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L2-torsion invariants and the Magnus representation 
of the mapping class group 

Teruaki Kitano1 and Takayuki Morifuji2 

Abstract. 

In this paper, we study a series of L 2-torsion invariants from the 
viewpoint of the mapping class group of a surface. We establish some 
vanishing theorems for them. Moreover we explicitly calculate the first 
two invariants and compare them with hyperbolic volumes. 

§1. Magnus representation 

Let 2:9 ,1 be a compact oriented smooth surface of genus g with a 
boundary 82:9 ,1 ~ S1 . In this paper, we always assume that g ~ 1. 
We take and fix a base point * E 82:9 ,1 of 2:: 9 ,1 . Let M 9 ,1 be the 
mapping class group of 2:9 ,1 , namely, the group of all isotopy classes of 
orientation preserving diffeomorphisms of 2:9 ,1 relative to the boundary. 
We denote 1r1 (I:9 ,1 , *)by r, which is a free group of rank 2g, and fix a 
generating system r = (xl' ... 'Xzg). Let zr be the group ring of r over 
z. We write 'P* E Aut(r) to the automorphism induced from 'P E M 9 ,1 . 

The following result, usually called the Dehn-Nielsen-Baer theorem, is 
classical and fundamental to study the mapping class group M 9 ,1 by 
using combinatorial group theories (see [9] Section 2.9). 

Proposition 1.1 (Zieschang [27]). The above induced homomor
phism M 9 ,1 3 'P ~---* 'P* E Aut(r) is injective. 

As a corollary, we see that 'P can be determined by the words 
'P* ( xl)' ... ' 'P* ( X2g) E r. Since the fundamental formula I = 1 + 
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'£7! 1 (ch'loxi)(xi- 1) holds in Zf for any 1 E r, the word 'P*(xj) 
is determined by { Oip* (X j) I oxi}. Here a I OXi : zr ---> zr denotes Fox's 
free differential. See [1] Section 3.1 for a systematic treatment of the sub
ject. The Magnus representation of the mapping class group is defined 
as follows. 

Definition 1.2. The Magnus representation of M 9 ,1 is defined by 
the assignment 

where Lg Agg = Lg Agg- 1 for any element Lg Agg E zr. 
Remark 1.3. By the expression 1 = 1 + Li(olloxi)(xi- 1), it 

follows that r is injective. However, it is not a group homomorphism, 
just a crossed homomorphism. According to the practice, we call it 
simply the Magnus representation of M 9 ,1 . 

Now for a matrix B E A1(n, <C), let us recall that its characteristic 
polynomial 

det(ti- B) 

is one of the fundamental tools in the linear algebra. Here I denotes the 
identity matrix of degree n. If we can define a characteristic polynomial 
of r( 'P), it may be useful tool to study the mapping class group. In order 
to define it for a Magnus matrix r(lfJ), we need to clarify the following 
two points. 

(1) What is the determinant over a non-commutative group ring? 
(2) What is the meaning of a variable "t" in the group? 

As an answer to these problems, we can formulate that 

• the variable t lives in the fundamental group of the mapping 
torus of ip, 

• a characteristic polynomial "det" ( ti- r( 'P)) with respect to the 
Fuglede-Kadison determinant. 

In the later sections, we explain that the characteristic polynomial 
of r( 'P) is defined as a real number and it essentially gives the £ 2-torsion 
and the hyperbolic volume of the mapping torus of 'P· Moreover taking 
the lower central series of the surface group r, we obtain a family of 
Magnus representations, so that we can introduce a sequence of L2-

torsion invariants as an approximate sequence of the hyperbolic volume. 
This paper is organized as follows. In the next section, we briefly 

recall the definition of the Fuglede-Kadison determinant. In Section 3, 
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we summarize some properties of the L 2-torsion of 3-manifolds and ex
plain a relation to the Magnus representation. We introduce a sequence 
of L 2-torsion invariants for a surface bundle over the circle in Section 4 
and give some formulas for them in Section 5. In the last section, we 
discuss some vanishing theorems for L 2-torsion invariants. 

§2. Fuglede-Kadison determinant 

In this section, we review the combinatorial definition of the Fuglede
Kadison determinant over a non-commutative group ring and its basic 
properties (see [19] for details). 

