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On Wasserstein geometry of Gaussian measures 

Asuka Takatsu 

Abstract. 

The space of Gaussian measures on a Euclidean space is geodesi
cally convex in the £ 2 - Wasserstein space. This is a finite dimensional 
manifold since Gaussian measures are parameterized by means and co
variance matrices. By restricting to the space of Gaussian measures 
inside the £ 2- Wasserstein space, we manage to provide detailed de
scriptions of the £ 2- Wasserstein geometry from a Riemannian geomet
ric viewpoint. We obtain a formula for the sectional curvatures of the 
space of Gaussian measures, which is written out in terms of the eigen
values of the covariance matrix. 

§1. Introduction 

For a vector m in ffi.d and a symmetric positive definite matrix V 
of size d, a Gaussian measure N(m, V) with mean m and covariance 
matrix V is an absolutely continuous probability measure on ffi.d with 
respect to the Lebesgue measure dx whose Radon-Nikodym derivative 
is given by 

_dN-'-::(m-''-V--'-) = 1 exp [-~(x- m, v-l(x- m))] . 
dx Jdet(2nV) 2 

We denote by Nd the space of Gaussian measures on ffi.d. Since Gaussian 
measures are completely determined by the means and the covariance 
matrices, Nd is identified with ffi.d x Sym+(d,IR.), where Sym+(d,IR.) is 
the set of symmetric positive definite matrices of size d. 
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Let P2c be the set of absolutely continuous probability measures 
on JRd whose second moments are finite. Then for f..L, v E P2c, £ 2-

Wasserstein distance between f..L and v is defined by 

W2(f..L, v)2 = inf f d(x, y)2drr(x, y), 
7rEil(Jl,v) }Ji.d xJRd · 

where the infimum is taken over all Borel probability measures on Rd xJRd 
whose marginals are f..L and v. Then (P!Jc, W2) is a geodesic space and 
all geodesics are given by push-forward measures (see [4]). Although it 
is usually difficult to obtain the concrete value of the £ 2- Wasserstein 
distance, the £ 2- Wasserstein distance between Gaussian measures can 
be explicitly computed by several authors; Dowson-Landau [1], Givens
Short [3], Knott-Smith [5] and Olkin-Pukelsheim [6]: For N(m, V) and 
N(n, U), we get 

1. 

W2(N(m, V), N(n, U)) 2 = lm- nl2 + trV + trU- 2tr ( U~VU~) 2 . 

It implies that variations of mean and covariance do not interact, and 
the geometry on mean variations is trivial. Then it suffices to consider 
the geometry on covariance matrix variations. We use N(f for the set of 
all Gaussian measures with mean 0. We denote by N(V) the Gaussian 
measure with mean 0 and covariance matrix V. 

The tangent space to Nrf at each point can be regarded as Sym( d, IR), 
where Sym(d, IR) is the set of symmetric matrices of size d. McCann [4] 
showed that N(f is geodesically convex in P2c and a geodesic expN(V) tX 
from N (V) with direction X E Sym( d, IR) is given by 

expN(V) tX = N(Ut), where Ut = [(1 - t)E + tX]V[(1- t)E + tX]. 

By restricting to a geodesically convex submanifold Nrf of P~, we obtain 
a formula for sectional curvatures of N(f. This coincides with a formal 
expressions of sectional curvatures of P!Jc given by Otto [7]. 

Theorem 1.1. [8, Theorem1.1] For an orthogonal matrix P and 
positive numbers {>.i}f=1 , we set V = Pdiag[AI. ... , Ad] Tp, where Tp is 
the transpose matrix of P. Then the tangent space to Nrf at N(V) is 
spanned by 

Je _ P (Eu + Edd) Tp e·. _ P (Eii - Ejj) Tp .. _ P (Eij + Eji) Tp} 
l +- VAl+ Ad ' •J- VAi + Aj ,f.J- VAi + Aj ' 

where Eij is an (i,j)-matrix unit, whose (i,j)-component is 1, 0 else
where. Then we obtain the following expressions of the sectional curva
tures K with respect to the vectors: 
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(1) K(e+,eij) = 0 

(2) K(e+, hd) = 0 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

3>.i>.j 
K(e+, fij) = (>.i + Aj)2(>.1 +>.d) 

K(e+, fkz) = 0 

K(eij, ekz) = 0 

K(eij, fkz) = 0 

3,\i,\j 
K(eik, fij) = (>.i + Aj)2(>.i + >.k) 

12,\i,\j 
K(eij,fij) = (>.i+Aj) 3 

K(fij, fkz) = 0 

3AjAk 
K(fij, fik) = (>.i + Aj)(>.j + >.k)(>.k + >.i) 

(i = 1 or j =d) 

(1 < k < l <d) 

( { i, j} n { k, l} = 0) 

(j -=J k) 

( { i, j} n { k, l} = 0) 

(j -=J k). 

