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Parameterized Gromov-Witten invariants and 
topology of symplectomorphism groups 

Hong-Van Le1 and Kaoru Ono2 

Abstract. 

In this note we introduce parameterized Gromov-Witten invari­
ants for symplectic fiber bundles and study the topology of the sym­
plectomorphism group. We also give sample applications showing the 
non-triviality of certain homotopy groups of some symplectomorphism 
groups. 

§1. Introduction 

Given a symplectic manifold ( A1, w), one of the basic mathematical 
objects associated to (M,w) is its automorphism group Symp(M,w). 
Since the group Symp( M, w) can be equipped with the c= topology, we 
would like to know the homotopy type of this automorphism group. In 
this note we are interested in the following questions: 

1) How large is the rank of the homotopy group 1Ti (Symp( M, w) 0 
Q)? 

2) What are the characteristic classes of Symp(M,w), that is, the 
cohomology ring of the classifying space BSymp( M, w). 

Our approach to these problems uses symplectic fiber bundle setting 
(a similar setting is used in the study of homotopy type of diffeomor­
phism groups) and Gromov's technique of pseudoholomorphic curves. 
We would also like to remark that the Gromov technique of pseudoholo­
morphic curves has been developed and extended in different directions 
in the study of the topology of symplectomorphism groups. Recent de­
velopments in this direction can be found in, e.g., McDuff's survey [19]. 
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This note consists of four sections. In section 2 we recall the defini­
tion of symplectic fiber bundles and we introduce the notion of fiber-wise 
(vertical) stable maps. In section 3 we show that the basic properties 
of the moduli space of stable maps also hold in the fiber-wise (fam­
ily) version. As an immediate consequence we construct parameterized 
Gromov-Witten invariants for symplectic fiber bundles, which is a family 
version of the usual Gromov-Witten invariants for symplectic manifolds. 
In section 4 we apply this construction to problems 1, 2 mentioned above. 
We associate to each element ?Ti(Symp(M, w)) a symplectic fiber bundle 
over 8i+1 which is the union of two trivial symplectic bundles over a disk 
Di+1 glued along the boundary 8Di+1 by this element ?Ti(Symp(M,w)). 
We re-interpret a result by Gromov [8], Theorem 2.4.C2 on the exis­
tence of an element of infinite order in the symplectomorphism group of 
non-monotone 8 2 x 8 2 in terms of parameterized Gromov-Witten invari­
ants, see Theorem 4.3. We also slightly generalize Gromov's result in 
the following cases. We denote by (Xt, w!) a non-monotone symplectic 
manifold which is diffeomorphic to 8 2 x 8 2 , and by (Xi, w2) a symplectic 
manifold which is diffeomorphic to CP2#CP2 . 

Theorem 4.5. a) Let (M1,01) = (Xt x N 2k,w1 EBwo) be a sym­
plectic manifold with (Xt,w1) as above and (N,w0 ) a compact symplectic 
manifold. Then we have rk( 1r1 (Symp( M1, 0 1)) ® Q) ;:::: 1. 

b) We also have rk(1r1(Symp(Xi,w2)));:::: 1. 

There are intensive studies on cohomology groups and homotopy 
types of symplectomorphism groups of rationally ruled symplectic 4-
manifolds such as Abreu [1], Abreu-McDuff [2], Anjos [3], etc. In fact, 
we can improve Theorem 4.5 for the case of (M1, 0 1) without using 
"hard machinery'. 

Theorem 4.8. a) The rank of the homomorphism i*: 1r1(Symp(Mb 
01))---. 1r1(Diff(Ml)) is at least 1. 

b) The rank of the homomorphism i* : 1r3(Symp(M1> 01))---. 
1r3(Diff(M1)) is greater than or equal2. 

In section 4 we also construct characteristic classes of the group 
Symp(M,w) by formulating the Gromov-Witten invariants in a dual 
way. We also include an Appendix, which contains an alternative proof 
of Theorem 4.3, a special version of Theorem 4.5.a. 

After the preliminary version of this note was written [14], we learned 
several works on the topology of symplectomorphism groups, [10], [22], 
see also references in [19]. Since some results in [14] have been quoted in 
some literature e.g. [4], [5], [19], we feel a need to revise the version [14] 
to correct some errors as well as to add details to missing arguments. 
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§2. Symplectic fiber bundles and vertical stable maps 

In this section we recall the notions of symplectic fiber bundles, 
stable maps and introduce the notion of vertical stable maps. We refer 
to [7] for more discussions on symplectic fiber bundles. The idea of 
counting fiber-wise holomorphic curves in symplectic fiber bundles is also 
suggested by Kontsevich (in his communication to us after a preliminary 
version of this note has been written in 1997) and by Lu-Tian1. 

2.1. Symplectic bundles and their fiber-wise compatible 
almost complex structures 

A fibration M ~ E ~ B is said to be a symplectic fiber bundle, 
if the fiber M is diffeomorphic to a symplectic manifold (M, w) and the 
transition function takes its value in the group Symp(M,w). We denote 
by J1r(E) the associated bundle over B whose fiber is the space J(M) 
of smooth compatible almost complex structures on (M,w). Since the 
fiber J(M) is contractible, the space of sections J(E) : B ~ J1r(E) is 
also non-empty and contractible. 

In what follows, we are interested in defining invariants which de­
tect the non-triviality of symplectic fiber bundles. Associated to any 
symplectic fiber bundle M ~ E ~ B we obtain the local system of 
fiberwise homology groups, resp. fiberwise cohomology groups, denoted 
by Jl*(E), resp. Jl*(E). In what follows, the coefficients of cohomology 
groups are in R or Z, and the coefficients of homology groups are in Z. 

1 We thank Dusa McDuff for informing us that they used this idea in order 
to construct equivariant Gromov-Witten invariants, which is a special case of 
the parameterized Gromov-Witten invariants for the symplectic fiber bundle 
associated with the Hamiltonian action of a compact Lie group on a symplectic 
manifold. 
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Clearly all the invariants of the associate local systems 1t*(E), 1t*(E) 
are also invariants of symplectic fiber bundles. In particular, if a sym­
plectic fiber bundle is trivial, then the associated local systems are sim­
ple, i.e., trivial. We also observe that for a symplectic fiber bundle E 
there is always a section s[w] : B --> 1t2 (E) which takes a given value 
[w] E H 2 (M; R) and there is also a section sc1 : B ->1t2 (E) which takes 
a given value c1(M,w) E H 2 (M; Z). 

2.2. Stable maps and vertical stable maps. 

Our notion of vertical stable maps is based on the notion of stable 
maps due to Kontsevich [12], [11], see also [6] whose exposition we follow 
closely. 

Let g and m be nonnegative integers. A semistable curve with m 
marked points is a pair (E, z) of a connected space E = Unv(Cv), where 
Cv is a Riemann surface and 1r v : Cv --> E is a continuous map, and 
z = (z1 , · · · , Zm) are m distinct points in E with the following properties. 
(1) 1fv is the normalization of the irreducible component Ev = nv(Cv) 
of E for allv. 
(2) For each p E E we have L:v #n;; 1 (p) ::; 2. Here # denotes the order 
of the set. 
(3) L:v #n;; 1 (zi) = 1 for each Zi. 

(4) The number of Riemann surfaces Cv is finite. 
(5) The set {pEEl L:v #n;; 1 (p) = 2} is finite. 