The idea to define a determinant over a group ring comes from the 
following observation. That is, for a matrix B E GL(n, q with the 
(non-zero) eigenvalues )q, ... , An, we can formally calculate 

n n 

i=l i=l 

by the power series expansion of log, where B* is the adjoint matrix of 
B. More precisely, if we take a sufficiently large constant K > 0, we 
obtain 

E JR>O· 

Thus if we can define a certain "trace" over a group ring, we get a 
determinant by using this formula. 

Let 1r be a discrete group and C1r denote its group ring over C. For 
an element LgE7r A9 g E C1r, we define the C1r-trace trc1r : C1r ----> C by 
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where e is the unit element in 1r. For an n x n-matrix B 
M(n, C1r), we extend the definition of C1r-trace by means of 

n 

trcrr(B) = L trcrr(b;;). 
i=l 

Next let us recall the definition of the £ 2-Betti number of an n x 
m-matrix B E A1(n, m, C1r). We consider the bounded 1r-equivariant 
operator 

RB: EB;~1l2 (1r)----+ EB~1z2(1r) 

defined by the natural right action of B. Here l2 (1r) is the complex 
Hilbert space of the formal sums Z:::gErr A9 g which are square summable. 
We fix a positive real number K so that K 2: IIRBII= holds, where 
liRE II= is the operator norm of R 8 . 

Definition 2.1. The £ 2-Betti number of a matrix BE M(n, m, C1r) 
is defined by 

b(B) = lim trcrr ((I- K-2 BB*)P) E IR2':o, 
p--+CXJ 

where B* = (bj;) and 2:: )..9 g = 2:: "5..9 g- 1 for each entry. 

Roughly speaking, the £ 2-Betti number b(B) measures the size of 
the kernel of a matrix B. Hereafter we assume b(B) = 0. Then, for 
a matrix with coefficients in a non-commutative group ring, we can 
introduce the desired determinant as follows. 

Definition 2.2. The Fuglede-Kadison determinant of a matrix BE 
M(n, m, C1r) is defined by 

detc1r(B) = Knexp (-~ f ~trcrr ((I- K- 2BB*)P)) E IR>o, 
p=l p 

if the infinite sum of non-negative real numbers in the above exponential 
converges to a real number. 

Remark 2.3. It is shown that the £ 2-Betti number b(B) and the 
Fuglede-Kadison determinant detcrr (B) are independent of the choice of 
the constant K (see [16] for example). 

Here we consider the condition of the convergence. For any matrix 
BE M(n, C), the condition 

lim tr ((I- K- 2 BB*)P) = 0 
p--+CXJ 
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implies that B has no zero eigenvalues, and then I det Bl converges. In 
the case of group rings, if detcn(B) converges, then b(B) = 0. But 
it is not a sufficient condition, so that we need additional one. It is 
a problem to decide when detcn(B) converges. Under the assumption 
that b(B) = 0, such a sufficient condition is given by the positivity 
of the Novikov-Shubin invariant a(B). Then the convergence of the 
infinite sum in the Fuglede-Kadison determinant is guaranteed. The 
Novikov-Shubin invariant of an operator RB measures how concentrated 
the spectrum of R'8RB is. However, in general, it is hard to check the 
positivity of the Novikov-Shubin invariant. 

To avoid the difficulty, we need to consider the determinant class 
condition for groups (see [19), [24) for details). A group 1r is of det ?: 1-
class iffor any BE M(n, m, Zn) the Fuglede-Kadison determinant of B 
satisfies detcn(B) ?: 1. There are no known examples of groups which 
are not of det ?: 1-class. Further recently it was proved that there is a 
certain large class g of groups for which they are of det ?: 1-class. It 
includes amenable groups and countable residually finite groups. If we 
can see that 1r belongs tog, namely it is of det ?: 1-class, the convergence 
of the Fuglede-Kadison determinant is guaranteed when the £ 2-Betti 
number is vanishing. See [18), [19), [24) for definitions and properties of 
these subjects. 

