L^{2}-torsion invariants and the Magnus representation of the mapping class group

Teruaki Kitano ${ }^{1}$ and Takayuki Morifuji ${ }^{2}$

Abstract

. In this paper, we study a series of L^{2}-torsion invariants from the viewpoint of the mapping class group of a surface. We establish some vanishing theorems for them. Moreover we explicitly calculate the first two invariants and compare them with hyperbolic volumes.

§1. Magnus representation

Let $\Sigma_{g, 1}$ be a compact oriented smooth surface of genus g with a boundary $\partial \Sigma_{g, 1} \cong S^{1}$. In this paper, we always assume that $g \geq 1$. We take and fix a base point $* \in \partial \Sigma_{g, 1}$ of $\Sigma_{g, 1}$. Let $\mathcal{M}_{g, 1}$ be the mapping class group of $\Sigma_{g, 1}$, namely, the group of all isotopy classes of orientation preserving diffeomorphisms of $\Sigma_{g, 1}$ relative to the boundary. We denote $\pi_{1}\left(\Sigma_{g, 1}, *\right)$ by Γ, which is a free group of rank $2 g$, and fix a generating system $\Gamma=\left\langle x_{1}, \ldots, x_{2 g}\right\rangle$. Let $\mathbb{Z} \Gamma$ be the group ring of Γ over \mathbb{Z}. We write $\varphi_{*} \in \operatorname{Aut}(\Gamma)$ to the automorphism induced from $\varphi \in \mathcal{M}_{g, 1}$. The following result, usually called the Dehn-Nielsen-Baer theorem, is classical and fundamental to study the mapping class group $\mathcal{M}_{g, 1}$ by using combinatorial group theories (see [9] Section 2.9).

Proposition 1.1 (Zieschang [27]). The above induced homomorphism $\mathcal{M}_{g, 1} \ni \varphi \mapsto \varphi_{*} \in \operatorname{Aut}(\Gamma)$ is injective.

As a corollary, we see that φ can be determined by the words $\varphi_{*}\left(x_{1}\right), \ldots, \varphi_{*}\left(x_{2 g}\right) \in \Gamma$. Since the fundamental formula $\gamma=1+$

Received May 5, 2007.
Revised April 4, 2008.
${ }^{1}$ This research was partially supported by the Grant-in-Aid for Scientific Research (No.17540064), the Ministry of Education, Culture, Sports, Science and Technology, Japan.
${ }^{2}$ This research was partially supported by the Grant-in-Aid for Scientific Research (No.17740032), the Ministry of Education, Culture, Sports, Science and Technology, Japan.
$\sum_{i=1}^{2 g}\left(\partial \gamma / \partial x_{i}\right)\left(x_{i}-1\right)$ holds in $\mathbb{Z} \Gamma$ for any $\gamma \in \Gamma$, the word $\varphi_{*}\left(x_{j}\right)$ is determined by $\left\{\partial \varphi_{*}\left(x_{j}\right) / \partial x_{i}\right\}$. Here $\partial / \partial x_{i}: \mathbb{Z} \Gamma \rightarrow \mathbb{Z} \Gamma$ denotes Fox's free differential. See [1] Section 3.1 for a systematic treatment of the subject. The Magnus representation of the mapping class group is defined as follows.

Definition 1.2. The Magnus representation of $\mathcal{M}_{g, 1}$ is defined by the assignment

$$
r: \mathcal{M}_{g, 1} \ni \varphi \mapsto\left(\frac{\overline{\partial \varphi_{*}\left(x_{j}\right)}}{\partial x_{i}}\right)_{i j} \in G L(2 g, \mathbb{Z} \Gamma)
$$

where $\overline{\sum_{g} \lambda_{g} g}=\sum_{g} \lambda_{g} g^{-1}$ for any element $\sum_{g} \lambda_{g} g \in \mathbb{Z} \Gamma$.
Remark 1.3. By the expression $\gamma=1+\sum_{i}\left(\partial \gamma / \partial x_{i}\right)\left(x_{i}-1\right)$, it follows that r is injective. However, it is not a group homomorphism, just a crossed homomorphism. According to the practice, we call it simply the Magnus representation of $\mathcal{M}_{g, 1}$.

Now for a matrix $B \in M(n, \mathbb{C})$, let us recall that its characteristic polynomial

$$
\operatorname{det}(t I-B)
$$

is one of the fundamental tools in the linear algebra. Here I denotes the identity matrix of degree n. If we can define a characteristic polynomial of $r(\varphi)$, it may be useful tool to study the mapping class group. In order to define it for a Magnus matrix $r(\varphi)$, we need to clarify the following two points.
(1) What is the determinant over a non-commutative group ring?
(2) What is the meaning of a variable " t " in the group?

As an answer to these problems, we can formulate that

- the variable t lives in the fundamental group of the mapping torus of φ,
- a characteristic polynomial "det" $(t I-r(\varphi))$ with respect to the Fuglede-Kadison determinant.
In the later sections, we explain that the characteristic polynomial of $r(\varphi)$ is defined as a real number and it essentially gives the L^{2}-torsion and the hyperbolic volume of the mapping torus of φ. Moreover taking the lower central series of the surface group Γ, we obtain a family of Magnus representations, so that we can introduce a sequence of L^{2} torsion invariants as an approximate sequence of the hyperbolic volume.

This paper is organized as follows. In the next section, we briefly recall the definition of the Fuglede-Kadison determinant. In Section 3,
we summarize some properties of the L^{2}-torsion of 3 -manifolds and explain a relation to the Magnus representation. We introduce a sequence of L^{2}-torsion invariants for a surface bundle over the circle in Section 4 and give some formulas for them in Section 5. In the last section, we discuss some vanishing theorems for L^{2}-torsion invariants.

§2. Fuglede-Kadison determinant

In this section, we review the combinatorial definition of the FugledeKadison determinant over a non-commutative group ring and its basic properties (see [19] for details).

The idea to define a determinant over a group ring comes from the following observation. That is, for a matrix $B \in G L(n, \mathbb{C})$ with the (non-zero) eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, we can formally calculate

$$
\begin{aligned}
\log |\operatorname{det} B|^{2} & =\log \prod_{i=1}^{n} \lambda_{i} \bar{\lambda}_{i}=\sum_{i=1}^{n} \log \lambda_{i} \bar{\lambda}_{i} \\
& =\sum_{i=1}^{n}\left(\sum_{p=1}^{\infty} \frac{(-1)^{p+1}}{p}\left(\lambda_{i} \bar{\lambda}_{i}-1\right)^{p}\right) \\
& =-\sum_{p=1}^{\infty}\left(\sum_{i=1}^{n} \frac{1}{p}\left(1-\lambda_{i} \bar{\lambda}_{i}\right)^{p}\right) \\
& =-\sum_{p=1}^{\infty} \frac{1}{p} \operatorname{tr}\left(\left(I-B B^{*}\right)^{p}\right)
\end{aligned}
$$

by the power series expansion of \log, where B^{*} is the adjoint matrix of B. More precisely, if we take a sufficiently large constant $K>0$, we obtain

$$
|\operatorname{det} B|=K^{n} \exp \left(-\frac{1}{2} \sum_{p=1}^{\infty} \frac{1}{p} \operatorname{tr}\left(\left(I-K^{-2} B B^{*}\right)^{p}\right)\right) \in \mathbb{R}_{>0}
$$

Thus if we can define a certain "trace" over a group ring, we get a determinant by using this formula.