This shows that the sectional curvatures with respect to the vectors 
{ e+, eij, fij} are non-negative and depend only on the eigenvalues of the 
covariance matrix. Moreover, the author [9] proved that N(f is really 
a space of non-negative curvature in a different method and the metric 
completion of N(f has a cone structure. 

§2. Proof of Theorem 1.1 

The author [8] has explicitly constructed a metric g on N(f, which 
induces the L2- Wasserstein distance. In the following, we proceed to 
calculate the sectional curvatures using the following lemmas. We omit 
some calculations and the comprehensive proof can be found in [8]. 

Lemma 2.1. [2, Theorem 3.68] For a Riemannian manifold (M, g), 
suppose that { u, v} is an orthonormal basis of a 2-plane in the tangent 
space atp EM. Let Cr(B) = exppr(ucosB+vsinB), and L(r) be the 
length of the curve Cr. Then the function L(r) admits an asymptotic 
expansion 

L(r) = 27rr (1- K(~,v)r2 +o(r2)), as r ~ 0. 

Lemma 2.2. [8, Lemma 3.2] For A,B E {e+,eij,fij},O < r « 1 
and (} E [0, 21r], Cr(B) = expN(V) r( cos(} · A+ sinO · B) is a Gaussian 
measure N(X), where X= X(r, B)= (xa,a) is given by 

(2.1) X= [E + r(cosB ·A+ sinO· B)]· V · [E + r(cosB ·A+ sinO· B)], 
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where E is the identity matrix. 

Lemma 2.3. [8, Corollary 2.5] For an orthogonal matrix P, let 
N~(P) be a subset of N~ whose covariance matrices are diagonalized by 
P. Then N~ ( P) is a geodesically convex and fiat submanifold of N~. 

Lemma 2.4. [8, Lemma 3.3] Let ME Sym(2,JR), then we obtain 
(trM)2 = trM2 + 2detM. 

Proof of (1) and (5) 
If we choose A= e+,B = eij or A= ei1,B = ekz in (2.1), then N(X) 
belongs to NbP). By Lemma 2.3, the curvatures vanish. 

A strategy for proving the remaining case is as follows. We first 
calculate 

2 . W(Bo, B) 
W(Bo, B)= W2(Cr(Bo), Cr(B)) and W(Bo) = hm 82 IJ->IJo 

by using Lemma 2.2 and Lemma 2.4. Then we get 

r27r 
L(r) = lo W(B)~de. 

Finally we use Lemma 2.1 to obtain the expression of the sectional cur
vatures. Without loss of generality, we may assume P = E, because 
W(B0 , B) is invariant under taking conjugation with P. 

For 1 ::; i, j ::; d, e E [0, 2n] and sufficiently small r > 0, we set 

rcosB rsinB 
Cij (r, B) = , Sij (r, B) = ----r;======c= 

JAi + AJ JAi + AJ 

Proof of (2) and (8) 
For (2), we take A= !Id, B = e+ and I= {1, d}, whereas, for (8), take 
A= fiJ, B = eij and I= {i,j}. Then we notice that for any a.,{J rt I, 
(a., {J)-components of X are independent of the variables rand e. If we 
set 

X(B) = (Xaa Xaf3) 
Xf3a Xf3(3, 

we obtain 
1 

W(Bo, B) = trX(Bo) + trX(B) - 2tr (x(Bo) ~ X(B)X(Bo) ~) 2 , 

where {a., {J} = I. For (2), using Lemma 2.4, we conclude 

( ) 2 2 ( ) . W ( Bo, B) 2 W 80 , e = 4r sin e- Bo and hm (B e )2 = r . 
IJ->IJo - 0 
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It follows that L(r) = 21rr, proving K(e+, !rd) = 0. 
For ( 8), in a similar way, we have 

where 

ar(Bo, B) =Ai [(1 + Cij(r, Bo))(1 + Cij(r, B))+ Bij(r, Bo)Bij(r, B)] 

+ Aj [(1- Cij(r, Bo))(1- Cij(r, B))+ Bij(r, Bo)Bij(r, B)]. 