§3. £ 2-torsion of 3-manifolds 

In this section, we quickly recall the definition of the £ 2-torsion of 3-
manifolds. It is an £ 2-analogue of the Reidemeister and the Ray-Singer 
torsion and essentially gives Gromov's simplicial volume under certain 
general conditions [2), [3), [4), [8), [14), [15), [20), [21), [22). See [19) and 
its references for historical background, related works and so on. 

Let M be a compact connected orientable 3-manifold. We fix a CW
complex structure on M. We may assume that the action of 1r1M on 
the universal covering M is cellular (if necessary, we have only to take 
a subdivision of the original structure). We consider the Cn1M-chain 
complex 

- {) - {) - {) -
0 _____, C3 (M,C) ~ C2(M,C) ~ C1(M,C) _____:_.. Co(M,C) _____, 0 

of M. Since the boundary operator ai is a matrix with coefficients in 
Cn1M, if we take the adjoint operator a; : Ci-1 (M, C) --+ Ci(M, C) as 
in the previous section, we can define the ith (combinatorial) Laplace 
operator ~i: Ci(M, C)--+ Ci(M, C) by 
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Let us suppose that all the L 2-Betti numbers b(t:..i) vanish and the 
fundamental group 1r1M is of det 2: 1-class. Thereby as a generalization 
of the classical Reidemeister torsion, the L 2-torsion T(M) is defined by 

Definition 3.1. 

As for the positivity of Novikov-Shubin invariants o:(t:..i) for the 
Laplace operator t:..i, it is known that o:(t:..i) > 0 holds under some 
general assumptions (see [15]). For example, if a compact connected 
orientable 3-manifold M satisfies 

(1) 1r1M is infinite, 
(2) M is an irreducible 3-manifold or 5 1 x 5 2 or JRP3 UJRP3 , 

(3) if 8M =f. cj;, it consists of tori, 
(4) if 8M = cj;, M is finitely covered by a 3-manifold which is a 

hyperbolic, Seifert or Haken 3-manifold, 

then b(t:..i) = 0 and o:(t:..;) > 0 for each i. Therefore, we see that the 
L2-torsion T(M) is also well-defined in view of these conditions. 

Remark 3.2. The above condition ( 4) is automatically satisfied by 
Perelman's proof of Thurston's Geometrization Conjecture. 

As a notable property of the L2-torsion, it is known that log T(M) 
can be interpreted as Gromov's simplicial volume IIMII and hyperbolic 
volume vol(M) (see [7]) of M. See [21] for the heart of the proof. 

Theorem 3.3. Let M be a compact connected orientable irreducible 
3-manifold with an infinite fundamental group such that 8M is empty 
or a disjoint union of incompressible tori. Then it holds that 

logT(M) = CIIMII, 

where C is the universal constant not depending on M. In particular, if 
M is a hyperbolic 3-manifold, we obtain 

1 
logT(M) = --vol(M). 

3Jr 

Next we review Luck's formula for the L2-torsion of 3-manifolds ([16] 
Theorem 2.4). From this formula, we see that log T is a characteristic 
polynomial of the Magnus representation of the mapping class group. 



£ 2 -torsion invariants and the Magnus representation 37 

Theorem 3.4. Let M be as in the above theorem. We suppose that 
aM is non-empty and n 1M has a deficiency one presentation 

Put A to be the n x n-matrix with entries in Zn1 M obtained from the 
matrix (ari/asj) by deleting one of the columns. Then the logarithm of 
the L 2 -torsion of M is given by 

logT(M) = -2logdetc1r1 M(A) 

= -2n log K + f ~trcrr,M ((I- K- 2 AA*)P) , 
p=l p 

where K is a constant satisfying K;:::: IIRAII=· 
To see a relation between the Magnus representation and the £ 2-

torsion, we describe the above Li.ick's formula for a surface bundle over 
the circle. 