We denote by gv the genus of Cv and by mv the number of points p 
on Cv, which are the inverse image of nodes of E, i.e. I:, #n::/ (nv(P)) = 
2, or marked points, i.e. nv(P) = Zj for some j. The genus g of a 
semistable curve E is defined by by 

v 

where Tr, is a graph associated to E in the following way. The vertices 
of Tr, correspond to the components of E. Denote by Vv the vertex 
corresponding to Ev. For a node p E Ev n Ev', we assign an edge ep 

joining vertices Vv and Vv'. (When p is a node of Ev, the "edge" ep 

becomes a loop based at Vv.) 
A homeomorphism () : E --> E' between two semistable curves is 

called an isomorphism, if it restricts to a biholomorphic isomorphism 
()vv' : Ev --> E~, for each component Ev of E and some component 
E~,. We also require that () maps the marked points in E onto the 
corresponding marked points in E' bijectively. 

Let J(E) be a vertical compatible almost complex structure. A map 
u : (E, z) --> E is called a vertical J(E)-stable map, if the composition 
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map Jrou sends (:E, z) to a point bE Band u is a stable map from (:E, z) 
to 1r- 1 (b) = (M, J(E)IEb). In other words, for each v, the restriction 
of u to each component :Ev is either a non-constant map, or we have 
mv + 2gv 2 3. 

To define the moduli space of vertical stable maps, we assume first, 
for the sake of simplicity and a later application, that the local system 
H 2 (E) is simple, i.e., the fundamental group 1r1 (B) acts trivially on 
H2(E) (e.g. it is the case if the base B is simply connected). 

In this case, for a class A E H2 (M; Z), there is a global locally con­
stant section SA : B ---+ H 2 (E) whose value is A at a reference fiber. 
We consider the moduli space of all vertical stable map ((:E9 , z), u) 
such that (:E9 , z) is of genus g with m marked points. We denote by 
CM9,m(E, J(E), sA) the moduli space of vertical stable maps repre­
senting the class sA ( 1r ( u)): 

CMg,m(E, J(E), SA):= ubEB{b} X CMg,m(Eb, J(E)IEb, SA(b)), 

which carries a Kuranishi structure in the sense of [6], see Lemma 3.1 
below. 

Here CM 9 ,m(Eb, J(E)IEb' SA(b)) is the moduli space of stable maps 
of genus g, with m marked points and representing the homology class 
sA(b). Here, two pairs ((:E, z), h)) and ((:E', z'), h') are equivalent, if 
and only if there exists an isomorphism e : (I:, z) ---+ (I:'' z') satisfying 
h' o e =h. 

If the action of 1r1 (B) on the fiber H2 (M; Z) is non-trivial, we can 
still define a notion of a moduli space of vertical stable maps by consid­
ering a multi-valued section SA : B ---+ H 2 (E) which is obtained by the 
locally constant continuation of A in a typical fiber to a multi-valued 
section. We note that the pairing (s[wl(b),sA(b)) as well as the pair­
ing (sc'(b),sA(b)) are constant functions on B, since they are locally 
constant functions and we assume that B is connected. The number 
(s[wJ, SA(b)) is the "energy" of a holomorphic curve realizing any class 
in sA (b), and the second number ( sc' (b), sA (b)) enters in the expected 
dimension of the moduli space of stable maps representing any class 
in SA(b). Now using the Gromov compactness theorem it is easy to 
see that there is only a finite number of values of SA in each fiber 
H2 (M = 1r- 1 (b); Z) such that there is a J(E)IEb-holomorphic curve 
representing a homology class in the set sA(b). The projection from 
CM 9 ,m(E, J(E), sA) to B is proper. It follows from the Gromov com­
pactness theorem: If u; is a sequence of J;-stable maps with energy 
bounded by a constant and J; converges to J= in the space of com­
patible almost complex structures, then there exists a subsequence u;k, 

which converges to a J=-stable map u=. 
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Finally we observe that any element in sA(b) induces the same class 
in H*(E; Z) by the inclusion. 

Remark 2.1. It is sometimes more convenient to work with a tame 
almost complex structure (i.e. w(X, J X) > 0 for any non-zero tangent 
vector X). As in the non-parameterized case all the compactness and 
perturbation theorems for pseudo-holomorphic curves with respect to a 
compatible almost complex structure hold for a tame almost complex 
structure. 

2.3. Examples of symplectic fiber bundles. 

There are several ways to construct symplectic fiber bundles. 
The first way is the associate bundle method. Suppose that a group 

G acts symplectically on a symplectic manifold ( M, w), i.e. there is a 
homomorphism p : G -+ Symp( M, w). Then we can associate to each 
principal G-bundle P over B a symplectic fiber bundle P x G ( M, w). This 
symplectic fiber bundle is non-trivial, if and only if the image p* ( .\) of 
the homotopy class .\ E [B, BG] defining the G-bundle is non-trivial in 
[B, BSymp(M, w)]. 

The second way is the pull-back method. Suppose that we are given 
a symplectic fiber bundle E over a base B. Then any map f from B' to 
B pulls the bundle E back to a symplectic fiber bundle E' over B'. 

The third way is the reduction method. We begin with a differ­
entiable fiber bundle M -+ E -+ B with M being a symplectic mani­
fold and ask if this fiber bundle also admits a structure of a symplectic 
fiber bundle. Of course, it is the case if the inclusion of Symp(M, w) to 
Diff+(M) is a homotopy equivalence (e.g. if dim M = 2). In general, 
we can state the following criterion, see e.g., [7] for more information. 

Lemma 2.2. Let 1r : E -+ B be a fiber bundle and w E 0 2 (E) be 
a closed form such that w is non-degenerate along all fibers of E. Then 
1r : E -+ B admits a structure of a symplectic fiber bundle, which is 
compatible with w. 

The fourth way to construct symplectic fiber bundles is the gluing 
method. Suppose that we are given two symplectic bundles E 1 and 
E2 over bases B1 and B 2 respectively. Suppose that the restriction 
of E 1 over the boundary 8B1 is isomorphic to the restriction of E 2 

over the boundary 8B2 . Then we can glue the bundle E 1 with E 2 

along the boundary Ei laBi. In particular when the restriction of Ei 
over 8Ei is trivial then the glued bundle is defined uniquely by a map 
8B1 -+ Symp(M, w ). If Bi is closed, we can define the operation of 
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fiber connected sum as follows. Choose a small disk Di in Bi and take 
a trivialization of EiiD, ...... Di. Then glue EiiB,\D,' i = 1, 2, along a vi. 

Remark 2.3. Each element g E 7rk(Symp(M, w)) defines a symplec­
tic fiber bundle E with the fiber (M, w) over a sphere sk+l by gluing two 
trivial symplectic fiber bundles Dk+l X M along the boundary M X sk 
by the element g. Conversely any symplectic fiber bundle over Sk+ 1 is 
defined by such a method. 

§3. Parameterized Gromov-Witten invariants 

In this section we define parameterized Gromov-Witten invariants 
for symplectic fiber bundles over a closed oriented manifold B. The base 
B is assumed to be oriented in order to deal with the orientation of the 
moduli space of stable maps. The base B is also assumed to be a closed 
manifold in order to get the fundamental class of the moduli space of 
vertical stable maps. 

