q = m + tr ~ 2 + tr and u has the property that 

(2.6) =' N m u E Lm+N (0, T; Lm(R )) with m' = --1 ; 
m-
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(iii) q = m + i1 ~ 2 and u has the property that 

(2.7) u E Lm+-ft- 1 (B x (0, T)) for all balls B in 1R N 

and that 

inf W(t) > -oo; 
O<t<T 

If one of these three conditions (i), (ii) and (iii) is satisfied, then we 
have Hsu S: ko- 1. 

Remark 2. As we stated in the Introduction, our assumptions (i)
(iii) in Theorem 2.3 are not so restrictive because the blow-up solution 
of (KS)m with the integrability condition in (2.5) can be constructed for 
an arbitrary initial data u 0 in the Assumption. (See [26].) Moreover, 
each of (2.5)-(2.7) gives a larger class than that of solutions with the 
scaling invariance associated with (KS)m· Indeed, it follows from a direct 
calculation of (2.2) that 

for all,\> 0 and for all1:::; p, s:::; oo. Hence, the space L 8 (0, oo; LP(JRN)) 
is called the scaling invariant class associated with (KS)m provided 
~ + ~ = 1. In (i), (ii) and (iii), the pair (p, s) of exponent for 

u E U(O,T;LP(JRN)) are taken as (p,s) = (m,m), (p,s) = (m,m+ ;;) 
and (p, s) = ( q - 1, q - 1), respectively. In all of these cases, we have 

1 q -1 
-+-- > 1. 
p s 

Next, we give a definition that u(x, t) forms the 8-function singularity. 

Definition 3. Let T be a blow-up time of the weak solution u of 
(KS)m· Let {xi}7=1 C Su. We say that u forms the 8-function singular
ity at {Xi }7=1 and at the time T with the mass { Mi }~= 1 if the following 
property holds: 

There exist a function f in L1 (1RN) and a sequence {tn}~=1 C (0, T) 
with lim tn = T such that, in the sense of distributions in JRN, 

n---+oo 

k 

u(·, tn) ------> L Mi8x, (-) + f(-) as n---'> oo 
i=1 
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i.e., that, for all '1/J E C0 (.RN), 

k 

nl!__,~lN u(x,tn)'l/J(x) dx = 8Mi'l/J(xi) + lN f(x)'l/J(x) dx. 

As an application of Corollary 2.2, the structure of asymptotics of 
blow-up solution is clarified. Indeed, we show that u(x, t) forms the 8-
function singularity at { Xi}f=1 and at the timeT with the mass { Mi}f=l· 

Theorem 2.4. {[22], 6-function singularity) Let the Assumption 
hold. Suppose that ( u, v) is the weak solution of (KS)m on [0, T) with 
the additional properties (1.3)-(1.4) with T = T0 . LetT be the blow
up time of a weak solution u of (KS)m· Suppose that ~Su < oo, say, 
~Su = k. Let {xi}f=1 = Su. Suppose that Eo is the constant given by 
Theorem 2.1. Then, there exist k constants Mi ;::: Eo (1 :=::; i :=::; k) such 
that u forms the 8-function singularity at { xi}~=l and at the time T with 
the mass {Mi}f=1. 

We next investigate the size of the set of blow-up points. To this 
end, we recall the definition of Hausdorff dimension and we estimate the 
Hausdorff dimension of the set of blow-up points of weak solutions u. 

Definition 4. For any XC .RN and s;::: 0, we define the Hausdorff 
measure H 8 (X) as 

lim H8(X), 
8---++0 

00 

H8(X) .- inf{Lpf; xcUBp, Pi<8}, 
i=l . 

where B p, is an arbitrary closed subset of .RN of diameter at most Pi. 
We define the Hausdorff dimension DH(X) as 

DH(X) := inf{s; H 8 (X) = 0}. 