For an orientation preserving diffeomorphism cp of I:9 ,1, we form 
the mapping torus M'P by taking the product I:9 ,1 x [0, 1] and gluing 
I:9 ,1 x {0} and I:9 ,1 x {1} via cp. This gives a surface bundle over S1. Its 
diffeomorphism type is determined by the monodromy map cp, and con
versely the monodromy map cp is determined by a given surface bundle 
up to conjugacy and isotopy. Here an isotopy fixes setwisely the points 
on the boundary 8I:9 ,1. We take a deficiency one presentation of the 
fundamental group 1r = 1r1(M'P, *), 

1r = (x1, ... , x29 , t I ri: txiC 1 = cp*(xi), 1:::; i:::; 2g), 

where the base point * of 1r and r = n1 (I:9 ,1, *) is the same one on the 
fiber I:g,l X {0} c M'P and cp* : r --+ r is the automorphism induced 
by cp : I:9 ,1 --+ I:9 ,1. It should be noted that 1r is isomorphic to the 
semi-direct product of rand n1S 1 ~ Z = (t). 

Applying the free differential calculus to the relations ri (1 :::; i :::; 
2g), we obtain the Alexander matrix 

( ari) A= axj E M(2g, Zn). 

Then Li.ick's formula for a surface bundle over the circle is given by 

logT(M'P) = -2logdetcrr(A) 

CXJ 1 
= -4g log K + 2.: -trcrr ((I- K-2 AA*)P), 

p=l p 
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where K is a constant satisfying K 2: IIRAIIoo· 
This formula enables us to interpret the L2-torsion log r of a surface 

bundle over the circle as the characteristic polynomial of the Magnus 
representation r(cp). In fact, an easy calculation shows that 

Then if we take the Fuglede-Kadison determinant in M(2g, C1r), we have 

detc1r ( tl- tr( <p)) = detc1r ( tl- tr( <p)) * 

= detc1r (r 1 I- r(cp)) 

because trc7r(BB*) = trc7r(B* B) holds. Therefore the L2-torsion is 
interpreted as the characteristic polynomial of r( <p). 

§4. Definition of L2-torsion invariants 

As was seen in Section 3, Luck's formula gives a way to calculate 
the simplicial volume from a presentation of the fundamental group. 
However, in general, it seems to be difficult to evaluate the exact values 
from the formula. In this section, we introduce a sequence of L2-torsion 
invariants which approximates the original one for a surface bundle over 
the circle. See [12] for details. 

In order to construct such a sequence of L2-torsion invariants, we 
consider the lower central series of r. Namely, we take the descending 
infinite sequence 

where fk = [fk-1, f 1] fork 2: 2. Let Nk be the kth nilpotent quotient 
Nk = f /fk and Pk : f ____, Nk be the natural projection. 

In the previous section, we considered a chain complex C*(M"', C) 
of C1r-modules. Instead of this complex, we can use the chain complex 

to define the same L 2-torsion r(M"'). This point of view allows us to 
introduce a sequence of the L2-torsion invariants. 

The group r k is a normal subgroup of 1r, so that we can take the 
quotient group 1r(k) = 1rjfk. It should be noted that 1r(k) is isomorphic 
to the semi-direct product Nk XI Z. We denote the induced projection 
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1r --+ 1r(k) by the same letter Pk· Thereby we can consider the chain 
complex 

through the projection Pk· By using the Laplace operator 

on this complex, we can formally define the kth L 2-torsion invariant 
Tk(M'P) as follows. 

Definition 4.1. 

3 

Tk(M'P) =IT detc7r(k)(~~k))(-l);+ 1 i. 
i=O 

Of course, this definition is well-defined if every L 2-Betti number 
b(~~k)) vanishes and every 1r(k) is of det ~ 1-class. The next lemma is 
easily proved (see [12], [17]). 

Lemma 4.2. The L 2 -Betti numbers of ~~k) are all zero. 

Recall the class g of groups. It is the smallest class of groups which 
contains the trivial group and is closed under the following processes: 
(i) amenable quotients, (ii) colimits, (iii) inverse limits, (iv) subgroups 

· and (v) quotients with finite kernel (see [19], [24]). It is known that g 
contains all amenable groups. By definition, Nk = r /fk is a nilpotent 
group and in particular an amenable group. Hence every Nk belongs 
to g. Further for any automorphism cp* : Nk --+ Nk, its mapping torus 
extension (HNN-extension) Nk ><1 Z also belongs to g. Therefore we have 

Lemma 4.3. The group 1r(k) belongs to g. 

As a result, we can conclude that our L 2-torsion invariants Tk can 
be defined for any k ~ 1 and they are all homotopy invariants (see [19], 
[24]). 