3.1. Geometric picture 
Recall that a semistable curve (~, z) with m marked points is called 

stable, if for all its component Cv of the normalization of ~ we have 
mv + 2gv ?: 3. Let CM9 ,m denote the Deligne-Mumford moduli space 
of stable curves, i.e. CMg,m is the set of all isomorphism classes of 
stable curves with m marked points and of genus g. Let us denote by 
E(mlthe "Whitney sum" (the multiple fiber product over B) of m copies 
of E. When 2g + m ?: 3, as in the usual case (see e.g. [12], 2.4, [11], 
1.5), there is the evaluation map 

II= pr X evg,m,SA : CMg,m(E, J(E), SA) ...... CMg,m X E(m)' 

((~, z), u) r-+ ((f:, z), u(zl), · · · , u(zm)). 

Here (f:, z) is the stable curve with marked points obtained from (~, z) 
by consecutive contractions of non-stable components. When 2g + m = 
0, 1, we call ev9 ,m,sA the evaluation map. 

We briefly recall the notion of Kuranishi structures, see [6], §5 for 
details. Roughly speaking a compact Hausdorff space X has a Kuranishi 
structure, if it is locally described as the zero set s- 1(0) of a V-bundle 
over a V-manifold, namely for each p E X, there exist a V-manifold 
Up, a V-bundle Ep on it and a continuous section s of Ep ---> Up such 
that the difference dim Ep - dim Up is independent of p E X. Moreover, 
we assume that such local descriptions are compatible under coordinate 
changes { c/Jpq} in a suitable sense. We also have the notion that X with 
Kuranishi structure has its tangent bundle. If a continuous map f: X---> 
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Y extends locally to fv : Up --+ Y for each p such that fv o ¢vq = Jq, 
we call f is a strongly continuous map. If X has an oriented Kuranishi 
structure and f is a strongly smooth map from X to a topological space 
Y, then we can define the image f*([X]) of the fundamental class of 
X as the image f*[(s')- 1 (0)] of the fundamental class of the zero set 
(s')- 1(0) of a perturbed smooth multi-sections' of E which is transversal 
to zero. Taking into account of multiplicity in an appropriate way, this 
fundamental class gives a well-defined element in H*(Y; Q). 

Lemma 3.1. The space CM9 ,m(E, J(E), SA) has a Kuranishi 
structure with oriented tangent bundle. This space is compact and of 
dimension dimE+ 2m+ 2(c1(M), sA)+ (6- dimM)(g -1) . Moreover, 
II is strongly continuous map in the sense of Kuranishi structure. 

By this Lemma, we can define the virtual fundamental cycle of the 
moduli space of vertical stable maps. Denote by II*([CM 9 ,m(E, J(E), 
SA)]) the induced class in H*(CM 9 ,m x E(m); Q). The map II induces 
a map in cohomologies 

(1) IE · H*(E(m). Q)--+ H*+~"(CM · Q) g,m,sA · ' g,m, 

by 

(2) IJ.m,sA ('y) = PD('y\II*(CMg,m(E, J(E), sA))) 

If 2g + m = 0, 1, we define 

The parameterized Gromov-Witten invariants, as in the usual case, are 
the collection of maps Iff.m,sA defined in (2), (3). The shift of grading is 
given by f1 = -(2c1 (M), A)+ (g- 1) dimM- dimE. 

Remark 3.2. The parametrized Gromov-Witten invariant Iff,o,sA 
is said to be of relative degree 0, if the expected dimension of CM 9 ,0 (E, 
J(E), sA) is zero, i.e., f1 = 6(g -1). For symplectic fiber bundles E with 
the local system 7t2 (E) being simple, we can interpret the invariants 
Iff,o,sA of relative degree 0 in term of "counting vertical holomorphic 
curves" of genus g representing any class in sA. Here "counting" means 
the "order" of the space with Kuranishi structure of expected dimension 
0. The invariant 

3.2. Proof of Lemma 3.1 

To define rigorously the parametrized Gromov~ Witten invariants for 
all compact symplectic fiber bundles, we need to prove Lemma 3.1 and 
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moreover, to show that the map I!i,m,sA does not depend on the choice 
of J(E). Since the base space B is assumed to be compact, the moduli 
space CM9,m(E, J(E), sA) is compact, cf. section 2.2. 

Proof of Lemma 3.1. Our proof of Lemma 3.1 is an adaptation of 
the proof of the corresponding results concerning Gromov-Witten invari­
ants [6], Theorems 7.10 and 7.11. 

Let u be a vertical stable map over b0 E B. For simplicity, we 
assume that the domain of u is irreducible. (The general case is handled 
in a similar way.) Pick a finite dimensional space Eo c LP01 ( u*T Ebo) 
such that 

- 1 
Im Du8Jbo +Eo= £PO (u*TEb0 ). 

If bE B is in a neighborhood Do of b0 , we can identify fibers Eb and Ebo 
by a local trivialization of E. Thus Jb is considered as an almost complex 
structure on Ebo. Then there is a smaller neighborhood Db c Do of b0 

such that 
- 1 Im Du8Jb +Eo= £PO (u*TEb0 ). 

Using this observation, the argument in [6] implies that there exists a 
Kuranishi neighborhood (U, E, s) of u on CM9,m(E, J(E), sA) so that a 
V-manifold U is fibered over an open subset of B. 

All arguments in [6] can be directly adapted to the parametrized case 
or they even imply the corresponding statements in the parametrized 
case. For details of the construction of Kuranishi structure, see [6], 
§12. Q.E.D. 

In order to show that the usual Gromov-Witten invariants do not 
depend on the choice of compatible almost complex structures, pertur­
bations, we needed to construct a bordism between the moduli spaces 
corresponding to two almost complex structures J 1 and h (with per­
turbations). This bordism is a version of the moduli space of vertical 
stable pseudo-holomorphic curves parametrized by the interval [0, 1]. 

3.3. Properties of parameterized Gromov-Witten invari­
ants 

The following theorem immediately follows from Lemma 3.1 applied 
to the case that the base space is B x [0, 1]. 

Theorem 3.3. The parameterized Gromov- Witten invariants are 
invariants of symplectic fiber bundles. 

Remark 3.4. The bordism type invariants of the moduli space of 
pseudoholomorphic curves may have more informations than the (coho­
mological) Gromov-Witten invariants. Such examples of finer Gromov­
invariants of symplectic manifolds can be found in [17]. 
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In order to distinguish a symplectic fiber bundle from the trivial 
one by parameterized Gromov-Witten invariants, we need to compute 
those for trivial symplectic fiber bundles E = B x M. By the Kiinneth 
formula, the algebra H*(B x (M)Cm}; Q) is isomorphic to H*(B; Q) 0 
(H*(M; Q))®m. Let us denote by O:i elements in H*(M; Q) and by {3 
an element in H*(B; Q). 

Proposition 3.5. The Gromov- Witten invariants of a trivial sym­
plectic fiber bundle satisfy 

Proof. We choose a vertical compatible almost complex structure 
J(E = B x M) such that it is constant in the B-direction. Clearly the 
moduli space of vertical stable maps C M 9,m (E = B x M, { Jb = J}, sA) 
is the direct product B x CM 9 ,m(M, J, A). We take a multi-valued 
perturbation ofKuranishi map for CM 9 ,m(M, J, A) to define the virtual 
fundamental cycle of BxCM9 ,m(M, J, A). Denote by IIPt the evaluation 
map in section 3.1 for CM9 ,m(M, J, A), i.e. the case with base B =pt. 
By (2), the left hand side of (4) equals 

(5) 
PD({3 0 o:1 0 · · · 0 o:m \II*[B x CM 9 ,m(M, J, A)]) 

=PD({3 0 0:1 0 · · · 0 O:m \([B] X II~t[CM9,m(M, J, A)]) 

Clearly the right hand side of (4) equals the right hand side of (5). 
Q.E.D. 

