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Asymptotic behaviour of a nonlinear stochastic 
difference equation modelling an inefficient financial 

market 

John A. D. Appleby and Catherine Swords 

Abstract. 

This note studies the asymptotic behaviour of linear and nonlin
ear stochastic difference equations whose structure is motivated by a 
financial market model. The asymptotic results show that the models 
can produce behaviour consistent with random walk efficient markets 
as well as bubbles or crashes. 

§1. Motivation and background material 

In recent years, much attention in financial economics has focussed 
on the trading strategies of investors. Classical models of financial mar
kets assume that agents are rational, have homogeneous preferences, and 
do not use historical market data in framing their investment decisions. 
An important and seminal collection of papers which summarise this 
position is [5]. 

Econometric evidence of market returns (see e.g., [9]) and analysis of 
the behaviour of traders in real markets reveal a more complex picture. 
Traders often employ rules of thumb which do not conform to notions 
of rational behaviour based on knowledge of the empirical distribution 
of returns (see e.g., [8]). Moreover, many traders use past prices as a 
guide to the evolution of the price in the future (see e.g., [10]). Linear 
continuous-time stochastic models of markets which involve agents using 
past prices to determine their demand, but in which the traders discount 
past returns with a simple type of exponentially fading memory, include 
[1] and [7]. 

In this paper, we present a stochastic difference equation model of 
an inefficient financial market. The model is informationally inefficient, 
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in the sense that past movements of the stock price have an influence on 
future movements. We assume that there is trading at intervals of one 
time unit, with prices fixed in the intervening period. The inefficiency 
stems from the presence of trend-following speculators, whose demand 
for the asset depends on the difference between a weighted average over 
the last N periods of the cumulative return on the stock and the current 
cumulative return. More precisely, if X(n) is the cumulative return 
up to time n, the planned excess demand just before trading at time 
n + 1 is g(X(n))- "Ef=l w(j)g(X(n- j)) where "Ef=l w(j) = 1 and g 
is an increasing function. Speculators react to other random stimuli
"news"- which is independent of past returns. This news arrives at 
time n + 1, adding a further ~(n + 1) to the traders' excess demand. 
Prices increase when there is excess demand (resp. fall when there is 
excess supply), with the rise (resp. fall) being larger the greater the 
excess demand (resp. supply). Hence, the price adjustment at time 
n + 1 is given by 

N 

(1) X(n + 1) = X(n) + g(X(n))- L w(j)g(X(n- j)) + ~(n + 1). 
j=l 

We study the almost sure asymptotic behaviour as n --+ oo of solutions 
of (1 ). 

This paper shows three things: first, if the trend following specula
tors do not behave very aggressively to the difference between current 
returns and historical returns, or do not discount prices quickly, then re
turns behave very similarly to a simple random walk, in that they have 
the same size of large fluctuations. This is characteristic of an efficient 
market. This occurs once g is linear (Theorem 3), or obeys g(x) "'f3x as 
x --+ oo for some f3 ~ 0 (Theorem 5). Moreover, in the case when g is lin
ear the returns follow a random walk plus a stationary mean-reverting 
process (Theorem 3). Also when g is linear, and the trend-following 
speculators behave aggressively, the returns will tend to plus or minus 
infinity exponentially fast: this is a mathematical realisation of a stock 
market bubble (Theorem 4). 

The distinction between traders who are "aggressive with long 
memory" or "less aggressive with short memory" depends on whether 
(3 "Ef=l jw(j) is greater than or less than unity. Large values of f3 cor
respond to aggressive behaviour; if g(x) = f3x for example, the planned 
excess demand of traders is f3 multiplied by the difference between the 
current returns and a weighted average of returns. Therefore, for larger 
(3, a smaller signal from the market produces a given response from 
the traders. The term M = "Ef=l jw(j) is in [1, N], and the greater 
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weight that traders give to returns further back in time, the larger M 
becomes. Therefore, M is a measure of the effective length of memory 
of the traders; indeed, if traders make their decisions based only on a 
comparison of current returns with returns j periods ago, then M = j, 
j = 1, ... , N. A fuller treatment of the economic interpretation of the 
results, the correlation of the returns, and the effect on the market of 
contrarian (or negative feedback traders) will be presented in a later pa
per. Due to restrictions on space, economic interpretation of the results 
is restricted to this introduction. 