Now let us describe a formula of the kth L2-torsion invariant Tk(M'P) 
and establish a relation to the Magnus representation of the mapping 
class group. Let Pk* : C1r--+ C1r(k) be an induced homomorphism over 
the group rings. For k ~ 1, we put 
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Moreover we fix a constant Kk satisfying Kk ~ IIRAklloo· Then we have 

logTk(Mcp) = -2logdetc71"(k)(RAk) 

= -4g log Kk + f ~trc71"(k) ((I- K;;2 AkAk *)P) , 
p=l p 

by virtue of the same argument as Theorem 3.4. 
For the kth invariant Tk, we have taken the lower central series 

{fk} of r and the nilpotent quotients {Nk}. These quotients induce a 
sequence of representations (more precisely, crossed homomorphisms) 

rk : M 9,1 -+ GL(2g, ZNk) 

for k ~ 1 (see [23]). They naively approximate the original Magnus 
representation r : M 9 ,1 -+ GL(2g, Zr). By the similar observation as 
before, the kth invariant logTk(Mcp) can be regarded as the characteristic 
polynomial of rk('P) with respect to the Fuglede-Kadison determinant 
in M(2g, Cn(k)). 

From the viewpoint of the Magnus representation of the mapping 
class group, it seems natural to raise the following problem. 

Problem 4.4. Show that the sequence {Tk(Mcp)} converges to 
T(Mcp) when we take the limit on k. 

In general, such an approximation problem for the £ 2-torsion seems 
to be difficult. However, similar convergence results are known for the 
£ 2-Betti numbers. In fact, Liick shows in [18] a theorem relating £ 2-

Betti numbers to ordinary Betti numbers of finite coverings. This result 
is generalized to more general settings by Schick in [24]. 

As for the Fuglede-Kadison determinant, Liick proves in [19] the 
following. Let f: Q[Z]-+ Q[Z] be the Q[Z]-map given by multiplication 
with p( t) E Q[Z] and f( 2) : l 2 (Z) -+ l 2 (Z) be the linear operator obtained 
from f by tensoring with l 2 (Z) over Q[Z]. Further let f[n] : C[Z/n] -+ 
C[Z/n] be the linear operator obtained from f by taking the tensor 
product with C[Z/n] over Q[Z]. We then get an approximation result: 

l d t (! ) l. log detqz;n] (f[nJ) 
og e qz] (2) = 1m 

n-+oo n 

(see [11] for a similar statement). In [19] Liick also points out that there 
exists a purely algebraic example where Fuglede-Kadison determinants 
do not converge. 

On the other hand, in general, we have at least an inequality for the 
Fuglede-Kadison determinant in the limit statement (see [24]). That is, 
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for the operator RAk we see that 

holds. In the last section, we shall discuss Problem 4.4 again and give 
an affirmative answer under certain conditions. 

§5. Formulas of r1 and rz 

In this section, we give explicit formulas of the first two invariants 
of a sequence of our £ 2-torsion invariants. They are really computable 
formulas, so that we can make a systematic calculation for low genus 
cases. In particular, we compare them with hyperbolic volumes. The 
results discussed here are a summary of our previous paper [12] (see also 
[10]' [11]). 

First we consider the Magnus representation 

Here N 1 = r jr 1 is the trivial group and then the above representation 
is the same as the usual homological action of M 9 ,1 on H1 (:E9,1, Z). 
Namely we have the representation 

r1 : M 9 ,1 ---+Aut (H1 (:E9,1, Z), ( , ) ) ~ Sp(2g, Z), 

where ( , ) denotes the intersection form on the first homology group. 
Further 11'(1) = 7l'jr1 ~ Z = (t) and its group ring C(t) is a commutative 
Laurent polynomial ring C[t, t- 1]. Then the matrix A1 is nothing but 
the usual characteristic matrix of tr1 ( cp). In this case, it is described by 
the usual determinant for a matrix with commutative entries. 

In order to state the theorem, we recall a definition from number 
theory (see [6] and its references). For a Laurent polynomial F(t) E 

C[tt\ ... , t;1], the Mahler measure ofF is defined by 

where we assume that undefined terms are omitted. Namely we define 
the integrand to be zero whenever we hit a zero of F. 