Theorem 2.5. ([23], Hausdorff dimension) Let the Assumption 
hold. Suppose that ( u, v) is the weak solution of (KS )m on [0, T) with 
the additional properties (1.3)-(1.4) with T = T0 . LetT be a blow-up 
time of the weak solution u of (KS )m. If u satisfies 

(2.8) J u(x, t)'ljJ(x) dx is a continuous function on [0, T] 

for every '1/J E C0 (.RN) such that '1/J(x) = '1/J(Ix- xol) for some xo E 
.RN, then the Hausdorff dimension DH(Su) is zero. In particular, if u 
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satisfies 

(2.9) 

then the Hausdorff dimension DH(Su) is zero. 

Remark 3. For the estimate of DH(Su), the assumption (2.9) is 
too strong. In fact, we need only to assume the weaker continuity such 
as (2.8). In Lemma 4.1 below, we will see that if u satisfies one of the 
assumptions among (2.5), (2.6) and (2.7), then we have (2.8). 

For the spherically symmetric solution u of (KS)m, we can pinpoint 
the location of blow-up points. Indeed, it holds 

Corollary 2.6. ([23], Blow-up points for spherically symmetric 
solution) Let the Assumption hold. Suppose that ( u, v) is the weak 
solution of (KS)m on [0, T) with the additional properties {1.3)-(1.4) 
with T = T0 . If u is a spherically symmetric with the property (2.8) in 
Theorem 2.5, then it holds that Su = ¢, or Su = {0}. 

Remark 4. It seems to be an interesting question whether the so
lution ( u, v) is spherically symmetric for such an intimal data as u0 ( x) = 

uo(lxl). 
As we have seen in Theorem 2.5, the continuity of the weak solution 

in L1 (IRN) plays an important role for the estimate of the size of blow-up 
set Su. If we impose strong continuity in L1 (IRN) on u(t) as t _, T- 0, 
then u can be continued beyond t = T. Indeed, we have the following 
extension criterion. 

Theorem 2. 7. ([23], Extension criterion) Let the Assumption hold. 
Suppose that (u, v) is an arbitrary weak solution of (KS)m on [0, T) in 
Definition 1 with the additional properties (1.3)-(1.4) with T =To. If 
it holds that 

(2.10) 

then there exists T' > T such that ( u, v) is a weak solution of (KS )m on 
[O,T'). 

Remark 5. It seems to be an interesting question that under what 
class of the initial data u0 , one can construct the weak solution satis
fYing (2.9) or (2.10). On the other hand, in [26], we have succeeded to 
construct the weak solution having the property (2.8). Such a delicate 
difference is seen only in the L1-space since C0 is not dense in L=, the 
dual space of L1 . 
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In contrast with (2.1), for weak solutions u on [0, T) with Usu < oo, 
we may take a larger constant ow,m as in (2.11) below which guarantees 
the c-regularity theorem. 

Theorem 2.8. ([23], c:-regularity theorem) Let the Assumption 
hold. Suppose that ( u, v) is an arbitrary weak solution of (KS )m on [0, T) 
in Definition 1 with the additional properties (1.3)-(1.4) with T = T0 • 

Suppose that Usu < oo. If u satisfies 

N 

(2.11) sup r u(x, t) dx < 
O<t<T} B(xo,po) 

( m7rN3 ) 2 f(N/2) _. 
N- 1 f(N) O:N,m 

for some xo E 1RN and Po > 0, then it holds that 

(2.12) sup u(x, t) < C, 
(x,t)EB(xo,/'f) X (O,T) 

where C = C(N,m,/, [[uo[[unLoo,T,po) is a constant independent of 
xo. 

In particular, for {x1,x2, · · · ,xk} =: Su (k :S: ko- 1), we have 

lim sup r u(x, t) dx > 0:N,m 1 i = 1, 2, · · · , k 
t->T JB(x;,p) 

for all p > 0. 

Remark 6. The balance of strength m of diffusion and the effect q 
of non-linearity plays an important role for existence of global solutions 
to (KS)m· Indeed, 

(i) For the case of 2 :S: q < m + it, (KS)m is globally solvable without 
any restriction on the size of the initial data u0 ; 

(ii) For the case of q 2:: m +it, (KS)m is globally solvable for the small 

initial data u0 in L N(q.;=l (1RN). As for the large initial data, the solution 
of (KS)m with q 2:: m + it may have some singularities in a finite time 
even if the initial data is smooth. (See [18]-[21].) 