Since the limit of ar(Bo, B) exists as e--+ Bo and 

ar(Bo, Bo) = (>.i + Aj)(1 + r 2) + 2(>.i- Aj)r cosBo, 

we have 

It follows that 

Because ao(B, B) = >.i + Aj, using Lemma 2.1 and the bounded conver
gence theorem, we obtain 

Proof of (3) and (7) 
For (3), assuming i = 1, take A= e+, B = frj and I= {1,j, d}, whereas, 
for (7), assuming j < k, take A= eik, B = fij and I= {i,j, k}. Because 
for any a, (3 tJ. I, (a, /3)-components of X are independent of the variables 
rand e, we obtain 

W(Bo,B) 
1 

=trX(Bo) + trX(B)- 2tr ( X(Bo)!x(B)X(B0)!) 2 

=trY(Bo) + trY(B) - 2tr (f(Bo) ~Y(B)Y(Bo)~) ~ + r 2 >.-y(c~: :-.x:os Bo) 2
, 

where 
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and {a, {3, 'Y} = I. Using Lemma 2.4, we conclude 

2 . 2 1 r4 AaAf3 sin2(B- Bo) 2 
W(B0 , B)= 4r sm '2(0- Bo)- ar(B, Bo) (A.a.+ Af3)(A.a + A..y) + o(B ), 

where 

ar(B, Bo) = A.a(1 + Ca7 (r,Bo))(1 + Ca7 (r, B))+ r2 sinBo sinO+ Af3· 

Since the limit of ar(Bo, B) exists as B--+ Bo, we have 

r W(Bo, B) _ 2 r4 A.aA.f3 
e~~o (B- Bo)2 - r - ar(Bo, Bo) (A.a + Af3)(A.a + A.7 ); 

It follows that 

L(r) = 121r r ( 1- ~ ar~:, B) (A.a.+ ~)~fa+ A-y) + o(r2)) dB. 

Because ao(B, B) = (A.a + Af3), using Lemma 2.1 and the bounded con
vergence theorem, we obtain 

3A.aA.f3 
K(A, B) = (A.a.+ A.f3)2(A.a + A.-y)" 

We can prove the case of i of 1 and j = d in a similar way. 
Proof of (4), (6) and (9) 
We take (A, B) in (2.1) as (e+, !kl) ( {1, d}n{k, l} = 0), (eij, !kl) ( { i, j}n 
{ k, l} = 0) and (fij, !kl) ( { i, j} n { k, l} = 0) in this order. Moreover we 
set I= {1, d} in the case (4) and I= {i,j} in the case of (6) and (9). We 
notice that for any a, f3 ~ I, (a, /3)-components of X are independent of 
the variables r and e. If we set 

we obtain 
1 

W(Bo, B) = trXc(Bo) + trXc(B) - 2tr ( Xc(Bo)! Xc(B)Xc(Bo)!) 2 

1 

+ trXs(Bo) + trXs(B)- 2tr ( X8 (Bo)!Xs(B)Xs(Bo)!) 2 , 

where {a, /3} = I. Using Lemma 2.4, we conclude 

1. W(Bo, B) ( 1. r sin(B- 00)) 2 
lm = lm --::-'---:----'-

6->0o (B- Bo)2 6--->0o B- Bo 

It follows that L(r) = 21rr and K(A, B) = 0. 
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Proof of (10) 
Without loss of generality, we may assume j < k. Taking A and B as 
fij and fik in (2.1) respectively. We notice that for any a, (3 rf- {i,j, k}, 
(a, (3)-components of X are independent of the variables r and (}. If we 
set 

Xij Xik) 
Xjj Xjk , 

Xkj Xkk 

we obtain 
1 

(2.2) W(eo, e)= trX(eo) + trx(e)- 2tr ( X(e0 )!x(e)x(e0 )!) 2 . 

For the value of the last term in (2.2), Lemma 2.4 can not be used as 
the size of matrices is 3 x 3. 

We define some notations: 

1 

B = Beo(e) = ( x(eo)!x(e)x(e0 )!) 2 

{era= cre0 ((})a};=1 : eigenvalues of B 

!eo (e) = trB = cr1 + cr2 + cr3 

9e0 ((}) = trA = cri + cr~ + cr~ 
heo (e) = 0"1 0"2 + 0"20"3 + 0"30"1 

'/)80 ( (}) = cri CT~ + CT~ CT~ + CT~ cri 

De0 (e) = detB = (detA)! = cr1cr2cr3 

Rewriting (2.2) with the Taylor approximation of feoO at eo, we obtain 

W(eo, e)= -2f~o(eo)(e- eo)- ~~~(eo)(e- eo) 2 + o(le- eol 2 ). 

