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Abstract. 

The main aim of this paper is to analyse the dynamics of nonlinear 
discrete-time maps generated by duopoly games in which players have 
homogeneous expectations and heterogenous nonlinear cost functions. 
This framework leads to reaction functions that are non-monotonic 
and asymmetric and, in the particular case of na.Yve expectations, the 
model takes the form of an anti-triangular map, T(x,y) = (j(y),g(x)) 
characterized by a rich dynamical behavior, from stable to chaotic Nash 
equilibria. We also present the computation of topological entropy of 
this nonlinear Cournot model by using tools from symbolic dynamics 
and tensor products. 

§1. Introduction 

Oligopoly models are very simple economic structures (or games) 
that may lead to very complex dynamics, like multiple equilibria, in­
determinacy, or chaotic dynamics, even in its most simple form which 
is usually denominated by duopoly (two firms producing and supply­
ing a homogeneous g<?od in a common market). This complexity may 
arise from the combination of various sources, such as the way in which 
each firm formulates expectations about the rival's decisions (concern­
ing the levels of goods produced and supplied in the market or the price 
at which these goods are supplied by both firms), the consideration of 
heterogeneous cost structures, the introduction of dynamics into the 
firms's decision making process, or the adoption of sophisticated coop­
erative strategies by both players and their impact upon the equilibrium 
of the game, among others. The literature on these issues is extremely 
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large by now and important references are, e.g., [11], (10], [5], [3], [4], 
[1], [9], and [8]. 

This paper deals with a duopoly game in a dynamic setting, assum­
ing that firms have homogenous expectations, and production displays 
heterogenous cost functions which are nonlinear due to positive exter­
nalities. For simplicity, we also assume that expectations are formulated 
in a naive way by each firm, meaning that at every period of time each 
player expects his rival to offer the same quantity for sale in the cur­
rent period as it did in the preceding one.1 As we will show, a very 
simple economic structure may lead to extremely complex dynamics, to 
multiple equilibria and to chaotic dynamics. A major result obtained 
is that the Nash equilibrium (the noncooperative solution of the game) 
changes from stable and periodic to chaotic, through period-doubling 
bifurcations, when the system parameters are changed. The existence 
of chaotic motion is demonstrated by computing the topological entropy 
of the model through the application of tools from symbolic dynamics 
and tensor products [7], [6]. 

§2. Homogeneous naive expectations 

We consider a dynamic version of a simple Cournot-type duopoly 
market where firms (players) produce homogeneous goods which are per­
fect substitutes and supply them at discrete-time periods t = 0, 1, 2, ... 
in a common market. At each period t, every firm must formulate an 
expectation of the rival's output in the next time period in order to de­
termine the corresponding profit-maximizing production quantities for 
period t + 1. 

If we denote by qi (t), i = 1, 2 the output of firm i at time t, then 
its production qi (t + 1), i = 1, 2 for the next period t + 1 is decided by 
solving the following optimization problem 

(1) { 
ql (t + 1) = argma:xql rrl (ql (t) 'q~ (t + 1)) 

q2 (t + 1) = argmaxq2 rr2 (qr (t + 1) 'q2 (t))' 

where the function II(·,·) denotes the profit ofthe ith firm and qj (t + 1) 
represents the expectations of firm i about the production decision of 
firm j (j = 1, 2,j i= i). If the optimization problem has a unique 

1Notice that with adaptive, rational or bounded rational expectations, the 
dynamics would become even more complicated than in the case of naive expec­
tations. See, eg., Mendes et al. [8]. 
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solution, then we denote the former by 