Let π be a discrete group and $\mathbb{C} \pi$ denote its group ring over \mathbb{C}. For an element $\sum_{g \in \pi} \lambda_{g} g \in \mathbb{C} \pi$, we define the $\mathbb{C} \pi$-trace $\operatorname{tr}_{\mathbb{C} \pi}: \mathbb{C} \pi \rightarrow \mathbb{C}$ by

$$
\operatorname{tr}_{\mathbb{C} \pi}\left(\sum_{g \in \pi} \lambda_{g} g\right)=\lambda_{e} \in \mathbb{C}
$$

where e is the unit element in π. For an $n \times n$-matrix $B=\left(b_{i j}\right) \in$ $M(n, \mathbb{C} \pi)$, we extend the definition of $\mathbb{C} \pi$-trace by means of

$$
\operatorname{tr}_{\mathbb{C} \pi}(B)=\sum_{i=1}^{n} \operatorname{tr}_{\mathbb{C} \pi}\left(b_{i i}\right)
$$

Next let us recall the definition of the L^{2}-Betti number of an $n \times$ m-matrix $B \in M(n, m, \mathbb{C} \pi)$. We consider the bounded π-equivariant operator

$$
R_{B}: \oplus_{i=1}^{n} l^{2}(\pi) \rightarrow \oplus_{i=1}^{m} l^{2}(\pi)
$$

defined by the natural right action of B. Here $l^{2}(\pi)$ is the complex Hilbert space of the formal sums $\sum_{g \in \pi} \lambda_{g} g$ which are square summable. We fix a positive real number K so that $K \geq\left\|R_{B}\right\|_{\infty}$ holds, where $\left\|R_{B}\right\|_{\infty}$ is the operator norm of R_{B}.

Definition 2.1. The L^{2}-Betti number of a matrix $B \in M(n, m, \mathbb{C} \pi)$ is defined by

$$
b(B)=\lim _{p \rightarrow \infty} \operatorname{tr}_{\mathbb{C} \pi}\left(\left(I-K^{-2} B B^{*}\right)^{p}\right) \in \mathbb{R}_{\geq 0}
$$

where $B^{*}=\left(\bar{b}_{j i}\right)$ and $\overline{\sum \lambda_{g} g}=\sum \bar{\lambda}_{g} g^{-1}$ for each entry.
Roughly speaking, the L^{2}-Betti number $b(B)$ measures the size of the kernel of a matrix B. Hereafter we assume $b(B)=0$. Then, for a matrix with coefficients in a non-commutative group ring, we can introduce the desired determinant as follows.

Definition 2.2. The Fuglede-Kadison determinant of a matrix $B \in$ $M(n, m, \mathbb{C} \pi)$ is defined by

$$
\operatorname{det}_{\mathbb{C} \pi}(B)=K^{n} \exp \left(-\frac{1}{2} \sum_{p=1}^{\infty} \frac{1}{p} \operatorname{tr}_{\mathbb{C} \pi}\left(\left(I-K^{-2} B B^{*}\right)^{p}\right)\right) \in \mathbb{R}_{>0}
$$

if the infinite sum of non-negative real numbers in the above exponential converges to a real number.

Remark 2.3. It is shown that the L^{2}-Betti number $b(B)$ and the Fuglede-Kadison determinant $\operatorname{det}_{\mathbb{C} \pi}(B)$ are independent of the choice of the constant K (see [16] for example).

Here we consider the condition of the convergence. For any matrix $B \in M(n, \mathbb{C})$, the condition

$$
\lim _{p \rightarrow \infty} \operatorname{tr}\left(\left(I-K^{-2} B B^{*}\right)^{p}\right)=0
$$

implies that B has no zero eigenvalues, and then $|\operatorname{det} B|$ converges. In the case of group rings, if $\operatorname{det}_{\mathbb{C} \pi}(B)$ converges, then $b(B)=0$. But it is not a sufficient condition, so that we need additional one. It is a problem to decide when $\operatorname{det}_{\mathbb{C}_{\pi}}(B)$ converges. Under the assumption that $b(B)=0$, such a sufficient condition is given by the positivity of the Novikov-Shubin invariant $\alpha(B)$. Then the convergence of the infinite sum in the Fuglede-Kadison determinant is guaranteed. The Novikov-Shubin invariant of an operator R_{B} measures how concentrated the spectrum of $R_{B}^{*} R_{B}$ is. However, in general, it is hard to check the positivity of the Novikov-Shubin invariant.

To avoid the difficulty, we need to consider the determinant class condition for groups (see [19], [24] for details). A group π is of det ≥ 1 class if for any $B \in M(n, m, \mathbb{Z} \pi)$ the Fuglede-Kadison determinant of B satisfies $\operatorname{det}_{C_{\pi}}(B) \geq 1$. There are no known examples of groups which are not of det ≥ 1-class. Further recently it was proved that there is a certain large class \mathcal{G} of groups for which they are of det ≥ 1-class. It includes amenable groups and countable residually finite groups. If we can see that π belongs to \mathcal{G}, namely it is of det ≥ 1-class, the convergence of the Fuglede-Kadison determinant is guaranteed when the L^{2}-Betti number is vanishing. See [18], [19], [24] for definitions and properties of these subjects.

§3. $\quad L^{2}$-torsion of 3 -manifolds

In this section, we quickly recall the definition of the L^{2}-torsion of 3 manifolds. It is an L^{2}-analogue of the Reidemeister and the Ray-Singer torsion and essentially gives Gromov's simplicial volume under certain general conditions [2], [3], [4], [8], [14], [15], [20], [21], [22]. See [19] and its references for historical background, related works and so on.