From this point of view, in [24] we treated more general cases of 
q 2:: m + it and proved the corresponding c:-regularity theorem to the 
critical case of q = m + it. Indeed, we showed that if the solution u of 
(KS)m satisfies that 

(2.13) 1 N(q-m) 
sup u-2-(x,t)dx 

O<t<T B(xo,2p) 
< Eo 
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for some x0 E JRN and p > 0, then it holds that 

sup u(x, t) < C, 
(x,t)EB(xo,p) x (O,T) 

where C depends only on N, m, q, ry, p, JJuollucRN) and Jluo IILoo(RN) but 
N(q-rn) N 

not on x 0 . In our generalized case, the space L00 (0, oo; L 2 (JR )) 
is also a scaling invariant class associated with (KS)m· 

§3. Proof of Theorem 2.1 and Corollary 2.2 

In what follows, we abbreviate simply as 

1<r<oo 

and C denotes the constant which may change from line to line. In 
particular, C = C(*, · · · , *) denotes a constant depending only on the 
variables appearing in the parenthesis. 

We give the sketch of the proof for our E-regularity theorem. See 
[22], [23] for the complete proof. 

First of all, we derive local bounds in Lr of u for all 1 < r < oo. 

Lemma 3.1. Let the Assumption hold. For every 1 :::; r < oo, there 
is a positive constant Eo depending only on N, m and r such that if ( u, v) 
is a weak solution of (KS)m on [0, T) with (1.3)-(1.4) with T = T0 and 
if u satisfies 

(3.1) sup f u(x, t) dx < Eo 
O<t<T J B(x0 ,p0 +6) 

for some xo E 1R N, Po > 0 and 8 > 0, then it holds that 

{ ur(x,t)dx :::; Cr(T+1) forallO<t<T, 
} B(xo,po) 

We may put Xo = 0 without loss of generality. Once the Lr -bound 
is established for all 1 :::; r < oo in Lemma 3.1, it follows from the 
representation v = ( -6. + ry)- 1u that 

(3.2) sup JJv(t)JJLoo(B(O,poH)) < C, 
O<t<T 



and 

(3.3) 
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sup 11Vv(t)IIL=(B(o,po+8)) :::; C, 
O<t<T 

where 0 < 8 < l!f and C = C(N,m,"(,po, lluoiii, lluolloo,T). It should 
be noted that the constant C in (3.3) can be taken independently of 8. 
Indeed, we shall show (3.3) according to the similar argument in [12]. 
From the assumption (2.1) in Theorem 2.1, it follows that 

sup f u(x, t) dx :::; c:o, 
O<t<T J B(Oe,ipo+8) · 

where 0 < 8 < l!f· Hence we obtain from Lemma 3.1 with r = N + 1 
and (po, 8) replaced by (~Po+ 8, ~Po) that 

sup llu(·, t)XB(O,~po+8) IIN+l :::; Co, 
O<t<T 3 

where Co= Co(N, m, "(, po, lluoiii. lluolloo, T). We here consider 

(3.4) -~VI+ "(VI = UXB(O,~po+8) in IRN. 

Then, the function VI given by 

VI (x, t) = { G(x- y)uXB(O ~Po+<l) (y, t) dy JRN '3 

is the strong solution of (3.4), where G(x) is the kernel of the Bessel 
potential. Since G E L N ~ 1 (IR N) and VG E L ~ (IR N), we see that 

sup llvi(t)lloo 
O<t<T 

(3.5) 

and 

sup IIVvi(t)lloo 
O<t<T 

(3.6) 

where C = C(N, m, "(, po, lluolh, lluolloo, T). 