Now let us compute parameterized Gromov-Witten invariants of a 
pull-back symplectic fiber bundle. Let p: B1 ---> B 2 beak-fold covering 
space and E2 ---> B2 a symplectic fiber bundle. Then the pull-back 
E1 = p* E2 ---> B1 is also a symplectic fiber bundle. For a single section 
SA of 1i2(E2), denote by p* SA its pull back. We get immediately the 
following 

Proposition 3.6. We have 

h E (m) E(m) w ere P(m) : 1 ---> 2 . 

Parameterized Gromov-Witten invariants of relative degree 0 and 
without marked points satisfy the following additivity. 



Parameterized Gromov- Witten invariants 61 

Proposition 3. 7. Let E = E 1 #E2 be a fiber connected sum of 
symplectic fiber bundles E 1 and E 2 . Then we have the following formula 
for parameterized Gromov- Witten invariants of relative degree 0. 

Proof. By the dimension assumption of the Gromov-Witten invari­
ants, we take perturbation, if necessary, so that there is no vertical stable 
curves representing the class A over a small disk D; (E) in the base B; 
for i = 1, 2. We can assume further that our fiberwise almost complex 
structures on D;(c), i = 1, 2, are constant and isomorphic each other. 
Now we perform the connected sum of symplectic fiber bundles using 
these disks. The almost complex structures on E; can be glued together 
identifying their restrictions on D;(c) x AI. Hence we obtain the propo­
sition. Q.E.D. 

Remark 3.8. For symplectic fiber bundles 7r; : E; --> B; with sim­
ple local systems 1i* (E;), aJ E HqJ (M; Q) defines the locally constant 
sections of 1iqJ (E;), i = 1, 2, and 1iqJ (E1 #E2 ). Suppose that there exist 

cohomology classes a;i) E Hqi (E;; Q) such that their restrictions to typ­
ical fibers coincide with aJ. Let aJ E HqJ(E1#E2 ; Q) be a cohomology 

class, which is equal to aY) after restricting to 7ri 1 (B; \ D;(c)). When 
f.L + Lj qj = 6(g- 1), we have 

I E (II~·) - JEl (II ~(1)) JE2 (II ~(2)) 
g,m,SA QJ - g,m,SA Qj + g,m,SA Qj ' 

j j j 

At the end of this section we would like to suggest that many prop­
erties of the Gromov-Witten invariants (e.g. the Kontsevich-Manin ax­
ioms) should be valid in the family version. Specially interesting seems 
to us an analog of Taubes' theorem on the relation of Gromov-Witten 
invariants and Seiberg-Witten invariants in dimension 4. It would imply 
that the parametrized Gromov-Witten invariants also bring information 
on the homotopy type of the diffeomorphism group of 4-dimensional 
symplectic manifolds. 

§4. Homotopy groups of symplectomorphism groups. 

In this section we combine Remark 2.3, Propositions 3.5, 3.6, 3.7 
and other observations to estimate the rank of homotopy groups of sym­
plectomorphism groups. 
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Proposition 4.1. Parameterized Gromov- Witten invariants of rel­
ative degree 0 and without marked points Iff,o,sA over sphere Si+l define 
elements in Hom(Ki(Symp(M,w)),Q), i 2:1. 

Proof. Denote by E9 the symplectic fiber bundle over Si+l by glu­
ing D~+l xMU9D~+l x M with the help of a map g: 8D~+l -+ Symp(M), 
i.e. we identify a pair (x, y) E 8D~+l x M with (x, g(x) ·y) E 8D~+l x M. 
Then we have E 9 .1 ~ E 9 #E1. Now we get Proposition 4'-1 immediately 
from Remark 2.3 and Proposition 3.7. Q.E.D. 

Remark 4.2. Taking into account Remark 3.8 we can get a similar 
statement for certain parameterized Gromov-Witten invariants. We use 
such invariants in the proof of Theorem 4.5.a. 

As an application of Proposition 4.1, Remark 4.2, we shall prove 
Theorem 4.3 and Theorem 4.5. 

Let (M, w) = (S2 X S 2 ' w(ll E9 wC 2l) be a product of symplectic 
manifolds. We denote by A the generators of H2 (M; Z) realizing by the 
i-th sphere S 2 • 

Theorem 4.3. If w(ll(AI) > w< 2l(A2) then there is an S 2 X 5 2-
symplectic fiber bundle over S2 with non-vanishing parameterized 
Gromov- Witten invariants of relative degree 0 and m = 0. In particular 
the rank of7rl(Symp(S2 X S 2 ,w)) is at least 1. 

We recall that the last statement in Theorem 4.3 is established in 
Theorem 2.4. C2 in [8]. 

Proof of Theorem 4.3. There are several ways of describing the 
proof of this theorem (see also Appendix, which follows the original idea 
of Gromov [8]). We present here a proof following the idea of McDuff in 
[17], Lemma 3.1, which uses the deformation space of complex structures 
of Hirzebruch's surfaces of even degree, which is diffeomorphic to S 2 x S 2 , 

see [16]. Thus we can apply technique in complex analytic geometry for 
our computation. 

Denote by 0(£) the holomorphic line bundle of degree £ on CP1 . 

Let us recall that the Hirzebruch surface Fk is the projectivization of a 
rank 2 holomorphic vector bundle Wk = 0(0) E9 O(k) with k ;::: 0 over 
CP1 . The line subbundles O(O)E90 and OE90(k) define sections of Fk = 

P(Wk) -+ CP1 with self-intersection number k and -k, respectively. We 
denote by JFk the complex structure on the Hirzebruch surface Fk. It is 
known that all Hirzebruch surfaces with even degree k are diffeomorphic 
to S 2 X S 2 , and Fo is biholomorphic to CP1 X CP1 (see e.g., [16], chapter 
1). 

We define a family of holomorphic vector bundles {Va} of rank 2 on 
CP1 as follows. Write U0 = CP1 \ { oo} and U = = CP1 \ { 0}. Consider 
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the transition function fa : (Uo \ { 0}) X C2 ---> (U 00 \ { 00}) X C2 by 

Denote by Xa the projectivization of Va and la the complex structure 
on it. Note that Va=O is isomorphic to 0( -1) EEl 0(1) and that P(Va=o) 
is isomorphic to P (W2 ). Thus {X a} is a complex one-dimensional defor­
mation of X 0 = F2 . The complex structure J0 is the complex structure 
JFz. All la, a =f. 0, are isomorphic to the complex structure ]Fa, i.e., 
the product complex structure. 

Note that 

is the projectivization of the vector bundle 

Since the restriction of the vector bundle V to (C \ {0}) x CP1 is holo­
morphically trivialized by the following 2 sections 0'1 and 0'2 , which are 
everywhere linearly independent: 

( ) _ {(z, 0, 1) E Uo x C 2 , if z E Uo 
0'1 a, z - 1 2 

( z, a, z) E U 00 X C , if z E U 00 

( ) _{(z,1,-~)EUoxC2 , ifzEUo 
O"z a, z - 1 2 

(z, 0, -;;:) E U00 X C , if Z E U00 

Note that 

1 z 1 
fa(z,0,1) = (z,a,-), fa(z,1,--) = (z,O,--). 

z a a 

Thus 0'1 , 0'2 are well-defined holomorphic sections. Using this trivializa­
tion, we extend v and X across { 00} X CP1 to CP1 X CP1. We denote 
these extensions by the same symbols. X is also considered as an 5 2 x 5 2 

bundle with the projection to the first factor CP1 parameterized by a. 
Denote this fiber bundle by E ---> CP1 . The complex structure on X 
induces the fiberwise complex structure J(E). 