Let M be a compact connected orientable 3-manifold. We fix a $C W$ complex structure on M. We may assume that the action of $\pi_{1} M$ on the universal covering \widetilde{M} is cellular (if necessary, we have only to take a subdivision of the original structure). We consider the $\mathbb{C} \pi_{1} M$-chain complex

$$
0 \longrightarrow C_{3}(\widetilde{M}, \mathbb{C}) \xrightarrow{\partial_{3}} C_{2}(\widetilde{M}, \mathbb{C}) \xrightarrow{\partial_{2}} C_{1}(\widetilde{M}, \mathbb{C}) \xrightarrow{\partial_{1}} C_{0}(\widetilde{M}, \mathbb{C}) \longrightarrow 0
$$

of \widetilde{M}. Since the boundary operator ∂_{i} is a matrix with coefficients in $\mathbb{C} \pi_{1} M$, if we take the adjoint operator $\partial_{i}^{*}: C_{i-1}(\widetilde{M}, \mathbb{C}) \rightarrow C_{i}(\widetilde{M}, \mathbb{C})$ as in the previous section, we can define the i th (combinatorial) Laplace operator $\Delta_{i}: C_{i}(\widetilde{M}, \mathbb{C}) \rightarrow C_{i}(\widetilde{M}, \mathbb{C})$ by

$$
\Delta_{i}=\partial_{i+1} \circ \partial_{i+1}^{*}+\partial_{i}^{*} \circ \partial_{i} .
$$

Let us suppose that all the L^{2}-Betti numbers $b\left(\Delta_{i}\right)$ vanish and the fundamental group $\pi_{1} M$ is of det ≥ 1-class. Thereby as a generalization of the classical Reidemeister torsion, the L^{2}-torsion $\tau(M)$ is defined by

Definition 3.1.

$$
\tau(M)=\prod_{i=0}^{3} \operatorname{det}_{\mathbb{C}_{\pi_{1}} M}\left(\Delta_{i}\right)^{(-1)^{i+1} i} \in \mathbb{R}_{>0}
$$

As for the positivity of Novikov-Shubin invariants $\alpha\left(\Delta_{i}\right)$ for the Laplace operator Δ_{i}, it is known that $\alpha\left(\Delta_{i}\right)>0$ holds under some general assumptions (see [15]). For example, if a compact connected orientable 3-manifold M satisfies
(1) $\pi_{1} M$ is infinite,
(2) M is an irreducible 3-manifold or $S^{1} \times S^{2}$ or $\mathbb{R} P^{3} \sharp \mathbb{R} P^{3}$,
(3) if $\partial M \neq \phi$, it consists of tori,
(4) if $\partial M=\phi, M$ is finitely covered by a 3 -manifold which is a hyperbolic, Seifert or Haken 3-manifold,
then $b\left(\Delta_{i}\right)=0$ and $\alpha\left(\Delta_{i}\right)>0$ for each i. Therefore, we see that the L^{2}-torsion $\tau(M)$ is also well-defined in view of these conditions.

Remark 3.2. The above condition (4) is automatically satisfied by Perelman's proof of Thurston's Geometrization Conjecture.

As a notable property of the L^{2}-torsion, it is known that $\log \tau(M)$ can be interpreted as Gromov's simplicial volume $\|M\|$ and hyperbolic volume $\operatorname{vol}(M)$ (see [7]) of M. See [21] for the heart of the proof.

Theorem 3.3. Let M be a compact connected orientable irreducible $3-m a n i f o l d$ with an infinite fundamental group such that ∂M is empty or a disjoint union of incompressible tori. Then it holds that

$$
\log \tau(M)=C\|M\|
$$

where C is the universal constant not depending on M. In particular, if M is a hyperbolic 3-manifold, we obtain

$$
\log \tau(M)=-\frac{1}{3 \pi} \operatorname{vol}(M)
$$

Next we review Lück's formula for the L^{2}-torsion of 3-manifolds ([16] Theorem 2.4). From this formula, we see that $\log \tau$ is a characteristic polynomial of the Magnus representation of the mapping class group.

Theorem 3.4. Let M be as in the above theorem. We suppose that ∂M is non-empty and $\pi_{1} M$ has a deficiency one presentation

$$
\left\langle s_{1}, \ldots, s_{n+1} \mid r_{1}, \ldots, r_{n}\right\rangle
$$

Put A to be the $n \times n$-matrix with entries in $\mathbb{Z} \pi_{1} M$ obtained from the matrix $\left(\partial r_{i} / \partial s_{j}\right)$ by deleting one of the columns. Then the logarithm of the L^{2}-torsion of M is given by

$$
\begin{aligned}
\log \tau(M) & =-2 \log \operatorname{det}_{\mathbb{C} \pi_{1} M}(A) \\
& =-2 n \log K+\sum_{p=1}^{\infty} \frac{1}{p} \operatorname{tr}_{\mathbb{C} \pi_{1} M}\left(\left(I-K^{-2} A A^{*}\right)^{p}\right),
\end{aligned}
$$

where K is a constant satisfying $K \geq\left\|R_{A}\right\|_{\infty}$.
To see a relation between the Magnus representation and the L^{2} torsion, we describe the above Lück's formula for a surface bundle over the circle.

For an orientation preserving diffeomorphism φ of $\Sigma_{g, 1}$, we form the mapping torus M_{φ} by taking the product $\Sigma_{g, 1} \times[0,1]$ and gluing $\Sigma_{g, 1} \times\{0\}$ and $\Sigma_{g, 1} \times\{1\}$ via φ. This gives a surface bundle over S^{1}. Its diffeomorphism type is determined by the monodromy map φ, and conversely the monodromy map φ is determined by a given surface bundle up to conjugacy and isotopy. Here an isotopy fixes setwisely the points on the boundary $\partial \Sigma_{g, 1}$. We take a deficiency one presentation of the fundamental group $\pi=\pi_{1}\left(M_{\varphi}, *\right)$,

$$
\pi=\left\langle x_{1}, \ldots, x_{2 g}, t \mid r_{i}: t x_{i} t^{-1}=\varphi_{*}\left(x_{i}\right), 1 \leq i \leq 2 g\right\rangle
$$

where the base point $*$ of π and $\Gamma=\pi_{1}\left(\Sigma_{g, 1}, *\right)$ is the same one on the fiber $\Sigma_{g, 1} \times\{0\} \subset M_{\varphi}$ and $\varphi_{*}: \Gamma \rightarrow \Gamma$ is the automorphism induced by $\varphi: \Sigma_{g, 1} \rightarrow \Sigma_{g, 1}$. It should be noted that π is isomorphic to the semi-direct product of Γ and $\pi_{1} S^{1} \cong \mathbb{Z}=\langle t\rangle$.

Applying the free differential calculus to the relations $r_{i}(1 \leq i \leq$ $2 g$), we obtain the Alexander matrix

$$
A=\left(\frac{\partial r_{i}}{\partial x_{j}}\right) \in M(2 g, \mathbb{Z} \pi)
$$

Then Lück's formula for a surface bundle over the circle is given by

$$
\begin{aligned}
\log \tau\left(M_{\varphi}\right) & =-2 \log \operatorname{det}_{\mathbb{C} \pi}(A) \\
& =-4 g \log K+\sum_{p=1}^{\infty} \frac{1}{p} \operatorname{tr}_{\mathbb{C} \pi}\left(\left(I-K^{-2} A A^{*}\right)^{p}\right)
\end{aligned}
$$

where K is a constant satisfying $K \geq\left\|R_{A}\right\|_{\infty}$.
This formula enables us to interpret the L^{2}-torsion $\log \tau$ of a surface bundle over the circle as the characteristic polynomial of the Magnus representation $r(\varphi)$. In fact, an easy calculation shows that

$$
A=\left(\frac{\partial r_{i}}{\partial x_{j}}\right)=t I-t \overline{r(\varphi)}
$$

Then if we take the Fuglede-Kadison determinant in $M(2 g, \mathbb{C} \pi)$, we have

$$
\begin{aligned}
\operatorname{det}_{\mathbb{C} \pi}\left(t I-{ }^{t} \overline{r(\varphi)}\right) & =\operatorname{det}_{\mathbb{C} \pi}\left(t I-{ }^{t} \overline{r(\varphi)}\right)^{*} \\
& =\operatorname{det}_{\mathbb{C} \pi}\left(t^{-1} I-r(\varphi)\right)
\end{aligned}
$$

because $\operatorname{tr}_{\mathbb{C} \pi}\left(B B^{*}\right)=\operatorname{tr}_{\mathbb{C} \pi}\left(B^{*} B\right)$ holds. Therefore the L^{2}-torsion is interpreted as the characteristic polynomial of $r(\varphi)$.