Next, we consider 
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Then, the function v2 given by 

(3.8) v2(x, t) = LN G(x- y) · (u- UXB(O,~po+O))(y, t) dy 

is the strong solution of (3.7). Since G(x) satisfies the estimates IG(x)l :::; 
Clxi2-N and IV'G(x)l :::; Clxll-N for all x ERN, we have 

llv2 (t) II L 00 (B(O,po+6)) 

sup I r G(x- y) X 
xEB(O,po+O) JRN\B(O,~po+O) 

(u- UXB(O,~po+O))(y, t) dyl 

(3.9) < Cl~0 12-N · lluoll1 :::; C for all 0 < t < T, 

IIV'v2 ( t) II L 00 (B(O,po+6)) 

sup I r V'G(x- y) X 
xEB(O,po+O) JRN\B(O,~po+O) 

(u- UXB(O,~po+O))(y, t) dyl 

(3.10) < Clp; 11-N ·lluoll1 :::; C for all 0 < t < T, 

where C = C(N,"(,po, lluoll1)· 
By (3.4) and (3.7), obviously, v := v1 + v2 gives the unique strong 

solution of the equation: 

-~V+"(V=U inRN. 

Thus from (3.5), (3.6), (3.9), (3.10), we obtain (3.3). 

Let us introduce a cut-off function "1 with several properties. 

Lemma 3.2, Let Po > 0 and 8 > 0 as in {3.3}. Let "l(x) = "l(lxl) 
be as 

ry(x) '~ { ~(I- <>o+Lixl) 

for 0 :::; lxl < po, 
for Po :::; lxl < Po + 8, 

for lxl ~ Po + 8. 

Then, it holds that 

I ( ) I C ( )1-a '\7"1 X < a28 . "1 X ' 

I ( ) I C ( )1-a ~"1 X < a482 . "1 X ' 
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for all x E lRN and all 0 < a < 1, where c is an absolute positive 
constant. 

In what follows, we take Po and 6 so that (3.3) holds. We now 
proceed to give the proof of Theorem 2.1. For every weak solution with 
(2.1), it holds that 

~ r ur(x, t)ry(x) dx 
r }RN 

(3.11) 

where h and ! 2 are defined by 

and 

and where 7] is the cut-off function which is centered at x 0 and deter
mined by p0 and 6 as in Lemma 3.2. 

Applying a variant of the Sobolev inequality together with the 
Young inequality, we may taker* depending only on N, m such that 

h < 

(3.12) 
1 

0 <a :S 3(N + 1) 

for all r* < r < oo, where C = C(N,m,"(, lluolll, lluolloo)· 
Furthermore, from (3.3) and the Young inequality, we obtain that 

3m(r- 1) 1 I r+=-ll2 \lu 2 7] dx 
2(r + m- 1)2 RN 

(3.13) + c( + 1 ) c (II llr+2q-m-3 II llr+q-2 + 1) 
r a26 U L:i(B(xo,po+8)) + U L:i(B(xo,po+8)) ' 

for 0 < t < T, for all 0 <a :S 30J+l) and for all r* < r < oo. See [22, 
Sections 3 and 4] for proof of (3.12) and (3.13). 
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From (3.11)-'(3.13), it follows that 

r ur (x, t)ry(x) dx 
JRN 

< - mr(r- 1) t f IV'u r+o;-1 1277 dxds 
2(r + m- 1)2 } 0 }RN 

+ c(r + a!8) C X lot (11ull~~7;(~o,poH)) + 

llullr-J;:2q-m-3 + llullr-J;:q-2 ) ds 
£4 (B(xo,poH)) £4 (B(xo,poH)) 

(3.14) +TC(r+ a!8 ) 0 + l,)u0ry)(x) dx, O<a< 3(N1+ 1)' 

where C = C(N,m,"(,po, lluollb lluolloo,T). 