The paper has the following structure. Section 2 gives notation 
and supporting results. The asymptotic behaviour of the linear equa
tion is presented in Section 3 and the nonlinear equation is considered 
in Section 4. Results employed from the theory of deterministic differ
ence equations are standard, see e.g., [6]. Definitions and results from 
discrete-time martingale theory may all be found in [11]. 

§2. Background material 

N denotes the integers 0, 1, 2, ... , and~ the real line. A real sequence 
a = {a(n) : n E N} obeys a E £1 (N;~) if LnEN la(n)l < oo. The 
convolution off = {f(n) : n E N} and g = {g(n) : n EN}, f * g, is a 
sequence defined by(!* g)(n) = I:Z=o f(n- k)g(k), n EN. 

Let f3 > 0, N EN, and suppose w = {w(n): n = 1, ... , N} obeys 

N 

(2) w(n) 2: 0, n = 1, ... , N; L w(n) = 1 
n=l 

The resolvent r = { r( n) : n 2: - N} is a scalar sequence defined by 

(3a) r(n + 1) ~ r(n) + P (r(n) - t, w(j)r(n - j)) , n Ell! 

(3b) r(O) = 1, r(n) = 0, n < 0. 

(4) 

Lemma 1. Let f3 > 0, w obey (2), and r be defined by (3). 
(a) 
(b) 

r is a non-decreasing sequence with r(n) > 0 for n EN. 

If f3 I:f-=1 jw(j) < 1, then 

lim r(n) = ~ =: r*, 
n---+oo 1 - f3 Ln=l jw(j) 

and 8 = {8(n): n 2: -N} defined by 8( -N) = 0 and 8(n+ 1) = 
r(n + 1)- r(n) for n 2: -N obeys 8 E £1(N; ~+). 
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(c) If f3~f=1 jw(j) > 1, there exists a: E (0, 1) defined by 

such that limn---+oo a:nr(n) = R*, where R* > 0 is given by 

(6) R* = 1 
(1- o:)(1 + f3a: ~f=-;:1 ja:1W(j))' 

and W is defined by W(j) = ~~=1+1 w(k), j = 0, ... , N- 1. 

Proof. If N = 1, r(n+ 1) = r(n)+f3(r(n) -r(n-1)), so 6(n) = f3n, 
and the results are trivial. Assume N ~ 2. Part (a) follows by induction. 
For (b), putting r(n) = ~7=-N 6(j) into (3) and using (2) gives 

n-N ( N (n-j)AN ) 

6(n + 1) = f36(n) + f3 j~N ~ w(k)- ~ w(k) 6(j) 

H ;~~H (t,w(k) -7t w(k)) 8(j). 

Rearrange the righthand side and set W(j) = ~~=1+1 w(k), j = 0, ... , 
N -1 to get 
(7) 

N-1 

6(n + 1) = f3 2:: W(j)b(n- j), n EN; 6(0) = 1, 6(n) = 0, n < 0. 
j=O 

If f3~~=1 kw(k) < 1, ~~=-N6(n) =: r* is finite; and r* = 1+ 

f3r* ~f=~1 W(j). Since ~f=~1 W(j) = ~f=1 jw(j), (4) holds. Thus 
r* - r(n) = ~;n+1 6(j) =: .6.(n + 1). Then .6.(n) = r* for n = 

-N, ... , 0, .6.(1) = r*- 1, and from (7) 

(8) 
N-1 

.6.(n + 1) = f3 L W(j).6.(n- j), n EN. 
j=O 

For part (c), multiplying across (7) by o:n+1 , where a: is given by (5), 

we get 6a(n + 1) = ~f=~1 f3a:Wa(j)6a(n- j) where 6a(n) = a:nb(n), 
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Wa(n) = anW(n). Then, the discrete time renewal theorem or z
transform techniques imply 

lim an8(n) = lim 8a(n) = N1 
1 . > 0. 

n---->oo n---->oo 1 + (3a l:j=--; jaJW(j) 

Therefore limn_,00 anr(n) = R*, where R* > 0 is given by (6). Q.E.D. 

Next we find the growth rate of a moving average of a sequence. 