§4. Definition of L^{2}-torsion invariants

As was seen in Section 3, Lück's formula gives a way to calculate the simplicial volume from a presentation of the fundamental group. However, in general, it seems to be difficult to evaluate the exact values from the formula. In this section, we introduce a sequence of L^{2}-torsion invariants which approximates the original one for a surface bundle over the circle. See [12] for details.

In order to construct such a sequence of L^{2}-torsion invariants, we consider the lower central series of Γ. Namely, we take the descending infinite sequence

$$
\Gamma_{1}=\Gamma \supset \Gamma_{2} \supset \cdots \supset \Gamma_{k} \supset \cdots,
$$

where $\Gamma_{k}=\left[\Gamma_{k-1}, \Gamma_{1}\right]$ for $k \geq 2$. Let N_{k} be the k th nilpotent quotient $N_{k}=\Gamma / \Gamma_{k}$ and $p_{k}: \Gamma \rightarrow N_{k}$ be the natural projection.

In the previous section, we considered a chain complex $C_{*}\left(\widetilde{M}_{\varphi}, \mathbb{C}\right)$ of $\mathbb{C} \pi$-modules. Instead of this complex, we can use the chain complex

$$
C_{*}\left(M_{\varphi}, l^{2}(\pi)\right)=l^{2}(\pi) \otimes_{\mathbb{C} \pi} C_{*}\left(\widetilde{M}_{\varphi}, \mathbb{C}\right)
$$

to define the same L^{2}-torsion $\tau\left(M_{\varphi}\right)$. This point of view allows us to introduce a sequence of the L^{2}-torsion invariants.

The group Γ_{k} is a normal subgroup of π, so that we can take the quotient group $\pi(k)=\pi / \Gamma_{k}$. It should be noted that $\pi(k)$ is isomorphic to the semi-direct product $N_{k} \rtimes \mathbb{Z}$. We denote the induced projection
$\pi \rightarrow \pi(k)$ by the same letter p_{k}. Thereby we can consider the chain complex

$$
C_{*}\left(M_{\varphi}, l^{2}(\pi(k))\right)=l^{2}(\pi(k)) \otimes_{\mathbb{C} \pi} C_{*}\left(\widetilde{M}_{\varphi}, \mathbb{C}\right)
$$

through the projection p_{k}. By using the Laplace operator

$$
\Delta_{i}^{(k)}: C_{i}\left(M_{\varphi}, l^{2}(\pi(k))\right) \rightarrow C_{i}\left(M_{\varphi}, l^{2}(\pi(k))\right)
$$

on this complex, we can formally define the k th L^{2}-torsion invariant $\tau_{k}\left(M_{\varphi}\right)$ as follows.

Definition 4.1.

$$
\tau_{k}\left(M_{\varphi}\right)=\prod_{i=0}^{3} \operatorname{det}_{\mathbb{C} \pi(k)}\left(\Delta_{i}^{(k)}\right)^{(-1)^{i+1} i}
$$

Of course, this definition is well-defined if every L^{2}-Betti number $b\left(\Delta_{i}^{(k)}\right)$ vanishes and every $\pi(k)$ is of det ≥ 1-class. The next lemma is easily proved (see [12], [17]).

Lemma 4.2. The L^{2}-Betti numbers of $\Delta_{i}^{(k)}$ are all zero.
Recall the class \mathcal{G} of groups. It is the smallest class of groups which contains the trivial group and is closed under the following processes: (i) amenable quotients, (ii) colimits, (iii) inverse limits, (iv) subgroups and (v) quotients with finite kernel (see [19], [24]). It is known that \mathcal{G} contains all amenable groups. By definition, $N_{k}=\Gamma / \Gamma_{k}$ is a nilpotent group and in particular an amenable group. Hence every N_{k} belongs to \mathcal{G}. Further for any automorphism $\varphi_{*}: N_{k} \rightarrow N_{k}$, its mapping torus extension ($H N N$-extension) $N_{k} \rtimes \mathbb{Z}$ also belongs to \mathcal{G}. Therefore we have

Lemma 4.3. The group $\pi(k)$ belongs to \mathcal{G}.
As a result, we can conclude that our L^{2}-torsion invariants τ_{k} can be defined for any $k \geq 1$ and they are all homotopy invariants (see [19], [24]).

Now let us describe a formula of the k th L^{2}-torsion invariant $\tau_{k}\left(M_{\varphi}\right)$ and establish a relation to the Magnus representation of the mapping class group. Let $p_{k_{*}}: \mathbb{C} \pi \rightarrow \mathbb{C} \pi(k)$ be an induced homomorphism over the group rings. For $k \geq 1$, we put

$$
A_{k}=\left(p_{k_{*}}\left(\frac{\partial r_{i}}{\partial x_{j}}\right)\right) \in M(2 g, \mathbb{C} \pi(k))
$$

Moreover we fix a constant K_{k} satisfying $K_{k} \geq\left\|R_{A_{k}}\right\|_{\infty}$. Then we have

$$
\begin{aligned}
\log \tau_{k}\left(M_{\varphi}\right) & =-2 \log \operatorname{det}_{\mathbb{C} \pi(k)}\left(R_{A_{k}}\right) \\
& =-4 g \log K_{k}+\sum_{p=1}^{\infty} \frac{1}{p} \operatorname{tr}_{\mathbb{C} \pi(k)}\left(\left(I-K_{k}^{-2} A_{k} A_{k}^{*}\right)^{p}\right)
\end{aligned}
$$

by virtue of the same argument as Theorem 3.4.
For the k th invariant τ_{k}, we have taken the lower central series $\left\{\Gamma_{k}\right\}$ of Γ and the nilpotent quotients $\left\{N_{k}\right\}$. These quotients induce a sequence of representations (more precisely, crossed homomorphisms)

$$
r_{k}: \mathcal{M}_{g, 1} \rightarrow G L\left(2 g, \mathbb{Z} N_{k}\right)
$$

for $k \geq 1$ (see [23]). They naively approximate the original Magnus representation $r: \mathcal{M}_{g, 1} \rightarrow G L(2 g, \mathbb{Z} \Gamma)$. By the similar observation as before, the k th invariant $\log \tau_{k}\left(M_{\varphi}\right)$ can be regarded as the characteristic polynomial of $r_{k}(\varphi)$ with respect to the Fuglede-Kadison determinant in $M(2 g, \mathbb{C} \pi(k))$.