Since 

r + m - 1 > r + q - 2 > r + 2q - m - 3 

implied by m - q + 1 = 1 - -k > 0 and since we may take a as an 

arbitrary number in (0, 3(J+l)), by setting 8 = ~0 in (3.14), we have 

sup llu(t)IILr(B(xo,po)) 
O<t<T 

1 r±m-1 

(3.15) ~ (Cr0 )" ·max{ sup llull "r ~ , lluollr. T+1} 
O<t<T L4 (B(xo,po+ r )) 

for all r* < r < oo. Now we take p0 such as 4Po > r* and define ap as 

ap :=max { sup llulbP(B(xo po-"'l!_ .eQ.), lluollb lluolloo, T + 1}, 
O<t<T ' Ln-1 4' 

for p > po. Taking r = 4P in (3.15), we have 

ap ~ c1f4P 4Cpf4P 

1+m-1 

xmax{ sup lluii£4P(B(x P -"'l!-1.eQ.)'IIuolh,lluolloo, T+1} """"41' 
O<t<T 0 ' 0 L..,=1 4' 

c1f4P 4Cpf4P • al+~ 
p-1 

~ C · a~0_ 1 for all Po < p < oo, 
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which yields 

SUp llull £ 4 P (B(xo,po- I;P_ E.Q_) 
O<t<T •-1 4' 

< C. a~o-1 

(3.16)= Cmax { sup lluiiL•vo(B(x P -"Po E.Q.), lluolll, lluolloo, T + 1}c. 
O<t<T o, 0 Ln~l 4 , 

See [Proof of Lemma 5.1, 27] for detail. Under the hypothesis of (2.1), 
the assumption (3.1) in Lemma 3.1 is fulfilled with 6 = f,fo-, which makes 
it possible to take r = 4Po with the estimate 

where C = C(N,m,1',Po,po,lluolh,lluolloo,T). Since I::f=l' <' 
for all 1 < p < oo, by letting p --7 oo in (3.16), we see that u E 
L00 (0, T; L00 (B(x0 , ~ ))) with 

sup llu(t)llv=(B(x ~)) < C(T + 1), 
O<t<T 0 ' 3 

where C = C(N,m,1',Po,po,lluolll,lluolloo,T). Thus we complete the 
proof of Theorem 2.1. 

Obviously, Corollary 2.2 is an immediate consequence of Theorem 
2.1. 

§4. Proof of Theorems 2.3 and 2.4 

In our quasi-linear case i.e., m > 1, we do not have any information 
on the time derivative of u in the classical sense. Hence we need to 
treat the weak solution but not the classical solution, which is an essen
tial difference between the semi-linear and quasi-linear cases. Without 
the regularity on OtU in the classical sense, assuming some additional 
integrability conditions such as (i)-(iii) in Theorem 2.3, we can show 
that our weak solution u(·, t) becomes weakly continuous in LfocClRN) 
on [0, T] in the following lemma. See [23, Section 5] for the proof. 

Lemma 4.1. Let the Assumption hold. Suppose that ( u, v) is the 
weak solution of (KS)m on [0, T) with the additional properties {1.3}-
(1.4). 

( 1) Suppose that xo E Su has the property that 
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for some d > 0. Then, for the cut-off function TJ E C0 (B2d(xo)) cen
tered at x 0 with p0 = d and r5 = ~ as in Lemma 3. 2, it holds that 

{ u(x,t)ry(x) dx is continuous on [O,T]. 
1RN 

(2) If u satisfies one of three conditions (i), (ii) and (iii) in Theorem 

2.3, then, it holds that { u(x, t)'ljJ(x) dx is continuous on [0, T] for 
1RN 

each 'ljJ E C0 (.1RN). 

Once we establish Lemma 4.1, we can prove Theorem 2.3 by the 
similar argument to that in [12, Theorem 3] as follows. 

Proof of Theorem 2.3 (1). In both cases (i) and (ii). we may prove 
that Su never has more than k0 - 1 isolated points, or more generally, 
more than k0 -1 isolated cluster points. We shall show by contradiction. 
Assume that { x 1 , x2 , · · · , Xko} are k0 isolated points of Su. Then, there 
exists d > 0 such that Sun {x E .IRN;d < lx- xil < 2d} =¢for all 
i = 1, 2, · · · , k0 and 

(4.1)B(xi, 2d) n B(xj, 2d) = ¢ for all i,j = 1, 2, · · · , ko with i =f:. j. 