Lemma 2. Let ry be positive and increasing with ry( n-N) j ry( n) ----+ 1, 
as n----+ oo, for all N E N. If k = {k(n) : n E N} is non-negative with 
l::~=O k(n) E (0, oo), then limn_,oo(k * ry)(n)h(n) = l::~=O k(n). 

Proof. Without loss of generality, let l::~=O k(n) = 1. For every 
s > 0 there is N > 0 such that I:;:N+l k(j) < s/2. For n 2:: N + 1, we 
have 

t k(j) (ry(n- j) - 1) 
j=O ry(n) 

+ t k(j) (ry(n- j) - 1) ' 
j=N+l ry(n) 

which, using monotonicity of ry, and the fact that l::~=O k(n) = 1 gives 

t k(j)ry(~- j)- t k(j) ~ (1- ry(n ~ N)) + 2 f k(j). 
j=O ry( ) j=O ry( ) j=N +1 

Using ry(n- N)h(n) ----+ 1, and then letting s ----+ 0 yields the result. 
Q.E.D. 

§3. Linear stochastic difference equation 

We consider the linear stochastic difference equation 

(9a) 
N 

Y(n + 1) = Y(n) + (3{Y(n)- L w(j)Y(n- j)} + ~(n + 1), n 2:: 0 
j=l 

(9b) Y(n) = ¢(n), n ~ 0, 
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where~= {~(n): n EN} is a sequence of random variables obeying 

(lOa) ~ is a sequence of independent, identically distributed r.vs; 

(lOb) JE[~(n)] = 0, JE[~(n) 2 ] = a 2 , for some a> 0, and all n EN. 

If (3 I:f=1 jw(j) < 1, Y behaves asymptotically as a random walk. For 
instance, if~ obeys (10) the process S given by S(n) = 2:.:?=1 ~(j) is a 
random walk and obeys the Law of the Iterated Logarithm: 

limsup S(n) = -liminf S(n) =a, 
n->00 yf2n log log n n->oo yf2n log log n 

a.s. 

Theorem 3. Let w obey (2), 0 < (3'2.:;:= 1 nw(n) < 1, ~ obey (10), 
andY obey (9). Then 
(11) 

limsup Y(n) = -liminf Y(n) 
n->oo yf2n log log n n->oo yf2n log log n 1 - (3 I:f=1 jw(j) . 

Proof. For n?: 1, Y(n) = y(n) + 2:.:?=1 r(n- j)~(j), where y(n + 
1) = y(n) + (3(y(n) - I:f=1 w(j)y(n- j)), n ?: 0 and y(n) = ¢(n), 
n :S 0. With U(n) = 2:.:?=1 ~(n- j)~(j), we get Y(n) = y(n)- U(n) + 
r* 2:.:?=1 ~(j), n?: 1. Since r(n) ---+ r*, limn->oo y(n) exists. By the law of 

the iterated logarithm, we need only show limn->oo IU(n)l/ yf2nloglogn = 
0 a.s. Let b(x) = fi, x?: 0. Then b: [O,oo)---+ [O,oo) is increasing and 
b- 1 (x) = x2 . If~ is a random variable with the same distribution as 
~(n), by Corollary 4.1.3 in [4], we have 

00 

2:)Fll~(n)l > vnl:::; JE[b-1(IWJ = JE[eJ < oo. 
n=1 

By the Borel-Cantelli lemma, limsupn->oo l~(n)l/fo :S 1, a.s. which 
implies that limn->oo I~( n) 1/ yf2n log log n = 0 a.s. Thus, there is an a.s. 
event 0* such that for all wE 0*, and all c > 0, there is C(c,w) > 0 
such that 

i~(n,w)i < C(c,w) + cV2nloglog(n + ee) =: r(n,w), n EN. 

By (8) and f3'2.:f= 1 jw(j) < 1, ~ E £'1(N;JR), so by Lemma 2 

1. IU(n,w)l <l' I:?=11~(n-j)lr(w,j) ~l"(')l 1msup 1msup = 0 u J ; 
n->oo r(n,w) - n->oo r(n,w) . 

)=0 
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thus limsupn--->oo !U(n,w)!/J2n1og1ogn < c'l.::.f=o l~(j)\, hence there
sult. Q.E.D. 