Since we can get the values of g, cp and D without information of X 112 , 

we compute f' and f" by using these values. 
We first calculate j~0 (eo). Differentiating Be0 ((}) • Be0 ((}) = Ae0 (e) 

with respect to (}, we have 

After multiplying B 80 (e)- 1 from the left, taking the trace gives 

trB~0 (eo) + tr(Be0 (Bo)B~0 (Bo)Be0 (eor 1 ) = 2f~0 (Bo) 
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at 8 = 80 . Because trX(8) is constant, at 8 = 80 the right hand side is 
equal to 

tr(X(80)!x'(80 )X(80 )!X(80 )-1 ) = trX'(8o) = (trX(8))'1 = o. 
&=eo 

Therefore we conclude 

(2.3) 

Next we compute f~~ (80 ). Differentiating j2 = g + 2h at 8 = 8o, we 
have 

2fe0 (8o)f~0 (8o) = 9~0 (8o) + 2h~0 (8o), 

proving 2h~0 ( 8o) = - g~0 ( 8o). Differentiating once more, 

fl (8) II (8) + 2h11 (8) f" (8) = _ J eo ( 1 ( 8' + 2h' (8)) + 9eo eo . 
eo 2feo ( 8)2 9eo J eo 2feo ( 8) 

Because of (2.3), we get at 8 = 80 

(2.4) +" (8 ) = g~0 (8o) + 2h~0 (8o) 
J&o 0 2fe0 (8o) . 

We compute directly 

ge0 (8) = L Xaf3(8o)X(3a(8). 
a,{3E{ i,j,k} 

This enables us to get the derivatives of ge0 ( 8). Because Be0 ( 8o) 
X ( 80 ), using the relation 

we have 

det(tE- B) = t 3 - t 2 · f + t · h- D, 

:L 
a,{3E{ i,j,k} 

a#{3 

While it is hard to compute Be0 ( 8) directly, it is also hard to know the 
values of he0 ( 8). We want to derive h~0 ( 8) without the information of 
Be0 ( 8). So differentiating h2 = tp + 2D f twice at 8 = 80 , we have 
(2.5) 
h~ (8o) = _ 9~0 (8o) 2 + lp~0 (8o) + 2D~0 (8o)fe0 (8o) + 2De0 (8o)f~~(8o). 

0 4he0 (8o) 2he0 (8o) 
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In order to analyze (2.5), we consider Do0 (0) and cpo0 (fJ). From the 
definition, we can compute Do0 (B) directly: 

Do0 (B) = AiAj-Ak[1- Cij(r, Bo) 2 - Bik(r,Bo)2 ] [1- Cij(r, 0)2 - Sik(r, 0)2] . 

We next consider 'POo (B). Using the equation 

det(tE- A) = t3 - t2 · g(B) + t · cp- D 2 

= detX(Bo) · det[tX(Bo)-1 - X(B)], 

we conclude 

cpo0 (0) = det(X(Bo)X(B)) · tr(Y(Bo)Y(B)), where Y(B) = X(f:})- 1 . 

We can obtain the value of 'POo (B) since it depends only on X (B). There
fore we can now specify the value of h~0 (00 ) in (2.5). 

Inserting (2.5) into (2.4), we obtain 

W(Bo, B) = - ~~~ (Bo) + o(IB - Bol 2 ) = - ~:~:~~ + o(IB - Bo 12 ) 

where 

ar(Bo) =2 [!o0 (Bo)ho0 (Bo)- Do0 (Bo)] 

f3r(Bo) =ho0 (Bo)9~0 (Bo)- ~9~0 (Bo) 2 + 'P~0 (Bo) + 2D~0 (Bo). 
Therefore we have 

W(Bo) = lim W(B, Bo) = _ f3r( Bo). 
0->0o 02 C¥r ( Bo) 

If we set 

L = 2(-Ai + .A1)(.A1 + .Ak)(.Ak + .Ai), 
a= .AJ +.A~+ 4-Aj.Ak + AiAj + AiAk + (-Aj- .Ak)(.Aj + Ak + 3-Ai) cosO, 

b = (.A1 + .Ak)(.Ai + .A1 + .Ak) + (.A1 - .Ak)(.Aj + Ak + 3-Ai) cos B, 

we have 

Using Lemma 2.1 and the bounded convergence theorem, we obtain 

21fK(u,v) = {27r lim a-b d0=21fa-b, 
6 }0 r",.O 2(L + r2 a) 2L 
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which implies that 

This completes the proof of Theorem 1.1. Q.E.D. 
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