By Lemma 4.1 (1), we see that the function { u(x, t)TJi(x) dx is contin-
1RN 

uous on [0, T], where 'r/i E C0 (B2d(xi)) is the cut-off function centered 
at Xi with p0 = d and r5 = ~ as in Lemma 3.2 fori= 1, 2, · · · , k0 . Since 
Xi E Su, it follows from Corollary 2.2 that 

( 4.2) lim sup r u(x, t) dx > Eo 
t-+T 1 B(x;,d) 

for all i = 1, 2, · · · ko. 

Then, we have by (4.2) and Lemma 4.1 that 

ko 

koEo < I)imsup r u(x, t) dx 
i=l t-+T 1 B(x;,d) 

ko 

< I.)msup r u(x, t)TJi(x) dx 
i=l t-+T 1 B(x;,'¥) 

(4.3) 
ko 

l.:)iminf r u(x, t)TJi(x) dx, 
i=l t-+T 1B(x;,'¥) 

where Tfi is the cut-off function as in Lemma 3.2, which is centered at 
Xi and with Po = d and r5 = ~- On the other hand, for arbitrary E > 0, 
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there exists J.li = J.li(r::) such that, for all T- /ki < s < T, 

liminf r u(x,r)?Ji(x) dx-E: 
T--'>T }B(x,,¥) 

(4.4) ~ llu(s)?JillucB(x,,¥-)l ~ llu(s)llucB(x,,¥-)l· 

Now let us define Jk := min Jki· Since JJu(s)Jil = Jluolh for all 
l:St:Sko 

0 ~ s ~ T, it follows from (4.1) and (4.4) that 

ko t; ( li~~)pf l(x,,¥) u(x, t)?Ji(x) dx- c) 
ko 

~ L llu(T- ~)liu(B(x,,¥)) ~ JJu(T- ~)Jh 
i=l 

Since c > 0 is arbitrarily taken, we see that 

(4.5) 
ko 

:Lliminf r u(x,t)?Ji(x) dx ~ lluolh· 
i=l t__,T JB(x;,¥) 

Combining (4.3) with (4.5), we have by (2.4) that 

(4.6) 
ko 

kor::o < :Lliminf r u(x,t)?Ji(x) dx < lluolll 
i=l t__,T JB(x;,¥) 

< kor::o, 

which causes a contradiction. 

Proof of Theorem 2.3 (2). Assume that u satisfies one of three 
conditions (i), (ii) and (iii). Suppose that Hsu ;:::.: k0 . Then, we can select 
ko points x 1 ,x2 ,··· ,Xko in Su so that (4.1) holds for some d > 0. By 

Lemma 4.1 (2), it holds that { u(x, t)?Ji(x) dx is continuous on [0, T], JRN 
where 1Ji E C0 (B2d(xi)) is the same cut-off function as in (1). Now it 
is easy to see that a similar argument as above yields a contradiction. 
This completes the proof of Theorem 2.3. 

§5. Proof of Theorem 2.4 

Let us define Mi,n 1 ~ i ~ k by 

(5.1) Mi,r := lim { u(x, t)?Ji(x) dx 
t--'>T} B(x;,r) 

for r > 0, 
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where T/i is the same cut-off function as in Lemma 3.2 such that supp T/i C 

B(xi, r) with p0 = ~ and o = ~- It should be noted that the limit in 
(5.1) exists on account of Lemma 4.1. Since Mi,r is monotone decreasing 
in r and bounded from below by co for all i = 1, 2, · · · , k, there exists 
the limit of Mi,r as r-+ 0, i.e., that 

(5.2) := lim Mi r < oo 
r---+0 ' 

for all i = 1, 2, ·. · , k. 

We determine the regular part f(x) of u(x, t) as t-+ Tin the following 
lemma without the regularity of Btu in the classical sense. 