Clearly the parameterized Gromov-Witten invariant Io,o,A 1 _ Az is of 
relative degree 0. We shall show that its value I/f0 A -A is 1. Note 

' J 1 2 

that there is no JF0 -holomorphic sphere realizing class (A1 - A2 ), since 
J Fa = CP1 X CP1. Further' there is exactly one J Fz-holomorphic 
sphere realizing class (A1 - A2 ), which is the section of self-intersection 
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number -2 in the CPI bundle over CPI. Thus the moduli space 
CMo,o,A 1 -A2 (E, J(E)) consists of one point at a= 0. 

To prove the transversality of this moduli space, we argue as follows. 
Let N be the normal bundle of the unique JF2 -holomorphic sphere in 
the class (AI - A2 ) in the total space of fibration. In order to show the 
transversality in the case of an integrable complex structure, it suffices 
to prove the following 

Lemma 4.4. We have HI(CPI; O(N)) = 0. Hence, N = 0( -1) EB 
0( -1). 

Proof. Consider the cohomology exact sequence associated to 

0 __, 0( -2) __, N __, OD __, 0, 

where 0( -2) is the normal bundle of the ( -2)-curve in the central fiber 
Xa=O C X with the complex structure JF2 , and the third term OD is 
the quotient, which is nothing but the pull back of the normal bun­
dle of the origin in CPI parameterized by a. We shall show that the 
connecting homomorphism H 0 ( OD) -->HI ( 0( -2)) is surjective, (hence 
isomorphism). As a consequence we get HI(N) = 0. 

Here we regard Xa as the projectivization of 0( -1) ® Va. When 
a = 0, it is isomorphic to 0(-2) EB 0(0). The vector bundle 0( -1) ® Va 
is written as the gluing Uo X C2 and u CX! X C2 by 

Note that the ( -2)-curve representing AI -A2 is the image of {0}®0(0), 
hence the image of the section (0, 1) in P(O( -2) EB 0(0)) over a= 0. 

Consider the restrictions of the section ( 0, 1) of 0 ( -1) ® Va=O over 
U0 and U=, respectively. For a E C, the pair z E U0 f-7 (z, 0, 1) E 

Uo X C 2 and z E Uoo f-7 (z, 0, 1) E Uoo X C 2 gives a deformation as a 
Cech 0-cocycle. Taking the Cech differential, we get a Cech 1-cocycle 
z E Uo n U= C Uoo f-7 (z, az, 0) E (U= \ { oo}) x C 2 . Differentiate in a, 
then we find that the last component of the Cech 1-cocycle vanishes and 
obtain a Cech 1-cocycle z E U0 nUoo C Uoo f-7 (z, z) E (U= \ { oo}) x C of 
0( -2), which represents a non-zero element in HI(CPI; 0( -2)). Hence 
we conclude that the connecting homomorphism H 0 ( OD) --> HI ( 0( -2)) 
is surjective. Q.E.D. 

Let us generalize Theorem 4.3. We denote by (X[, wr) a non­
monotone symplectic manifold which is diffeomorphic to S 2 X S 2 and by 
(X;f,w2 ) a symplectic manifold which is diffeomorphic to CP2#CP2 . 

We are going to prove the following 
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Theorem 4.5. a) Let (M1, 01) = (Xi x N 2k, w1 EBwo) be a symplec­
tic manifold with (X 1 , w1) as above and ( N 2k, w) a compact symplectic 
manifold. Then we have rk( rr1 (Symp( M1, 0 1)) 0 Q) ~ 1. 
b) We also have rk(Symp(Mi,w2)) ~ 1. 

Proof. a) To prove the statement for (Mb 0 1) we shall construct a 
symplectic fiber bundle E with fiber (M1, 0 1) over B = 8 2 and compute 
a certain parameterized Gromov-Witten invariant with one marked point 
of E. For a symplectic fiber bundle E with fiber (Mll 0 1), we consider 
the moduli space of vertical holomorphic mappings f : 8 2 ~ E whose 
image represents the class A := A1 - A2 . Note that the local system 
H2(E) is simple for any symplectic fiber bundle over the base space 
B=S2 . 

The dimension computation shows us that the moduli space of ver­
tical stable maps of genus 0 in the class A on an (M,w)-bundle over S2 

has dimension 2k = dim N 2k. We will compare symplectic fiber bundles 
over S2, each of which is the product of a symplectic fiber bundle E' 
with the fiber Xt over S 2 and N = N 2k, i.e., E = E' x N ~ 8 2. We 
shall count the number of vertical pseudo-holomorphic spheres u with 
one marked point z in the class A so that ev(u; z) E r. Here r is a cycle 
represented by a submanifold E' x {Yo} C E, for some arbitrary cho­
sen point y0 E N 2k. This number is the parameterized Gromov-Witten 
invariant If,1,A1 -A2 (P D[r]). 

Note that the restriction of PD[r] E H*(E) to Elb, b E B, is 
PD[Xt x {y0 }] E H*(Xt x N). But this condition does not characterize 
PD[r] E H*(E). Let r' E E be another cycle such that the restriction of 
PD[r'] to Elb is equal to PD[Xt x {yo}] E H*(Xt x N). Since the base 
space B is S2, we find that PD[r']- PD[r] E H 2(B) ®H*(Xt x N). In 
other words, [r'] - [r] is represented by some cycle contained in a single 
fiber Elba. By dimensional counting argument, we can take a fiberwise 
almost complex structure such that there are no pseudo-holomorphic 
(A1 - A2)-spheres contained in Elba. Thus we have If,1,A1 -A2 (P D[r]) = 

If,1,A 1-A2 (P D[r']). Hence If,1,A 1 -A2 (P D[r]) gives an invariant for sym­
plectic xt X N-bundles over S2. 

We claim that this number of the trivial bundle S 2 X (Mb 01) equals 
zero. To show it we consider a vertical almost complex structure JProd 
on the trivial bundle (M, w) x 8 2 such that on each fiber (M, w) we have 
JProd = J 0 x JN, where J 0 is the standard product complex structure 
on S 2 x 8 2 and JN is an almost complex structure on (N2k, wo). Clearly 
the projection on the first factor of any JProd_sphere is also a J 0-sphere 
in S 2 x 8 2. Hence the moduli space of JProd_sphere in class A 1 - A 2 is 
empty. 
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Now we construct a symplectic (MI, 0 1)-bundle E over S2 by gluing 
two trivial symplectic (M1, OI)-bundles, one over a disk B 2 and the 
other over a disk D 2 , using the loop 9t : S1 --+ Symp( MI, OI) of the 
form 9t = (gt x {Id}) E (Symp(Xf, WI) x {Id}) C Symp(M1, OI). Here 
gt is the transition function for X --+ CP1. (See also Appendix.) 