From the viewpoint of the Magnus representation of the mapping class group, it seems natural to raise the following problem.

Problem 4.4. Show that the sequence $\left\{\tau_{k}\left(M_{\varphi}\right)\right\}$ converges to $\tau\left(M_{\varphi}\right)$ when we take the limit on k.

In general, such an approximation problem for the L^{2}-torsion seems to be difficult. However, similar convergence results are known for the L^{2}-Betti numbers. In fact, Lück shows in [18] a theorem relating L^{2} Betti numbers to ordinary Betti numbers of finite coverings. This result is generalized to more general settings by Schick in [24].

As for the Fuglede-Kadison determinant, Lück proves in [19] the following. Let $f: \mathbb{Q}[\mathbb{Z}] \rightarrow \mathbb{Q}[\mathbb{Z}]$ be the $\mathbb{Q}[\mathbb{Z}]$-map given by multiplication with $p(t) \in \mathbb{Q}[\mathbb{Z}]$ and $f_{(2)}: l^{2}(\mathbb{Z}) \rightarrow l^{2}(\mathbb{Z})$ be the linear operator obtained from f by tensoring with $l^{2}(\mathbb{Z})$ over $\mathbb{Q}[\mathbb{Z}]$. Further let $f_{[n]}: \mathbb{C}[\mathbb{Z} / n] \rightarrow$ $\mathbb{C}[\mathbb{Z} / n]$ be the linear operator obtained from f by taking the tensor product with $\mathbb{C}[\mathbb{Z} / n]$ over $\mathbb{Q}[\mathbb{Z}]$. We then get an approximation result:

$$
\log \operatorname{det}_{\mathbb{C}[\mathbb{Z}]}\left(f_{(2)}\right)=\lim _{n \rightarrow \infty} \frac{\log \operatorname{det}_{\mathbb{C}[\mathbb{Z} / n]}\left(f_{[n]}\right)}{n}
$$

(see [11] for a similar statement). In [19] Lück also points out that there exists a purely algebraic example where Fuglede-Kadison determinants do not converge.

On the other hand, in general, we have at least an inequality for the Fuglede-Kadison determinant in the limit statement (see [24]). That is,
for the operator $R_{A_{k}}$ we see that

$$
\log \operatorname{det}_{\mathbb{C} \pi}\left(R_{A}\right) \geq \limsup _{k} \log \operatorname{det}_{\mathbb{C} \pi(k)}\left(R_{A_{k}}\right)
$$

holds. In the last section, we shall discuss Problem 4.4 again and give an affirmative answer under certain conditions.

§5. Formulas of τ_{1} and τ_{2}

In this section, we give explicit formulas of the first two invariants of a sequence of our L^{2}-torsion invariants. They are really computable formulas, so that we can make a systematic calculation for low genus cases. In particular, we compare them with hyperbolic volumes. The results discussed here are a summary of our previous paper [12] (see also [10], [11]).

First we consider the Magnus representation

$$
r_{1}: \mathcal{M}_{g, 1} \rightarrow G L\left(2 g, \mathbb{Z} N_{1}\right)
$$

Here $N_{1}=\Gamma / \Gamma_{1}$ is the trivial group and then the above representation is the same as the usual homological action of $\mathcal{M}_{g, 1}$ on $H_{1}\left(\Sigma_{g, 1}, \mathbb{Z}\right)$. Namely we have the representation

$$
r_{1}: \mathcal{M}_{g, 1} \rightarrow \operatorname{Aut}\left(H_{1}\left(\Sigma_{g, 1}, \mathbb{Z}\right),\langle,\rangle\right) \cong \operatorname{Sp}(2 g, \mathbb{Z})
$$

where \langle,$\rangle denotes the intersection form on the first homology group.$ Further $\pi(1)=\pi / \Gamma_{1} \cong \mathbb{Z}=\langle t\rangle$ and its group ring $\mathbb{C}\langle t\rangle$ is a commutative Laurent polynomial ring $\mathbb{C}\left[t, t^{-1}\right]$. Then the matrix A_{1} is nothing but the usual characteristic matrix of ${ }^{t} r_{1}(\varphi)$. In this case, it is described by the usual determinant for a matrix with commutative entries.

In order to state the theorem, we recall a definition from number theory (see [6] and its references). For a Laurent polynomial $F(\mathbf{t}) \in$ $\mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$, the Mahler measure of F is defined by

$$
m(F)=\int_{0}^{1} \cdots \int_{0}^{1} \log \left|F\left(e^{2 \pi \sqrt{-1} \theta_{1}}, \ldots, e^{2 \pi \sqrt{-1} \theta_{n}}\right)\right| d \theta_{1} \cdots d \theta_{n}
$$

where we assume that undefined terms are omitted. Namely we define the integrand to be zero whenever we hit a zero of F.

Theorem 5.1 ([12]). The logarithm of the first invariant τ_{1} is given by

$$
\log \tau_{1}\left(M_{\varphi}\right)=-2 m\left(\Delta_{r_{1}(\varphi)}\right)
$$

where $\Delta_{r_{1}(\varphi)}(t)=\operatorname{det} A_{1}=\operatorname{det}\left(t I-r_{1}(\varphi)\right)$. Moreover if $\Delta_{r_{1}(\varphi)}(t)$ has a factorization $\Delta_{r_{1}(\varphi)}(t)=\prod_{i=1}^{2 g}\left(t-\alpha_{i}\right)\left(\alpha_{i} \in \mathbb{C}\right)$, then we have

$$
\log \tau_{1}\left(M_{\varphi}\right)=-2 \sum_{i=1}^{2 g} \log \max \left\{1,\left|\alpha_{i}\right|\right\}
$$

Remark 5.2. In other words, $\log \tau_{1}\left(M_{\varphi}\right)$ is given by the integral of the Alexander polynomial of M_{φ} over the circle S^{1} (see [16], for the exterior of a knot K in the 3 -sphere S^{3}). Further, $\log \tau_{1}\left(M_{\varphi}\right)$ can be described by the asymptotic behavior of the order of the first homology group of a cyclic covering (see [11]).

The point of the proof is to identify the Hilbert space $l^{2}(\mathbb{Z})$ with $L^{2}(\mathbb{R} / \mathbb{Z})$ in terms of the Fourier transforms. Then the $\mathbb{C}\langle t\rangle$-trace $\operatorname{tr}_{\mathbb{C}\langle t\rangle}$: $l^{2}(\mathbb{Z}) \rightarrow \mathbb{C}$ can be realized as the integration

$$
L^{2}(\mathbb{R} / \mathbb{Z}) \ni f(\theta) \mapsto \int_{0}^{1} f(\theta) d \theta \in \mathbb{C}
$$

(see [12] for details). From this description and Kronecker's theorem ([6] Theorem 2), we obtain a certain vanishing theorem of the first invariant.