Theorem 5.1 ([12]). The logarithm of the first invariant r1 is given 
by 
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where ~r1 (cp)(t) = detA1 = det(ti- r1(<p)). Moreover if ~r1 (cp)(t) has 

a factorization ~r1 (cp)(t) = I1~!1 (t- o:i) (o:i E q, then we have 

2g 

logT1(Mcp) = -2 L logmax{1, io:ij}. 
i=l 

Remark 5.2. In other words, logT1(Mcp) is given by the integral 
of the Alexander polynomial of Mcp over the circle S1 (see [16], for the 
exterior of a knot K in the 3-sphere S3 ). Further, logT1(Mcp) can be 
described by the asymptotic behavior of the order of the first homology 
group of a cyclic covering (see [11]). 

The point of the proof is to identify the Hilbert space l2 (Z) with 
L2(1R/Z) in terms of the Fourier transforms. Then the C(t)-trace trqt) : 
l2 (Z) -t c can be realized as the integration 

(see [12] for details). From this description and Kronecker's theorem ([6] 
Theorem 2), we obtain a certain vanishing theorem of the first invariant. 

Corollary 5.3. The logarithm of Tl (Mcp) vanishes if and only if 
every eigenvalue of r1 ( <p) E Sp(2g, Z) is a root of unity. 

This corollary seems to be interesting from the viewpoint of Problem 
4.4. Because in some case, we can say that the first invariant T1 already 
approximates the simplicial volume. In particular, Corollary 5.3 implies 
that a torus bundle Mcp (g = 1) with a hyperbolic structure (namely, 
jtr(rl(<t?))l 2:: 3)has always non-trivial £ 2-torsion invariant T1 (Mcp)· 
Summing up, we have 

Corollary 5.4. For any <p E M 1,1 , its mapping torus Mcp admits 
a hyperbolic structure if and only if Mcp has a non-trivial L 2 -torsion 
invariant Tl(Mcp)· 

Therefore, the first invariant T1 already approximates the simplicial 
volume in genus one case. 

Remark 5.5. It is known that if the characteristic polynomial of 
r1(<p) E Sp(2g,Z) is irreducible over Z, has no roots of unity as eigen
values and is not a polynomial in tn for any n > 1, then <p is pseudo
Anosov (see Casson-Bleiler [5]). In this case, vol(Mcp) =f. 0 and further 
logT1(Mcp) =f. 0 by Corollary 5.3. 
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Example 5.6. It is well-known that the mapping class group of the 
two dimensional torus T 2 = JR2 /Z2 is isomorphic to S£(2, Z). Taking 

a matrix ( _!1 ~) E S£(2, Z), it gives a diffeomorphism r.p on T 2. We 

may assume that it is the identity on some embedded disk by an isotopic 
deformation and it gives an element of M 1,1. We use the same symbol 
r.p for this mapping class. An easy calculation shows that 

r1(r.p) = ( ! 1 ~) 
and 

~r1 (cp)(t) = det(ti- r1(r.p)) = t2 - qt + 1. 

We put~±= (q ± Jq2 - 4)/2 (the eigenvalues of the matrix r 1(r.p)). If 
lql ~ 2, then 1~±1 = 1. Hence logTl(Mcp) = 0 in these cases. On the 
other hand, either I~+ I or 1~-1 is greater than one when lql 2: 3, so that 
Mcp has a non-trivial £ 2-torsion invariant T1 in these cases. In fact, the 
logarithm of the first invariant is given by 

The values of log T1 for the traces q and -q are the same, so that it 
is a function of 1tr(r1(r.p))l. We put a graph of the £ 2-torsion invariant 
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-3nlogT1 (M'P) and the hyperbolic volume vol(M'P) as a function of JqJ 
in Fig 1. 

Example 5.7. Next we consider the genus two case. Let it, ... , t 5 

be the Lickorish-Humphries generators of M 2 ,1 . We take the element 
r.p = t1bt5 2t2 1f4 1 E M 2 ,1 . As was shown in [5], the characteristic 
polynomial of r( r.p) is 

~r1 ('P)(t) = det(tl- r1(r.p)) 

= t4 - 9t3 + 21t2 - 9t + 1 

and irreducible over Z. Moreover it has no roots of unity as zeros. 
Hence, r.p is pseudo-Anosov and M'P has a non-trivial £ 2-torsion invariant 
T 1 (M'P). In fact, we have 

-3nlogT1 (M'P) = 52.954.... and vol(M'P) = 11.466 .... 