To compute the Gromov-Witten invariant I0E 1 A -A (PD[f]), we 
' ' 1 2 

construct a fiberwise compatible almost complex structure J(E) by glu-
ing two fiberwise compatible almost complex structures on the restric­
tion of E to disks D6 and Di. The first fiberwise compatible almost 
complex structure is defined as follows: J(z) = (J0 x JN) for z E D6. 
The second one is defined as follows: J(a) = (Ja x JN), a E Di C C. 
They are glued by using the symplectomorphism loop 9t· 

We claim that the constructed vertical almost complex structure is 
A = AI- A2-generic. Clearly outside the singular point a = 0 in the disk 
Di of the base S2 , where the vertical almost complex structure take value 
(JFz x JN), the moduli space of J(E)-holomorphic spheres realizing A 
is empty. At the singular point a = 0 the moduli space is diffeomor­
phic to N 2k, namely it consists of maps uy ( t) = { ui ( t) x y}, y E N 2k, 
where t E S2 and ul is the JF2 -holomorphic ( -2)-sphere in xt. Clearly 
the transversality of the constructed J(E) is equivalent to the surjec­
tivity of the linearization map DJ3J(E) : Trr(u)S2 X Lf(u*TverE) --+ 

£P(A0 •IS2 ®J(E) u*TverE). Since u = (ui, y), we have u*TverE = 
( uiT X f) x TyN2k, so the surjectivity of DBJ(E) follows from the sur­
jectivity of the linearization map considered in the proof of Theorem 
4.3, see also the proof of Lemma 5.1 in Appendix. This proves the first 
statement in Theorem 4.5 for the case (M1, OI). 

Now let us prove the statement b). Denote by Symp(CP2 ,w,pt) 
the subgroup of the symplectomorphisms of ( CP2' w) which preserve a 
point pt. Clearly Theorem 4.5.b follows from the following Lemmas 4.6, 
4.7. Q.E.D. 

Lemma 4.6. The fundamental group of Symp(CP2 , w,pt) contains 
a subgroup Z. 

Lemma 4. 7. There is an injective homomorphism a from the in­
finite cyclic subgroup of 7ri(Symp(CP2,w,pt)) in Lemma 4.6 to 1r1( 
Symp(X:i, w2)). 

Lemma 4.6 is a direct consequence of Gromov's theorem, which 
states that Symp(CP2 ,w) is homotopy equivalent to PU(3), since the 
quotient space Symp(CP2,w)/Symp(CP2,w,pt) is isomorphic to CP2. 
We can also see this fact as follows. It suffices to show that the inclusion 
U (2) --+ Symp( CP2, w, pt) induces an injective homomorphism on the 
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corresponding fundamental groups. To see it we consider the evaluation 
map ev : Symp(CP2 , w,pt) --> 5p(4) : g f-+ Dg(pt, v), where v is an 
element in the frame 5p(4) over the fixed point in CP2 . The restriction 
of this evaluation map to U(2) is injective, and we know that the image 
ev(U(2)) is a deformation retract of 5p(4). Hence follows the Lemma. 

Pmof of Lemma 4.7. Denote by Ea the symplectic fiber bundle 
over 5 2 with fiber (CP2 , w,pt) corresponding to element a E 1r1 (U(2) )(2'! 
Z) C 1r1 (Symp(CP2 , w,pt)). Note that each fiber has a base point, hence 
there is a canonical section s of Ea. 

Pick a U(2)-invariant Darboux ball B such that (Xi, w2 ) is symplec­
tomorphic to the symplectic manifold CP2 \ B with symplectic reduc­
tion applied to the boundary (symplectic cutting construction). Then 
we have the homomorphism p : 7TI(U(2)) C 7TI(Symp(CP2 , w,pt)) --> 

7T1 (Symp(Xi, w2 )). Denote by Ea the symplectic fiber bundle corre­
sponding to p(a). Then Ea is the fiberwise blow-up of Ea. along the 
sections. 

In fact, Ea carries a symplectic structure and Ea can be obtained 
by symplectic blowing-up of Ea along the symplectic submanifold s(52 ) 

as follows. Using the spectral sequence for Ea we see that there is a 
closed 2-form n such that the restriction of n to the fiber CP2 equals 
w. Thus we can apply the Thurston construction (see e.g. [21], p. 193) 
to conclude that Ea is a symplectic manifold with a symplectic form 
nK in a class K?T*(wo) + n, where Wo is a symplectic form on the base 
5 2 and K is a sufficiently large real number. Moreover, all the fibers 
CP2 are symplectic submanifolds of (Ea, OK) and we may assume that 
s(52 ) is a symplectic submanifold. Recall that Ea is the symplectic fiber 
bundle over 5 2 by fiber-wise blowing-up a symplectic fiber bundle with 
the fiber (CP2 ,w) at point s(x),x E 5 2 . This is exactly the blow-up 
(Ea, OK) along the submanifold s(52 ). Clearly the fiber of this new fiber 
bundle is CP2#CP2 . Now we apply Lemma 2.2 to conclude that Ea is 
a symplectic fiber bundle with the fiber (Xi, w2 ). 

Now assume that a is not injective. Then, for so!lle integer a "I- 0, 
we can find a trivialization of symplectic fiber bundle Ea with a constant 
compatible complex structure JQ_ . We denote by { Ji_ }o<t<l a family of 

Ea Ea --

compatible almost complex structures on Ea with J!_ being the almost 
Ea 

complex structure resulting from the blow-up process along s(52 ). Note 
that the space of compatible almost complex structures, which admit 
(-k)-curve, is of real codimension 2(k-1). (See Appendix for the proof 
in the case that k = 2. The argument can be generalized for general 
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k > 2.) Note also that CP2#CP2 does not contain any cycle of self­
intersection number -2. In our case, { Jf_ } gives a three parameter 

Ea 
family of compatible almost complex structures on CP2#CP2 . Thus 
we can take {Jf_ }o<t<l such that there are no (-k)-curves, k 2: 2, in Ea - -
the fibers of (Ea, Ji_ ) over CP1. Then, for each t E [0, 1] and bE 8 2 , 

Ea 
there is a unique ( -1) embedded curve in each fiber (Ea lb ~Xi, w, Jt). 
Thus the families of J!_ -holomorphic (A1 - A2 )-spheres in the fibers of 

Ea 
Ea parametrized by b E 8 2 are isotopic, when t varies. Therefore the 
process of blowing-down of all Jf_ -holomorphic (A1- A2 )-spheres in the 

Ea 
fibers of Ea is unique up to isomorphisms of symplectic fiber bundles. 
Hence follows that our symplectic fiber bundle (Ea, OK) is also trivial, 
which is a contradiction. Q.E.D. 

We shall improve Theorem 4.5 in the following statement2. 

Theorem 4.8. a) The rank of the homomorphism 1r1(Symp(M1, 
01))----> 1r1(Diff(Ml)) is at least 1. 

b) The rank of the homomorphism 1r3(Symp(M1, 01))----> 
1r3(Diff(M1)) is at least 2. 

Proof. a) It is enough to show that the symplectic fiber bundle 
constructed by the loop (gt)k, k i- 0, in the proof of Theorem 4.5.a is 
a non-trivial differentiable fibration for all k. To do so, it suffices to 
compute the cohomology ring of this differentiable bundle. Since the 
loop ?ft by our choice is the product of gt and the identity element in 
Symp(N, w0 ), our cohomology is also the tensor product of the corre­
sponding rings. 