Corollary 5.3. The logarithm of $\tau_{1}\left(M_{\varphi}\right)$ vanishes if and only if every eigenvalue of $r_{1}(\varphi) \in \operatorname{Sp}(2 g, \mathbb{Z})$ is a root of unity.

This corollary seems to be interesting from the viewpoint of Problem 4.4. Because in some case, we can say that the first invariant τ_{1} already approximates the simplicial volume. In particular, Corollary 5.3 implies that a torus bundle $M_{\varphi}(g=1)$ with a hyperbolic structure (namely, $\left.\left|\operatorname{tr}\left(r_{1}(\varphi)\right)\right| \geq 3\right)$ has always non-trivial L^{2}-torsion invariant $\tau_{1}\left(M_{\varphi}\right)$. Summing up, we have

Corollary 5.4. For any $\varphi \in \mathcal{M}_{1,1}$, its mapping torus M_{φ} admits a hyperbolic structure if and only if M_{φ} has a non-trivial L^{2}-torsion invariant $\tau_{1}\left(M_{\varphi}\right)$.

Therefore, the first invariant τ_{1} already approximates the simplicial volume in genus one case.

Remark 5.5. It is known that if the characteristic polynomial of $r_{1}(\varphi) \in \operatorname{Sp}(2 g, \mathbb{Z})$ is irreducible over \mathbb{Z}, has no roots of unity as eigenvalues and is not a polynomial in t^{n} for any $n>1$, then φ is pseudoAnosov (see Casson-Bleiler [5]). In this case, $\operatorname{vol}\left(M_{\varphi}\right) \neq 0$ and further $\log \tau_{1}\left(M_{\varphi}\right) \neq 0$ by Corollary 5.3.

Fig. 1. $-3 \pi \log \tau_{1}\left(M_{\varphi}\right)$ and $\operatorname{vol}\left(M_{\varphi}\right)$ vs. $|q|$

Example 5.6. It is well-known that the mapping class group of the two dimensional torus $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ is isomorphic to $S L(2, \mathbb{Z})$. Taking a matrix $\left(\begin{array}{cc}q & 1 \\ -1 & 0\end{array}\right) \in S L(2, \mathbb{Z})$, it gives a diffeomorphism φ on T^{2}. We may assume that it is the identity on some embedded disk by an isotopic deformation and it gives an element of $\mathcal{M}_{1,1}$. We use the same symbol φ for this mapping class. An easy calculation shows that

$$
r_{1}(\varphi)=\left(\begin{array}{cc}
q & 1 \\
-1 & 0
\end{array}\right)
$$

and

$$
\Delta_{r_{1}(\varphi)}(t)=\operatorname{det}\left(t I-r_{1}(\varphi)\right)=t^{2}-q t+1
$$

We put $\xi_{ \pm}=\left(q \pm \sqrt{q^{2}-4}\right) / 2$ (the eigenvalues of the matrix $\left.r_{1}(\varphi)\right)$. If $|q| \leq 2$, then $\left|\xi_{ \pm}\right|=1$. Hence $\log \tau_{1}\left(M_{\varphi}\right)=0$ in these cases. On the other hand, either $\left|\xi_{+}\right|$or $\left|\xi_{-}\right|$is greater than one when $|q| \geq 3$, so that M_{φ} has a non-trivial L^{2}-torsion invariant τ_{1} in these cases. In fact, the logarithm of the first invariant is given by

$$
\log \tau_{1}\left(M_{\varphi}\right)=-2 \log \max \left\{\left|\xi_{+}\right|,\left|\xi_{-}\right|\right\}
$$

The values of $\log \tau_{1}$ for the traces q and $-q$ are the same, so that it is a function of $\left|\operatorname{tr}\left(r_{1}(\varphi)\right)\right|$. We put a graph of the L^{2}-torsion invariant
$-3 \pi \log \tau_{1}\left(M_{\varphi}\right)$ and the hyperbolic volume $\operatorname{vol}\left(M_{\varphi}\right)$ as a function of $|q|$ in Fig 1.

Example 5.7. Next we consider the genus two case. Let t_{1}, \ldots, t_{5} be the Lickorish-Humphries generators of $\mathcal{M}_{2,1}$. We take the element $\varphi=t_{1} t_{3} t_{5}{ }^{2} t_{2}^{-1} t_{4}^{-1} \in \mathcal{M}_{2,1}$. As was shown in [5], the characteristic polynomial of $r(\varphi)$ is

$$
\begin{aligned}
\Delta_{r_{1}(\varphi)}(t) & =\operatorname{det}\left(t I-r_{1}(\varphi)\right) \\
& =t^{4}-9 t^{3}+21 t^{2}-9 t+1
\end{aligned}
$$

and irreducible over \mathbb{Z}. Moreover it has no roots of unity as zeros. Hence, φ is pseudo-Anosov and M_{φ} has a non-trivial L^{2}-torsion invariant $\tau_{1}\left(M_{\varphi}\right)$. In fact, we have

$$
-3 \pi \log \tau_{1}\left(M_{\varphi}\right)=52.954 \ldots \quad \text { and } \quad \operatorname{vol}\left(M_{\varphi}\right)=11.466 \ldots
$$

Remark 5.8. In the above two examples, we used SnapPea [26] to compute the hyperbolic volumes.

Now in the following, we consider the second invariant τ_{2}. In the case of genus one, we can prove the vanishing of $\log \tau_{2}\left(M_{\varphi}\right)$.

Theorem 5.9 ([11]). $\log \tau_{2}\left(M_{\varphi}\right)=0$ for any $\varphi \in \mathcal{M}_{1,1}$.
This follows from the fact that the group $\pi(2)$ is isomorphic to the fundamental group of a closed torus bundle over the circle. Such a 3manifold admits no hyperbolic structures, so that the original L^{2}-torsion is trivial and we obtain the assertion.

On the other hand, in the case of $g \geq 2$, it is difficult to describe $\log \tau_{2}$ explicitly on the full mapping class group $\mathcal{M}_{g, 1}$. However, we can do it on the Torelli group. Let φ be an element of the Torelli group $\mathcal{I}_{g, 1}$, namely φ acts trivially on the first homology group $H_{1}\left(\Sigma_{g, 1}, \mathbb{Z}\right)$. Then we notice that $\log \tau_{1}\left(M_{\varphi}\right)=0$ holds for any $\varphi \in \mathcal{I}_{g, 1}$ (see Corollary 5.3). To give an explicit formula of $\log \tau_{2}$, we consider the Magnus representation

$$
r_{2}: \mathcal{M}_{g, 1} \rightarrow G L\left(2 g, \mathbb{Z} N_{2}\right)
$$

where $N_{2}=\Gamma /[\Gamma, \Gamma] \cong H_{1}\left(\Sigma_{g, 1}, \mathbb{Z}\right)$. If we restrict r_{2} to the Torelli group $\mathcal{I}_{g, 1}$, this is really a homomorphism (see [23] Corollary 5.4). Then our formula for the second L^{2}-torsion invariant is the following. The proof is similar to one for Theorem 5.1.