When !3L::f=dw(j) < 1, then U(n + 1) = /32.:::,::-r/ W(k)U(n- k) + 
((n + 1), n ~ N, where ((n + 1) := 2:.:::;:;/ ()(k)~(n- k + 1) and() is a 
deterministic sequence which depends on ~. In this case, y - U is an 
asymptotically stationary ARMA process, so Y is the sum of an asymp
totically stationary process and a random walk. ARMA (autoregressive 
moving average) processes are used widely in financial econometrics (see 
e.g., [2]). When /3L::f=dw(j) > 1, we now prove anY(n) --+ Y* as 
n--+ oo where a E (0, 1) andY* is a random variable given explicitly in 
terms of~· Hence Y(n) tends to ±oo according to the sign of Y*. 

Theorem 4. Let w obey (2), f3 L::f=1 jw(j) > 1, ~ obey (10), and 
Y obeys (9). If a E (0, 1) is given by (5), and R* by (6), then 

n~ a"Y(n) = R' (¢(0)- {3 %' ,t., ,;+'w(k)¢U- k) + ~,;~U)). 
Proof Let y(n + 1) = y(n) + f3(y(n)- 2:.:::=1 w(k)y(n- k)), n ~ 0 

and y(n) = ¢(n), n:::; 0. Then y(n) = r(n)¢(0)- {3((/; * r)(n -1), n ~ 1, 
where 

(/;(n) = { L::f=n+l w(j)¢(n- j), n =:_ 0, 1, ... , N- 1 
0, n-N,N+1, ... , 

so y(n) = r(n)¢(0)-{3 L::f;:;/ r(n-1-j)(/;(j), n ~ N. As limn--->oo r(n)an 
=R*, 

Next, for n ~ 1, we have 
n n 

(12) anY(n) = any(n)+ 2)an-ir(n-j)-R*)ai~(j)+R* L ai~(j). 
j=l j=l 

Let M(n) = R* LJ=l ai~(j), n ~ 0. Since a E (0, 1) M is mar
tingale with finite quadratic variation, so by the martingale conver
gence theorem limn--->oo M(n) is finite a.s. Since IE[\~(j)IJ 2 :::; IE[~(j) 2] = 
a 2 , IE'l.::j=1 ai!~(j)! = LJ=l aiJE[!~(j)!] :::; aa(1- a)-1, so ~a(n) := 

an~(n) E t'1(N; JR), a.s. But r1(n) := anr(n)- R* --+ 0, so (r1 *~a)(n)--+ · 
0 as n--+ oo. We finish by letting n--+ oo in (12). Q.E.D. 
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§4. Nonlinear stochastic difference equation 

We now study the nonlinear stochastic difference equation 

(13a) 
N 

X(n + 1) = X(n) + g(X(n))- L w(j)g(X(n- j)) + e(n + 1), n EN, 
j=1 

(13b) 
X(n) = ¢(n), n = -N, -N + 1, ... ,0. 

g : lR -----+ lR is presumed to have the following properties 

(14) g E C(IR;IR), lim g(x) = lim g(x) = {3for some {3;:::: 0. 
X->CXl X X->-CXl X 

We now show if the conditions of Theorem 3 hold, the a.s. partial 
extrema of the solution of (13) grow exactly as those of the solution of 
(9), which are consistent with the extrema of a random walk. The proof 
of this result is partly inspired by work in [3]. 

Theorem 5. Let w obey (2), 0 < !32":/;:=1 nw(n) < 1, g obey (14), 
e obey (10), andY obey (9). Then the solution of (13) obeys 

(15) 

(16) 

lim IX(n)- Y(n)l _ 0 
n->CXl J2n log log n - ' 

limsup X(n) = -liminf X(n) 
n--+cxo y'2n log log n n--+cxo J2n log log n 1 - {3 I:f=,1 jw(j) . 