Here, we consider the projectivization E of the bundle v over CP1 X 

CP1, which is given in the proof of Theorem 4.3. We compute the 
cohomology ring of E. We regard E as a family of CP1-bundles on 
CP1 parametrized by CP1, namely a CP1-bundle over 8 2 X 8 2 . 

Let us compute H*(E; Z) by using the Leray-Hirsch Theorem. To 
see that the first Chern class c1 (V) vanishes, it suffices to compute its 
evaluation on 8 2 x {pt} and {pt} x 8 2 . The second Chern class c2 (V) 
equals the Poincare dual of the class of the zero section of a 1, which 
extends to a section on CP1 X CP1. This zero locus consists of the only 
point (z = oo, a= 0). So we find that c2 (V) is the generator {8 2 x 8 2 } 

2This proof was suggested by Professor A. Kono, when K.O. gave a proof 
of this result at his seminar in 1996. 
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of H 4 (82 x 8 2 ; Z). Applying the Leray-Hirsch-Theorem we get 

H*(E· Z) = H*(82 x 8 2 ; Z)[t] 
, t2- {82 X 82} . 

In this ring t 2 cannot be divided by 2. But in the ring H* (82 x 8 2 x 8 2 ; Z) 
any element t 2 can be divided by 2. Hence E is not homotopic to 
8 2 x 8 2 x 8 2 . That proves the non-triviality of the loop {gt} in the 
diffeomorphism group. 

Similarly, we compare the modules consisting elements of degree 2 
of H*(E x N; Z) and H*(82 x 8 2 x 8 2 x N; Z), whose square is divis­
ible by 2 to conclude that the loop {gt} is not null homotopic in the 
diffeomorphism group. 

To prove that the loop {gf}, n f- 0, also realizes a non-trivial el­
ement in the diffeomorphism group we proceed similarly. Namely the 
loop {gf} corresponds to then-time fiber connected sum E(n). We have 
the following formula 

Now we note that the set of element x E H* ( E(n); Z) such that x 2 = 0 is 
the union Z ( { 8 2 } x 1) U Z ( 1 x { 8 2}). In particular from any 3 elements in 
this set we can get 2linearly dependent elements. This implies that E(n) 

and 8 2 x 8 2 x 8 2 not homotopic, because there are 3 linearly independent 
elements of the cohomology ring of 8 2 x 8 2 x 8 2 , namely the generators 
{82} x 1 x 1, 1 x {82} x 1, 1 x 1 x {82}, whose square vanish. 

Similarly, the ranks of the modules generated by elements of square 
zero in H 2 (E x N; Z) and H 2 (82 x 8 2 x 8 2 x N; Z) are different. Hence 
{gt} is not null homotopic in the diffeomorphism group. 

b) It suffices to show that the two subgroups 80(3)xld c Symp(M1, 
w) and Id x 80(3) C Symp(M1,w) realize two linearly independent el­
ements in 1T3(Diff(Ml)). We denote by E1 and E2 two differentiable 
bundles with fiber M1 over 8 4 , which correspond to the elements in 
1r3(Diff(Ml)) realized by these subgroups 80(3). Let us consider the ho­
motopy exact sequences of these fibration Ei, which give us two connect­
ing homomorphisms hi : 1T4(84) ---> 1T3(M1). We observe that 1T4(84) = 
Z, 1r.3(Ml) = Z EB Z EB 1T3(N). Now it is easy to check that the homo­
morphism hi are linearly independent, and hence the image of the two 
subgroups are also linearly independent elements in 1r3 (E). Q.E.D. 

We can also describe parametrized Gromov-Witten invariants in a 
different way using the Poincare duality. Define 
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H*(CM 9 ,m; R)---> H*+v(E(ml; R) 

8 ~--> PD(8\II*(CM 9 ,m,sA (E, J(E))). 

Here v = mdimM- 2(c1 (M), A)+ (dimM- 6)(g- 1)- 2m. 
Assume that the local system 1i2 (E) for the symplectic fiber bundle 

p: E---> B is trivial. Using the moduli space with m = 0, we define the 
following homomorphism 

CGW9 ,A(E): H*(CM 9 ,o; R)---> H*+v(B; R) 
8 ~--> PD(p*(8\IT*(CM 9 ,o,sA (E, J(E)))), 

where p: CM 9 ,o,sA (E, J(E))) ---> B is the projection. 
We call the image of the map CGW9 ,A(E) the Gromov-Witten char­

acteristic classes. 

Theorem 4.9. The Gromov- Witten characteristic classes are in­
variants of symplectic fiber bundles E with simple local system 1i2(E). 
All the Gromov- Witten characteristic classes with positive degree vanish 
for trivial symplectic fiber bundles. 

Proof. The first statement is obvious (cf. Theorem 3.3). To prove 
the second statement we compute the Gromov-Witten characteristic 
classes on a trivial bundle B x M. Let [T] be a cycle in B. As be­
fore we denote also by p the projection E(m) --->B. 

(CGW9 ,A(E)(8), [T]) (PD(p*(8\IT*(B x CM9 ,0 (J, A)))), ([T])) 
(PD([B]), [T])(8, IT*(CM 9 ,0 (J, A))). 

Clearly (PD([B]), [T]) = 0, if dim[T]::::: 1. Q.E.D. 

The word "characteristic class" is explained by the following func­
toriality of these classes. In particular we see that the Gromov-Witten 
characteristic classes are cohomology classes of the classifying space 
BSymp0 (M, w). (Note that BSymp0 (M, w) is simply connected, hence 
any local systems on it are simple. If we consider the moduli space of 
vertical stable maps with a fixed energy and a fixed Chern number, we 
can obtain characteristic classes for Symp(M, w )-bundles.) 

Theorem 4.10. Let E be a symplectic fiber bundle over B with 
the simple local system 1i2 (E) and f*(E) be the induced symplectic fiber 
bundle by a map f : B1 ---> B. Then we find that 



Parameterized Gromov- Witten invariants 71 

where f : f* E ---+ E is the tautological bundle map of symplectic fiber 
bundles and 

CGW9 ,A(f* E)= f* o (CGW9 ,A)(E). 

Proof. By the construction, we have 

where we take the fiber product in the sense of spaces with Kuranishi 
structures and pis the projection from CMg,m,sA (E)) to B. Hence, we 
find that 

Hence we can see immediately that 

When m = 0, it implies that 

CGW9 ,A(f* E)= f* o CGW9 ,A(E) 

Q.E.D. 

It is an easy exercise to interpret Theorem 4.3 and Theorem 4.5 in 
term of Gromov-Witten characteristic classes. 

§5. Appendix. An alternative proof of Theorem 4.3 

Let w(ll, w< 2l be symplectic forms on S 2 such that J82 w(ll > 
J82 w<2l. According to Proposition 4.1 it suffices to find a symplectic 
bundle E over S 2 with fiber (S2 x S 2 , w = w< 1l EB w<2l) and a parame­
terized Gromov-Witten invariant whose value on E is non-trivial. We 
shall construct the bundle E by finding its transition function g, i.e., a 
loop in Symp(S2 x S 2 ,w). The existence of such element g was shown 
by Gromov [8], and in what follows we shall give a detailed proof. First 
we need the following lemma (compare with [8], 2.4.0). Denote by All 
resp. A2 the homology classes [S2 x {pt}], resp. [{pt} x S 2]. 