Theorem 5.10 ([12]). For any mapping class $\varphi \in \mathcal{I}_{g, 1}$, the logarithm of the second L^{2}-torsion invariant $\tau_{2}\left(M_{\varphi}\right)$ is given by

$$
\log \tau_{2}\left(M_{\varphi}\right)=-2 m\left(\Delta_{r_{2}(\varphi)}\right)
$$

where $\Delta_{r_{2}(\varphi)}\left(y_{1}, \ldots, y_{2 g}, t\right)=\operatorname{det} A_{2}=\operatorname{det}\left(t I-\overline{r_{2}(\varphi)}\right)$ and y_{i} denotes the homology class corresponding to x_{i}.

Now we suppose $F(\mathbf{t}) \in \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ is primitive. We define F to be a generalized cyclotomic polynomial if it is a monomial times a product of one-variable cyclotomic polynomials evaluated at monomials.

The next corollary immediately follows from the theorem of Boyd, Lawton and Smyth (see [6] Theorem 4).

Corollary 5.11. For any mapping class $\varphi \in \mathcal{I}_{g, 1}, \log \tau_{2}\left(M_{\varphi}\right)=0$ if and only if $\Delta_{r_{2}(\varphi)}$ is a generalized cyclotomic polynomial.

As a typical element of the Torelli group $\mathcal{I}_{g, 1}$, we first consider a BSCC-map $\varphi_{h}(1 \leq h \leq g)$ of genus h. That is, a Dehn twist along a bounding simple closed curve on $\Sigma_{g, 1}$ which separates $\Sigma_{g, 1}$ into $\Sigma_{h, 1}$ and genus $g-h$ surface with two boundaries. We then see from [25] Corollary 4.3 that $\Delta_{r_{2}\left(\varphi_{h}\right)}=(t-1)^{2 g}$. This is clearly a generalized cyclotomic polynomial, so that $\log \tau_{2}\left(M_{\varphi_{h}}\right)=0$.

Second we consider a BP-map $\psi_{h}=D_{c} D_{c^{\prime}}^{-1}$ of genus $h(1 \leq h \leq$ $g-1$), where c and c^{\prime} are disjoint homologous simple closed curves on $\Sigma_{g, 1}$ and D_{c} denotes the Dehn twist along c. Since

$$
\Delta_{r_{2}\left(\psi_{h}\right)}=(t-1)^{2 g-2 h}\left(t-y_{g+h+1}\right)^{2 h}
$$

holds (see [25]), where y_{g+h+1} denotes the homology class corresponding to the $(h+1)$ th meridian of $\Sigma_{g, 1}$, we also have $\log \tau_{2}\left(M_{\psi_{h}}\right)=0$.

The next example shows the non-triviality of the second L^{2}-torsion invariant $\log \tau_{2}$.

Example 5.12. Let $\varphi=t_{3} \varphi_{1} t_{3}^{-1} \varphi_{1} \in \mathcal{I}_{2,1}$. Then we see from a computation in [25] that

$$
\Delta_{r_{2}(\varphi)}=(t-1)^{4}+t(t-1)^{2}\left(y_{1}-2+y_{1}^{-1}\right)\left(y_{2}-2+y_{2}^{-1}\right)
$$

This is not a generalized cyclotomic polynomial, so that the mapping torus M_{φ} has a non-trivial L^{2}-torsion invariant $\tau_{2}\left(M_{\varphi}\right)$. In fact we can numerically compute it by means of Lawton's result (see [13]). More precisely we have

$$
\begin{aligned}
-3 \pi \log \tau_{2}\left(M_{\varphi}\right) & =6 \pi m\left(\Delta_{r_{2}(\varphi)}\right) \\
& =6 \pi \lim _{r \rightarrow \infty} m\left(\Delta_{r_{2}(\varphi)}\left(u, u, u^{r}\right)\right) \\
& =19.28 \ldots
\end{aligned}
$$

§6. Vanishing of $\log \tau_{k}$ for reducible mapping classes

From the Nielsen-Thurston theory (see [5]), the mapping classes of a surface are classified into the following three types: (i) periodic, (ii) reducible and (iii) pseudo-Anosov. In our point of view, the most interesting object is a pseudo-Anosov map φ. Because the corresponding mapping torus M_{φ} has non-trivial hyperbolic volume.

In this final section, we show two vanishing theorems for $\log \tau_{k}$. We introduced an infinite sequence $\left\{\tau_{k}\right\}$ as an approximation of the hyperbolic volume. Thus if it behaves well with the index k, we ought to prove

$$
\lim _{k \rightarrow \infty} \log \tau_{k}=0
$$

for non-hyperbolic 3-manifolds (see Problem 4.4). As a first step of this observation, we obtain the following.

Theorem 6.1. If $\varphi \in \mathcal{M}_{g, 1}$ is the product of Dehn twists along any disjoint non-separating simple closed curves on $\Sigma_{g, 1}$ which are mutually non-homologous, then $\log \tau_{k}\left(M_{\varphi}\right)=0$ for any $k \geq 1$.

Remark 6.2. The mapping torus M_{φ} for $\varphi \in \mathcal{M}_{g, 1}$ as above admits no hyperbolic structures, so that $\operatorname{vol}\left(M_{\varphi}\right)=0$ holds.

Proof. At first, we prove the theorem for the genus one case. After that we give the outline of the proof in the higher genus case.

Let D_{c} be a Dehn twist along a non-separating simple closed curve c on $\Sigma_{1,1}$. Taking a conjugation, we can assume that the curve c is one of the standard generators of $\pi_{1}\left(\Sigma_{1,1}\right)$. We then see that $\varphi=D_{c}{ }^{q}$ is represented by a matrix $\left(\begin{array}{ll}1 & q \\ 0 & 1\end{array}\right) \in S L(2, \mathbb{Z})$. Thus we can choose a deficiency one presentation

$$
\left\langle x, y, t \mid t x t^{-1}=x, t y t^{-1}=x^{q} y\right\rangle
$$

of $\pi_{1}\left(M_{\varphi}\right)$. Applying the free differential calculus to the relators $t x t^{-1} x^{-1}$ and $t y t^{-1}\left(x^{q} y\right)^{-1}$, we obtain the Alexander matrix

$$
A=\left(\begin{array}{cc}
t-1 & 0 \\
-\partial\left(x^{q}\right) / \partial x & t-x^{q}
\end{array}\right)
$$

Here we remark that the generators t and x can be commuted by the relation $t x t^{-1}=x$. Hence in this case, the k th Alexander matrix A_{k} coincides with the original matrix A. In particular, t and x always commute. As we saw in Section 5, the L^{2}-torsion invariant $\tau_{k}\left(M_{\varphi}\right)(k \geq$

1) can be computed by using the usual determinant and the Mahler measure in such a situation. Since

$$
\operatorname{det} A=(t-1)\left(t-x^{q}\right)
$$

is a generalized cyclotomic polynomial, we obtain $\log \tau_{k}\left(M_{\varphi}\right)=0$ as desired (see Corollary 5.11).