Proof. Set Z(n) = X(n)- Y(n), 'Y(x) = g(x)- {3x, and G(n+ 1) = 

'Y(X(n)) - I:f=,1 w(j)'Y(X(n- j)), so Z(n + 1) - Z(n) = G(n + 1) + 
{3[Z(n)- I:f=,1 w(j)Z(n- j)]. Therefore Z(n) = E;:~ r(n-1- j)G(j + 
1), n;:::: 1. Let n;:::: 2, n;:::: N + 1, so 

n-1 N n-1 

Z(n) = L r(n -1- j)'Y(X(j))- L w(k) L r(n- 1- j)'Y(X(j- k)) 
j=O k=1 j=O 

n-1 N n-k-1 

= L r(n- 1- j)'Y(X(j))- L w(k) L r(n- k -l- 1)'Y(X(l)) 
j=O k=1 l=-k 
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Hence 
n-1 

Z(n) = L r(n- 1- j)'y(X(j)) 
j=O 

n-2 ((n-j-1)/\N ) 

- j~N kl;v
1 

w(k)r(n- k- j -1) 'Y(X(j)) 

n-1 ( l/\N ) 

= ~ r(l)- k=-(E-
1
)v

1 
w(k)r(l- k) 7(X(n -l- 1)) 

-1 ((n-j-1)/\N ) 

+ 'Y(X(n -1))- j~N k=~v1 w(k)r(n- k- j- 1) 'Y(X(j)). 

Thus 
n-1 1 

Z(n) = 'Y(X(n- 1)) + L 8(l + 1);B'Y(X(n -l- 1)) 
l=N 

+ ~ (r(l)- t. w(k)r(l- k)) 7(X(n- 1 -Z))- ft(n), 

where ft(n) = 2:}~-N (z=:=-j w(k)r(n- k- j- 1)) 'Y(X(j)). Set u(O) 

= 1, u(l) = r(l)- L:i=1 w(k)r(l- k), l = 1, .. ,N -1, h(n) := lft(n)l + 
L(c)[l::~~ 1 lu(Z)I + (3-1 z=;:-J 8(l + 1)]. As limlxl---+= 'Y(x)jx = 0, for 
each c > 0 there is L(c) > 0 such that I'Y(x)l ::; L(c) + clxl, x E JR. As 
limn._,= ft ( n) exists, . 

N-1 

IZ(n)l ::; L lu(Z)I (L(c) + ciZ(n- 1 -Z)I + ciY(n- 1 -Z)I) 
l=O 

n-1-N 

+ ~ L c5(n- j) (L(c) + ciZ(j)l + ciY(j)l) + lft(n)l 
j=O 

and so there is an h tending to a finite limit such that 

N-1 1 n-1 

IZ(n)l ::; L lu(Z)IciY(n- 1 -Z)I + ;6 L 8(l + 1)ciY(n -l- 1)1 
~0 l=N 

N-1 1 n-1 

+ L lu(Z)IciZ(n- 1 -Z)I + ;6 L c5(l + 1)ciZ(n -l- 1)1 + h(n). 
l=O l=N 
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Since liE P1 (N; ~+), there is a summable ,., such that 

n-1 n-1 

IZ(n)l:::; h(n) + s L "'(n -1- j)IY(j)l + s L "'(n ~ 1- j)IZ(j)l, 
j=O j=O 

where !3, which tends to a finite limit, has been introduced so that this 
estimate holds for n 2 0 too. Fix E: > 0 so that s I:;~=O "'(n) < 1/2. 
Define p by p(O) = 1, p(n + 1) = E: I::7=o "'(n- j)p(j), n EN, and z by 

n n 

z(n+ 1) = h(n+ 1) +s L "'(n- j)IY(j)l +s L "'(n- j)z(j), n EN, 
j=O j=O 

where z(O) = 0. Therefore IZ(n)l :::; z(n) and 

z(n) ~ t,p(n- j) (ta(j) + £ ~ •(j- I- k)IY(k)l) . 

Asp E P1(N; (0, oo)), there is an J4 obeying limn-+oo f 4 (n) = 0 and 

n-1 

IZ(n)l :::; j4(n) + s L(P * "')(n- k- 1)IY(k)l. 
k=O 

Therefore, from (11) and Lemma 2 it follows that 

lim sup J l~(nil :::; sc' f(p * "')(k) = sc' f "'(k) 1 _ L~ (k)' 
n->oo 2n og og n k=O k=O E: k=O "' 

where c' > 0 is the righthand side of (11). Since E: can be taken as small 
as required, and the last inequality holds pathwise, we have (15). (16) 
is an immediate consequence of (15) and Theorem 3. Q.E.D. 
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