{ 
ql(t + 1) = J(qHt + 1)) 

q2 (t + 1) = g (q]' (t + 1)), 

where f and g are the reaction functions. 
The crucial point here is how each firm formulates expectations 

about the future production levels of its rival. Four different approaches 
have been found in the literature. Expectations can be adaptive if they 
are formulated in accordance with the rule qf(t + 1) = qf(t) + ~(qi(t) -
qf(t)),~ # 1 is the parameter that reflects the speed at which the ex­
pectation mistakes are corrected over time. 2 If we apply the condition 
~ = 1, we obtain the rule qf(t+1) = qi(t), which suggests naive behavior 
from both players. Fully rational expectations occur when ~ --+ oo, so 
that any mistake made at any period is instantaneously corrected, and 
we get the rule qi( t + 1) = qi ( t + 1). We may still have bounded rational 
expectations (see [1]) where firms use information based on the local 
estimates of the marginal profit function, such that at each time period 
t, each firm increases (decreases) its production qi at the period (t + 1) 
if the marginal profit is positive (negative). 

In this paper, and for the sake of brevity, we will only illustrate the 
case when both players choose the strategy defined by naive expecta­
tions. The model becomes 

{. 
ql (t + 1) = f(q2 (t)) 

q2 (t + 1) = g (ql(t)), 

which is known as a anti-triangular map, whose dynamics can be studied 
by using analytical and numerical tools. 

§3. The complete model 

Let us assume that the market inverse demand function is linear and 
decreasing: 

(2) P = p ( Q) = a - b ( q1 + q2) , 

where Q = q1 + q2 is the industry total output and a, b > 0. Following 
Kopel [5], we consider the case in which production satisfies two condi­
tions. Firstly, there are positive production externalities, and secondly, 

2The fundamental point in this rule is that palyers update their expectations 
based on the mistakes they made in the past. Therefore, if no mistakes were 
done at timet, qi (t) = qf (t), and so qf (t + 1) = qf (t). 
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for a given level of the rival's production, each firm's individual produc­
tion shows constant returns to scale. The cost functions of both firms 
in the market may be represented by 

(3) C1 (ql, q2) = C1 (q2) ql and C2 (ql, q2) = C2 (ql) q2, 

with c~ (q2 ) < 0, c; (q1 ) < 0. Notice that each firm has a marginal cost 
of production ( Ci ( ·)) that is constant with respect to its own output but 
varies negatively with respect to the rival's output. We adopt here the 
specific asymmetric form for the functions Ci, i = 1, 2 as proposed by 
[9]: 

{ 
c1 ( q2) = a - bq2 - 2b ( aq2 - a + 1 )2 

c2 (ql) =a- bq1 - 2b ({3q1 - 1)2 . 

Therefore, this particular structure for the marginal cost functions im­
plies that both firms have heterogeneous costs of production and pro­
duction externalities are nonlinear for both firms. 

Combining (1), (2) and (3), we have the following profit functions 
for both firms: 

{ 
Ih = pql - Cl ( q2) ql 

II2 = pq2- C2 (ql) q2 

and the reaction functions are given by j(q2) = (aq2 - a+ 1)2 and 
g ( q1) = ({3q1 - 1 )2 . Considering the case of naive expectations for both 
players the model takes the form 

and was firstly studied by Nonaka (9]. This is an anti-triangular or 
Cournot map and its dynamics can be rigorously studied by using an­
alytical and numerical tools defined for example in [2], [7], [8], among 
others. This duopoly model admits multiple Nash equilibria, namely 
two, three or four, depending on the values of the two parameters a, {3, 
and they can be obtained as the non-negative solutions of the algebraic 
system (aq2- a+ 1)2 = q1, (f3ql- 1)2 = q2. 

The easiest way to study the anti-triangular map is to consider the 
second order composition of AT, that is, 

(4) 

where variables q1 and q2 are acting now independently from each other. 
This is a product map and we denote it by T (q1, q2) = (F (ql), G (q2)). 
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Now, the dynamic behavior of the Cournot map can be deduced from the 
one-dimensional maps F (q1) and G (q2), where the basis map F (q1) = 
(a(f3ql -1)2 - a+ 1)2 and the fiber map G (q2) = (f3(aq2 - a+ 1)2 -1)2 

are trimodal with the following critical points 

c1_1 c2_a+~ ca_a-~ 
ql - /3, ql - a/3 , ql - a/3 

cl a - 1 c2 f3a - f3 + J73 ca f3a - f3 - J73 
q2 = -------;-, q2 = f3a , q2 = f3a · 

Since we consider that 1 < a < 2, 0 < f3 < 2, the critical points are 
always well defined and the dynamics of the map T is fully characterized 
by the trajectories of the critical points ofF (q1 ) and G (q2 ). 