Lemma 5.1. The subspace .:Jo of compatible almost complex struc­
tures J on S2 x S2 , for which there exists a J -holomorphic sphere in a 
class A1 - CA2 for some C ~ 1, is a non-empty closed subset of codimen­
sion 2 in .:J(S2 x S 2 , w). For each J E (.:J(S2 x S 2 , w) \ .:Jo) and for each 
point in S 2 x S 2 there is a unique J -holomorphic sphere representing 
class Ai and passing through x. Moreover, these spheres are embedded. 
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Proof. First of all, we note that for any J E :J ( S 2 X S 2 1 w) there 
exists a unique embedded J-holomorphic sphere representing the class 
A2 and passing through each point x, cf. [18]. We include here the proof 
of this fact for the reader's convenience. 

For a generic compatible almost complex structure J, there exists 
such a J-holomorphic sphere. For J= E :J(S2 x S 2 ,w), pick a sequence 
{ Ji} of generic compatible almost complex structures, which converges 
to ) 00 . Let ui be the Ji-holomorphic sphere representing the class A2 
and passing through x. Suppose that there exists a subsequence uik 

converging to a J 00-holomorphic sphere u 00 . Since A2 is a primitive 
class, the adjunction formula implies that U 00 is embedded. Clearly it 
passes through x. Hence we obtain the desired existence. If it is not 
the case, a subsequence of { ui} converges to a J=-stable map and there 
appears a J=-holomorphic map v representing the class kA2 - RA1 for 
some integers k and R such that k is positive and (k, R) -1- (1, 0). If v is 
multiply covered, factorize it as v = p o v', where v' is a simple map and 
p is a ramified covering of CP1 . Replace v by v', if necessary, we may 
assume that vis simple. Since JA 1 w > JA 2 wand vis a ) 00 -holomorphic 
map with the symplectic area smaller than JA 2 w, we have k 2: R + 1 and 

R 2: 1. By the adjunction formula, the virtual genus of C = v(CP1 ) is 

1 
= 1 + 2 ( c 0 c - Cl (C)) 

= 1- kt'- k +t' 

:::; 1- (t' + 1)£- (t' + 1) + R 

< 0. 

However, the virtual genus gv(C) is a non-negative integer, which is 
a contradiction. Therefore we obtain the existence of ) 00 -holomorphic 
sphere representing the class A2 and passing through the given point x. 

Next we prove that :lo is a non-empty closed subset of codimension 
2. The subspace :lois non-empty because the sphere (x, -x) is symplec­
tic. To prove the closedness of :lo we first notice that the energy of a 
holomorphic sphere in class A1 - RA2 is less than w(ll (At). Thus we can 
apply the Gromov compactness argument to the following situation. Let 
a sequence of Ji-holomorphic spheres ui representing A1 - RA2 . Suppose 
that Ji converges to a compatible almost complex structure J=. Then 
there is a subsequence {uik}, which converges to a J=-stable map U 00 . 

If u= is a J=-holomorphic sphere, we find that J= E J0 . (In this case, 
by the adjunction formula, u= is an embedding.) Otherwise, u00 con­
sists of at least two irreducible components, which represent the classes 
kiAl - RiA2 such that L ki = 1 and L Ri = R. As we mentioned above, 
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there is always a J<Xl-holomorphic sphere in class A2. Taking into ac­
count of posivity of intersection in dimension 4, we conclude that these 
J<Xl-holomorphic spheres must be of type A1 - £iA2 and mjA2 such that 
L:;( -£i) + L:; mj = -£. Since mj, if exists, must be positive, we conclude 
that there must be a bubble of type A1 - £' A2, £' ~ 1, that proves the 
closedness of .:To. 

The codimension of .:To is at least 2 by a similar argument as in [13], 
[14]. (Namely for a fixed £ we consider the universal moduli space of 
the pairs (J, J-holomorphic sphere in class A1 -lA2 ). The Fredholm 
index of the projection of this moduli space on the first factor is equal 
4 + 2(1 - £) - 6 ~ -2.) To prove that the codimension is precisely 
2, we use the uniqueness of J-holomorphic sphere in class A1 - A2 if 
it exists. (cf. with the argument in [9]. It follows that the kernel of 
the linearization of the projection from the universal moduli space to 
the first factor, i.e., the space of compatible almost complex structures 
equals zero.). 

Finally we prove the existence of J-holomorphic sphere in class A1 
for J E (.:1 \.:To) and use again the bubbling-off argument. For a generic 
compatible almost complex structure J, there exist J-holomorphic 
spheres in the class A1, see [18]. Note that such J-holomorphic spheres 
are automatically embedded by the adjunction formula and that the 
class A1 is primitive. If there is no J 0-holomorphic curve in the class 
A1, we pick a sequence of generic compatible almost complex structures 
converging to J0 • Then the bubbling-off argument implies that there 
must be a J 0-holomorphic sphere in a class A1 - £A2 for£~ 1. Q.E.D. 

Now let us find an element g E Symp(82x82, wC1lEBwC2l) by studying 
the action of the group of symplectomorphisms on .:1 \ .:To. Since .:To 
is a closed subset of codimension 2 we can choose a small disk D in 
.:1(82 x 8 2) such that this disk intersects .:To transversally at exactly 
one interior point. By results of Gromov [8] and McDuff [18], for any 
compatible almost complex structure Je, 0 E 8D, 8 2 x 8 2 is foliated by 
A1-curves and A2-curves, respectively. In particular, Je is pointwisely 
positive on these A1-curves and A2-curves. It implies that there is a 
loop 9t in the group Symp(82 x 8 2 ,x) such that the image 9t(Jo) is 
homotopic to the loop av in .:J \.:To, where Jo is the complex structure 
on CP1 X CP1 . Thus, we can deform D along the boundary so that D 
intersects .:To transversally at one point and 8D = {gt(Jo)}. 

Now we construct our bundle E by gluing two trivial 8 2 x 8 2 bundles 
over another disk D' using this loop 9t· Since the base space of E is 
8 2, which is simply connected, 1i2 (E) is a simple local system. We 
claim that the parametrized Gromov-Witten invariant If,o,A 1 -A2 is 1. 
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Since c1(A1 - A2) = 0, the moduli space CMo,o(E, J(E), A1- A2) is 
0-dimensional. To compute the invariant for our bundle E, we choose 
a generic fiberwise compatible almost complex structure J(E) onE as 
follows. Note that it is the case of weakly monotone symplectic manifolds 
and we are working with Gromov-Witten invariants of genus 0, c1(A1-
A2 ) = 0 and the dimension of the base of E is 2. Therefore it suffices 
to perturb J to get the fundamental class of the corresponding moduli 
space. We observe that the standard product complex structure Jo on 
8 2 x 8 2 is a (A1 - A2)-regular. Then we take J(E) being the gluing of 
the constant complex structure J0 over D' and the compatible almost 
complex structure parametrized by D along the boundary 8D by 9t· 
By the transversality of the intersection of J(E) with .Jo, we find that 
the vertical almost complex structure J(E) is (A 1 - A2)-regular for the 
symplectic fiber bundle. By the construction the parametrized moduli 
space CMo,o,A,-A2 (E, J(E)) consists of one point over the point Dn.Jo. 
Therefore the value 10E0 A -A = 1. By Proposition 4.1, this nontrivial 

' ' 1 2 
parametrized Gromov-Witten invariant defines a non-trivial element in 
Hom( 1r2 (BSymp( M, w), Q). 
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