In the higher genus case, we can assume that the mapping class φ is given by

$$
\begin{aligned}
& \varphi_{*}\left(x_{1}\right)=x_{1}, \varphi_{*}\left(x_{2}\right)=x_{1}^{q_{1}} x_{2}, \ldots \\
& \varphi_{*}\left(x_{2 l-1}\right)=x_{2 l-1}, \varphi_{*}\left(x_{2 l}\right)=x_{2 l-1}^{q_{l}} x_{2 l}, \\
& \varphi_{*}\left(x_{2 l+1}\right)=x_{2 l+1}, \ldots, \varphi_{*}\left(x_{2 g}\right)=x_{2 g}
\end{aligned}
$$

by taking a conjugation, where $q_{1}, \ldots, q_{l} \in \mathbb{Z}$ and $1 \leq l \leq g-1$. We then obtain the following presentation of $\pi_{1}\left(M_{\varphi}\right)$:

$$
\left\langle x_{1}, \ldots, x_{2 g}, t \mid t x_{i} t^{-1}=\varphi_{*}\left(x_{i}\right), 1 \leq i \leq 2 g\right\rangle
$$

Since the Alexander matrix A is the direct sum of the 2×2-matrix in the genus one case, we obtain $\log \tau_{k}\left(M_{\varphi}\right)=0$ by the similar arguments.
Q.E.D.

As another affirmative answer to Problem 4.4, we can show the vanishing of $\log \tau_{k}$ for the following mapping classes (see [12]). That is, we consider the case where there exists an integer n such that $M_{\varphi^{n}}$ is topologically the product of $\Sigma_{g, 1}$ and S^{1}. Here its bundle structure is non-trivial in general. Namely the nth power φ^{n} of a given monodromy φ is not trivial. A typical example is the Dehn twist along the simple closed curve on $\Sigma_{g, 1}$ parallel to the boundary. The difference between an isotopy fixing the boundary pointwisely and such one setwisely, it gives birth to the difference between a bundle structure and a topological type. We then obtain

Theorem 6.3 ([12]). $\log \tau_{k}\left(M_{\varphi}\right)=0$ for any $k \geq 1$.
It is easy to see that such a 3-manifold does not admit a hyperbolic structure. Hence it has trivial simplicial volume.

The above two examples are both non-hyperbolic cases, so that we conclude the present paper with the following problem.

Problem 6.4. Show

$$
\lim _{k \rightarrow \infty} \log \tau_{k}\left(M_{\varphi}\right)=\log \tau\left(M_{\varphi}\right)
$$

for a pseudo-Anosov diffeomorphism φ.

Acknowledgements. The authors are grateful to the referee for his/her numerous and helpful comments which greatly improved this paper.

References

[1] J. Birman, Braids, links, and mapping class groups, Ann. of Math. Stud., 82, Princeton Univ. Press, Princeton, NJ, 1974.
[2] D. Burghelea, L. Friedlander, T. Kappeler and P. McDonald, Analytic and Reidemeister torsion for representations in finite type Hilbert modules, Geom. Funct. Anal., 6 (1996), 751-859.
[3] A. Carey, M. Farber and V. Mathai, Determinant lines, von Neumann algebras and L^{2} torsion, J. Reine. Angew. Math., 484 (1997), 153-181.
[4] A. Carey and V. Mathai, L^{2}-torsion invariants, J. Funct. Anal., 110 (1992), 377-409.
[5] A. Casson and S. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, Cambridge Univ. Press, Cambridge, 1988.
[6] G. Everest, Measuring the height of a polynomial, Math. Intelligencer, 20 (1998), 9-16.
[7] M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math., 56 (1982), 5-99.
[8] E. Hess and T. Schick, L^{2}-torsion of hyperbolic manifolds, Manuscripta Math., 97 (1998), 329-334.
[9] N. V. Ivanov, Mapping class groups, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 523-633.
[10] T. Kitano, T. Morifuji and M. Takasawa, Numerical calculation of L^{2} torsion invariants, Interdiscip. Inform. Sci., 9 (2003), 35-42.
[11] T. Kitano, T. Morifuji and M. Takasawa, L^{2}-torsion invariants and homology growth of a torus bundle over S^{1}, Proc. Japan Acad. Ser. A Math. Sci., 79 (2003), 76-79.
[12] T. Kitano, T. Morifuji and M. Takasawa, L^{2}-torsion invariants of a surface bundle over S^{1}, J. Math. Soc. Japan, 56 (2004), 503-518.
[13] W. M. Lawton, A problem of Boyd concerning geometric means of polynomials, J. Number Theory, 16 (1983), 356-362.
[14] J. Lott, Heat kernels on covering spaces and topological invariants, J. Differential Geom., 35 (1992), 471-510.
[15] J. Lott and W. Lück, L^{2}-topological invariants of 3-manifolds, Invent. Math., 120 (1995), 15-60.
[16] W. Lück, L^{2}-torsion and 3-manifolds, Low-dimensional topology, Knoxville, TN, 1992, Conf. Proc. Lecture Notes Geom. Topology, III, Int. Press, Cambridge, MA, 1994, pp. 75-107.
[17] W. Lück, L^{2}-Betti numbers of mapping tori and groups, Topology, 33 (1994), 203-214.
[18] W. Lück, Approximating L^{2}-invariants by their finite-dimensional analogues, Geom. Funct. Anal., 4 (1994), 455-481.
[19] W. Lück, L^{2}-invariants: theory and applications to geometry and K-theory, Ergeb. Math. Grenzgeb. (3), 44, Springer-Verlag, Berlin, 2002.
[20] W. Lück and M. Rothenberg, Reidemeister torsion and the K-theory of von Neumann algebras, K-Theory, 5 (1991), 213-264.
[21] W. Lück and T. Schick, L^{2}-torsion of hyperbolic manifolds of finite volume, Geom. Funct. Anal., 9 (1999), 518-567.
[22] V. Mathai, L^{2}-analytic torsion, J. Funct. Anal., 107 (1992), 369-386.
[23] S. Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J., 70 (1993), 699-726.
[24] T. Schick, L^{2}-determinant class and approximation of L^{2}-Betti numbers, Trans. Amer. Math. Soc., 353 (2001), 3247-3265 (electronic).
[25] M. Suzuki, A class function on the Torelli group, Kodai Math. J., 26 (2003), 304-316.
[26] J. Weeks, SnapPea, http://www.geometrygames.org/SnapPea .
[27] H. Zieschang, E. Vogt and H-D. Coldewey, Surfaces and planar discontinuous groups, Translated from the German by John Stillwell, Lecture Notes in Math., 835, Springer, Berlin, 1980.

Teruaki Kitano
Department of Information Systems Science
Soka University
Tokyo 192-8577, Japan

Takayuki Morifuji
Department of Mathematics
Tokyo University of Agriculture and Technology
Tokyo 184-8588, Japan