For example, if qi is a fixed point of F, then ( qi, g( qi)) is a fixed 
point of the Cournot map with eigenvalues .A1 = F'(qi) and .A2 = 
-F'(qi) and if the product map T has a period four orbit, then the 
anti-triangular map has a period eight orbit where the periodic points 
of AT are obtained by pairs of combinations of the periodic points ofT. 
Moreover by considering tensor products between the one dimensional 
invariants associated with the critical orbits ofF and G, we can compute 
the topological entropy of the Cournot map (see [7], [6]). 

In what follows we will define the tensor product between two ma­
trices and present the main theorem which allows the computation of 
the topological entropy of triangular and anti-triangular maps. 

Definition 1. Let A, B be two matrices of type ( m x n) and (p x q) . 
The tensor product of A and B is a matrix C of type (mp x nq), repre­
sented by C = A ® B and defined by 

[ 
a1~B a1~B 

C=A®B= : :. 

amlB am2B 

It is well known that the class of product maps studied in this paper 
admits a Markov partition (by rectangles) which is determined by the 
itineraries of the critical points associated with· the basis map and the 
fiber map. Given a Markov partition R = { Rj} ; 1 , the transition 
matrix A= (aij) of type (m x m) is defined by aij = 1 if int (f (Ri)) n 
int (Rj) =I= 0 and aij = 0 in the other case. The subshift space for A 
is defined as I: A = { s : N -t {1, 2, ... , m} : as;si+1 = 1} . Letting a be 
the shift map on the full m-shift, I:m = {1, 2, ... , m} N, define a A = 
all;A : I:A -t I:A, that is the subshift of finite type that characterizes 
the dynamics of the system. 
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Let us denote by Rq1 , Rq2 , Aq1 , Aq2 the Markov partitions and the 
transition matrices associated with the critical orbits of the one-dimen­
sional basis map F and the fiber map G. Then the following theorem 
holds [7), [6], [2] 

Theorem 2. Let I be a compact interval of the real line and let 
T ( q1, q2) = ( F ( q1) , G ( q2)) be a continuous triangular map. Suppose 
that the basis map F admits n critical orbits of finite period Pl, .. ·,Pn 
and the fiber map G admits m critical orbits of finite periods q1, ... , qm. 
Then the Markov partition of the map Tis given by the Cartesian product 
Rq1 x Rq2 and the transition matrix A of T is given by the following 
tensor product: A = Aq2 Q9 Aq1 • 

Corollary 3. The topological entropy of a continuous triangular 
map T (q1, q2) = (F (q1), G (q2)) is given by the sum of the topological 
entropies ofF and G, that ish (T) = h (F)+ h (G). 

Now, the topological entropy of a generic Cournot map is formally 
characterized by: 

Corollary 4. Let I be a compact interval of the real line and let 
T : I 2 ----+ I 2, AT (q1, q2) = (! (q2), g (q1)) be a continuous Cournot map. 
We denote by 

the second iterate (compose) of the map AT which is by construction a 
triangular (product) map. Then 

h (AT) = h ~T) = h (F) ; h (G) . 

The Cournot map shows a very rich dynamic behavior which can be 
easily observed in Figure 1, where several bifurcation diagrams of the 
variable q1 are presented when (3 is varied between 1 and 2, and a takes 
the values a = 1, 1.2, 1.4, 1.8. We can observe period-doubling routes 
to chaos with several stability windows and chaotic regions, and some 
inverse bifurcations when a = 1.2. In all of these cases the dynamics of 
variable q2 is very similar. We found stable Nash equilibria for values of 
(3<1. 