Lemma 5.1. Let all assumptions in Theorem 2.4 hold. Then, there 
exist a function f E L 1 (RN) and a sequence {tn}~1 with tn -+ T as 
n -+ oo such that 

f(x) lim u(x, tn) 
n->oo 

To establish Lemma 5.1, we deal with u= instead of u itself, and 
show that 

where Or := 1RN\ U~=l B(xi, r). Hence by the well-known interpolation 
argument, (see Lions-Magenus [9]), we conclude that 

This continuity of u=(-, t) at T together with the £ 1-conservation law 
yields Lemma 5.1. This process exhibits a remarkable difference between 
ours and the 2-D semi-linear case (KS)!, because higher regularity as 

u E C 2•1 (1R2 \ U7=l B(xi, r) x [0, T]) can be obtained from the standard 
argument in the latter case. 

Using Lemma 5.1, we shall now show that 

lim r u(x, tn)'tf;(x) dx 
n_,.oo }RN 

for all 'lj; E C0 (1R N). Let us take the cut-off functions T/i ( x), i = 1, · · · , k 
as in (5.1). Since 1-ryi(x) = 0 for all x E B(xi, ~),we have by a direct 
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calculation that 
k kN u(x, t)'ljJ(x) dx - ~ Mi'l/J(xi) - kN f(x )'1/J(x) dx 

= kN\U:=
1 

B(x;,r) (u(x, t)- f(x))'l/J(x) dx 

k 

- ~ l(x;,r) f(x)'ljJ(x) dx 

k k 

+ ~ l(x;,r) u(x, t)'T]i (x) dx · 'ljJ(xi) - ~ Mi'l/J(xi) 

k 

- ~ l(x;,r) u(x, t)ryi(x) dx · '1/J(xi) 

k 

+ ~ l(x;,r) u(x, t)'ljJ(x) dx 

= r (u(x,t)- f(x))'ljJ(x) dx 
JRN\ u:=l B(x;,r) 

k 

- ~ l(x;,r) f(x)'ljJ(x) dx 

k 

+ ~ ( l(x;,r) u(x, t)'T]i (x) dx - Mi) '1/J(xi) 

k 

+ ~ l(x;,r)\B(x;,~) (u(x, t)- f(x))'l/J(x) · (1- 'TJi(x)) dx 

k 

+ ~ l(x;,r)\B(x;,~) f(x)'ljJ(x) · (1- 'TJi(x)) dx 

k 

(5.3) + ~ l(x;,r) u(x, t)ryi(x) · ('1/J(x)- 'ljJ(xi)) dx. 

We have by the definition of the function f that 

I LN\U:=l B(x;,r) (u(x, tn)- f(x))'l/J(x) dxl n~ 0, 

k 

~ ll(x;,r)\B(x;,~) (u(x, tn)- f(x))'l/J(x) · (1- 'TJi(x)) dxl n~ 0. 
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Substituting t = tn in (5.3) and then letting n --t oo, we obtain from 
(5.1) that 

k 

li~s:;p llN u(x, tn)'¢(x) dx - tt Mi'l/J(xi) - lN f(x)'lj;(x) dxl 

k k 

< tt L(xi,r) f(x) dx · ~~ 11/J(x)l + tt IMi,r- Mill'l/J(xi)l 

k 

+ 8 L(xi,r/(x) dx · ~~~ 11/J(x)l 

k 

+ L lluoiii · max 11/J(x) -1/J(xi)l 
i=l xEB(xi,r) 

(5.4) =: F(r). 

Since 1/J E C0 (:RN) and f E L1(:RN), we have, by (5.2), that 

lim F(r) = 0. 
r-+0 

Since the left-hand side of (5.4) is independent of r, we conclude that 

k 

lim I r u(x, tn)'l/J(x) dx- L Mi'l/J(xi)- r f(x)'¢(x)dxl = 0, 
~=kN bl kN 

which completes the proof of Theorem 2.4. 
We refer to [23, Sections 4-7] for the proof of Theorem 2.5, of Corol

lary 2.6, and of Theorems 2. 7 and 2.8. 
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