Remark 5.8. In the above two examples, we used SnapPea [26] to 
compute the hyperbolic volumes. 

Now in the following, we consider the second invariant T2 . In the 
case of genus one, we can prove the vanishing of logT2 (M'P). 

Theorem 5.9 ([11]). logT2(M'P) = 0 for any r.p E M1,1· 

This follows from the fact that the group n(2) is isomorphic to the 
fundamental group of a closed torus bundle over the circle. Such a 3-
manifold admits no hyperbolic structures, so that the original £ 2-torsion 
is trivial and we obtain the assertion. 

On the other hand, in the case of g 2': 2, it is difficult to describe 
log T2 explicitly on the full mapping class group M 9 ,1 . However, we can 
do it on the Torelli group. Let r.p be an element of the Torelli group I 9 , 1 , 

namely r.p acts trivially on the first homology group H 1 (L.9 ,1 , Z). Then we 
notice that logT1 (M'P) = 0 holds for any r.p E I 9 ,1 (see Corollary 5.3). To 
give an explicit formula of log T2 , we consider the Magnus representation 

r2 : M 9 ,1 -+ GL(2g, ZN2), 

where N2 = rj[r,r] ~ Hl(L.9 ,1,Z). If we restrict r2 to the Torelli group 
I 9 ,1, this is really a homomorphism (see [23] Corollary 5.4). Then our 
formula for the second £ 2-torsion invariant is the following. The proof 
is similar to one for Theorem 5.1. 

Theorem 5.10 ([12]). For any mapping class r.p E I 9 ,1 , the loga
rithm of the second L 2 -torsion invariant T2 (M'P) is given by 
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where 6.r2 ('P)(Yl, ... , Y29 , t) = det A2 = det(ti- r2('P)) andy; denotes 
the homology class corresponding to x;. 

Now we suppose F(t) E Z[tf 1 , ... ,t;1] is primitive. We define F 
to be a generalized cyclotomic polynomial if it is a monomial times a 
product of one-variable cyclotomic polynomials evaluated at monomials. 

The next corollary immediately follows from the theorem of Boyd, 
Lawton and Smyth (see [6] Theorem 4). 

Corollary 5.11. For any mapping class 'P E I 9,1, logT2(M'P) = 0 
if and only if 6.r2 ('P) is a generalized cyclotomic polynomial. 

As a typical element of the Torelli group I 9 ,1 , we first consider a 
BSCC-map 'Ph (1 ::; h ::; g) of genus h. That is, a Dehn twist along 
a bounding simple closed curve on I:9 ,1 which separates I:9 ,1 into I:h,l 
and genus g - h surface with two boundaries. We then see from [25] 
Corollary 4.3 that 6.r2 ('Ph) = (t- 1)29. This is clearly a generalized 
cyclotomic polynomial, so that logT2(M'Ph) = 0. 

Second we consider a BP-map 1/Jh = DcD;;, 1 of genus h (1 ::; h ::; 
g - 1), where c and c' are disjoint homologous simple closed curves on 
I:9 ,1 and De denotes the Dehn twist along c. Since 

holds (see [25]), where Yg+h+l denotes the homology class corresponding 
to the (h + 1)th meridian of I:9 ,1 , we also have logT2(M1f;h) = 0. 

The next example shows the non-triviality of the second L2-torsion 
invariant log T2. 

Example 5.12. Let 'P = t 3 ip1t3 1 'P1 E I 2,1 . Then we see from a 
computation in [25] that 

This is not a generalized cyclotomic polynomial, so that the mapping 
torus M'P has a non-trivial £ 2-torsion invariant T2(M'P). In fact we can 
numerically compute it by means of Lawton's result (see [13]). More 
precisely we have 

-37rlog72(M'P) = 61rm (D...r2 ('P)) 

= 61r lim m (6.r2 ('P)(u,u,ur)) 
r-+oo 

= 19.28 .... 
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§6. Vanishing of log Tk for reducible mapping classes 

From the Nielsen-Thurston theory (see [5]), the mapping classes 
of a surface are classified into the following three types: (i) periodic, 
(ii) reducible and (iii) pseudo-Anosov. In our point of view, the most 
interesting object is a pseudo-Anosov map rp. Because the corresponding 
mapping torus M'P has non-trivial hyperbolic volume. 