Let us consider the map T defined in (4) and fix a= 1.8. In order 
to compute the topological entropy of the Cournot map, we have to find 
some periodic critical orbits for the basis map F and for the fiber map G. 
By observing the bifurcation diagram (Figure 1) we decided to consider 
the period four stability windows located immediately after (3 = 1, since 
1 < (3 < 2 presents more complex dynamics. This is a periodic orbit with 
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Fig. 1. Several bifurcation diagram for the q1 variable 
when the parameter (3 is varied between 1 and 2 
and. the parameter a assumes the following values: 
1, 1.2, 1.4, 1.8. 

chaos and by solving(! o g)4 (q1 , {3) = q1 for q~3 and a= 1.8 we find the 
exact value of f3 where the bifurcation takes place. We obtain then, that 
for f3 = 1.00991 the critical orbit of the trimodal map (! o g) initiated 
in q~3 is of period four. The critical point q~3 is the only significative 
one, since the diagonal q1 = (! o g) ( q1) intersects only once the trimodal 
map (! o g) ( q1 ) in the vicinity of this critical point. By the same reason 
we obtain that G (q2 ) =(go f) (q2 ) has also a period four critical orbit, 
which is given by the trajectory of the significant critical point, q~2 • We 
may completely ignore the other orbits (critical or non-critical) since the 
kneading theory assures that the critical orbit is predominant and fully 
characterizes the dynamics, giving the maximal entropy of the system. 

For this parameters setting (a= 1.8 and f3 = 1.00991) the Cournot 
map admits 2 unstable nonnegative Nash equilibrium points given by 
(0.1753, 0.6771) and (2.0967, 1.2489) where q} = 0.1753, qf = 2.0967 and 
q~ = 0.6771, q~ = 1.2489 are also the fixed points of the one-dimensional 
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Fig. 2. Period 8 orbit and strange attractor for the antrian­
gular map and period 4 orbit and strange attractor 
for the product map when a = 1.8 and f3 = 1.00991, 
f3 = 1.2 

trimodal maps F(q!) and G(q2 ). The study of the local stability of these 
fixed points is based on the localization, on the complex circle, of the 
eigenvalues of the Jacobian matrix of the two-dimensional map, which 
is given by 

2a (aq2- a+ 1) ] 
0 . 

For the first fixed point we have complex conjugate eigenvalues given 
by >. = ±1.5830i, with modulus greater than one, while for the sec­
ond fixed point we have >. = ±3.4303, both displaying real eigenvalues 
with modulus greater than one, which shows the instability of the Nash 
equilibria. 
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The main dynamics of the Cournot map is fully characterized by the 
dynamics of the critical orbits. We have that the kneading sequences of 
the two period four critical orbits associated with the maps (! o g) and 
(g o f) are given by ( C RLL, c:rll) , where Aq1 = { L, C, R} and Aq2 = 
{l, c, r} are the alphabets associated with the generated partitions of the 
phase space of these maps. The transition matrices of the period four 
critical orbits are given by 

A,,~A~~ [~ 
1 n. 0 
1 

and the transition matrix A of the map T is then 

1 1 1 1 1 1 1 1 1 
0 0 1 0 0 1 0 0 1 
0 1 0 0 1 0 0 1 0 
0 0 0 0 0 0 1 1 1 

A= Aq1 ®Aq2 = 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 
0 0 0 1 1 1 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 

Since the logarithm of the spectral radius of a Markov transition ma­
trix gives the topological entropy of a multimodal map, we have that 
h (fog)= h (go!)= log (.Xmax) = 0.6094 which means that the topolog­
ical entropy of the triangular map and of the Cournot map is h (T) = 
1.2188 and h (AT) = 0.6094. 

Figure 2 represents the period 8 orbit of the Cournot map and the 
period 4 orbit of the product map, for the considered parameters setting. 
It shows also, as a mere example, some strange attractors simulated for 
(3 = 1.2 and a = 1.8. 
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