In this final section, we show two vanishing theorems for log Tk. 
We introduced an infinite sequence { Tk} as an approximation of the 
hyperbolic volume. Thus if it behaves well with the index k, we ought 
to prove 

lim logTk = 0 
k--->oo 

for non-hyperbolic 3-manifolds (see Problem 4.4). As a first step of this 
observation, we obtain the following. 

Theorem 6.1. If rp E M 9 ,1 is the product of Dehn twists along any 
disjoint non-separating simple closed curves on ~9 , 1 which are mutually 
non-homologous, then logTk(M'P) = 0 for any k 2': 1. 

Remark 6.2. The mapping torus M'P for rp E M 9 ,1 as above admits 
no hyperbolic structures, so that vol(M'P) = 0 holds. 

Proof. At first, we prove the theorem for the genus one case. After 
that we give the outline of the proof in the higher genus case. 

Let De be a Dehn twist along a non-separating simple closed curve 
c on ~ 1 , 1 . Taking a conjugation, we can assume that the curve c is 
one of the standard generators of 1r 1 (~ 1 ,1). We then see that rp = Dcq 

is represented by a matrix (~ i) E S£(2, Z). Thus we can choose a 

deficiency one presentation 

of 1r1 (M'P). Applying the free differential calculus to the relators 
txC 1x- 1 and tyC 1(xqy)- 1 , we obtain the Alexander matrix 

( t -1 A-- -8(xq)j8x 

Here we remark that the generators t and x can be commuted by the 
relation txt- 1 = x. Hence in this case, the kth Alexander matrix Ak 
coincides with the original matrix A. In particular, t and x always 
commute. As we saw in Section 5, the £ 2-torsion invariant Tk(.AJ'P) (k 2': 
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1) can be computed by using the usual determinant and the Mahler 
measure in such a situation. Since 

det A= (t- 1)(t- xq) 

is a generalized cyclotomic polynomial, we obtain log rk(Mcp) = 0 as 
desired (see Corollary 5.11). 

In the higher genus case, we can assume that the mapping class 'P 
is given by 

'P*(x1) = x1, 'P*(xz) = Xf1 Xz, ... , 

'P*(Xz!-1) = Xz!-1, 'P*(x2l) = x~!- 1 Xz!, 
'fJ*(X2!+1) = X2!+1 1 • •• , 'fJ*(Xzg) = Xzg 

by taking a conjugation, where q1 , ... , ql E Z and 1 :S: l :S: g - 1. We 
then obtain the following presentation of n 1 (Mcp): 

(xt, ... , xz9 , t I txir 1 = 'P*(xi), 1 :S: i :S: 2g). 

Since the Alexander matrix A is the direct sum of the 2 x 2-matrix in 
the genus one case, we obtain logrk(Mcp) = 0 by the similar arguments. 

Q.E.D. 

As another affirmative answer to Problem 4.4, we can show the 
vanishing oflogrk for the following mapping classes (see [12]). That is, 
we consider the case where there exists an integer n such that Mcpn is 
topologically the product of :E9 ,1 and 8 1 . Here its bundle structure is 
non-trivial in general. Namely the nth power 'Pn of a given monodromy 
'P is not trivial. A typical example is the Dehn twist along the simple 
closed curve on :E9 ,1 parallel to the boundary. The difference between an 
isotopy fixing the boundary pointwisely and such one setwisely, it gives 
birth to the difference between a bundle structure and a topological type. 
We then obtain 

Theorem 6.3 ([12]). logrk(Mcp) = 0 for any k 2: 1. 

It is easy to see that such a 3-manifold does not admit a hyperbolic 
structure. Hence it has trivial simplicial volume. 

The above two examples are both non-hyperbolic cases, so that we 
conclude the present paper with the following problem. 

Problem 6.4. Show 

for a pseudo-Anosov diffeomorphism 'P· 
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